
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Congruence Lattices of Ideals in Categories and (Partial) Semigroups
About this Title
James East and Nik Ruškuc
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 284, Number 1408
ISBNs: 978-1-4704-6269-7 (print); 978-1-4704-7446-1 (online)
DOI: https://doi.org/10.1090/memo/1408
Published electronically: March 21, 2023
Keywords: Categories,
semigroups,
congruences,
$\mathscr {H}$-congruences,
lattices,
ideals,
chains of ideals,
diagram categories,
partition categories,
Brauer categories,
Temperley-Lieb categories,
Jones categories,
transformation categories,
linear categories,
projective linear categories,
partial braid categories
Table of Contents
Chapters
- Acknowledgments
- 1. Introduction
- 2. Categories and partial semigroups
- 3. Ideal extensions
- 4. Chains of ideals
- 5. Transformation categories
- 6. Partition categories
- 7. Brauer categories
- 8. Temperley–Lieb and anti-Temperley–Lieb categories
- 9. Jones and anti-Jones categories
- 10. Categories and partial semigroups with $\mathscr {H}{}$-congruences
- 11. Linear and projective linear categories
- 12. Partial braid categories
Abstract
This monograph presents a unified framework for determining the congruences on a number of monoids and categories of transformations, diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions; Brauer, Temperley–Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid categories.- Samson Abramsky, Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics, Mathematics of quantum computation and quantum technology, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2008, pp. 515–558. MR 2422231
- A. Ja. Aĭzenštat, On homomorphisms of semigroups of endomorphisms of ordered sets, Leningrad. Gos. Ped. Inst. Učen. Zap. 238 (1962), 38–48 (Russian). MR 0166290
- João Araújo, Wolfram Bentz, and Gracinda M. S. Gomes, Congruences on direct products of transformation and matrix monoids, Semigroup Forum 97 (2018), no. 3, 384–416. MR 3881848, DOI 10.1007/s00233-018-9931-8
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 19087, DOI 10.2307/1969218
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Emil Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), no. 1, 47–72 (German). MR 3069440, DOI 10.1007/BF02950718
- Karl Auinger, Igor Dolinka, and Mikhail V. Volkov, Equational theories of semigroups with involution, J. Algebra 369 (2012), 203–225. MR 2959792, DOI 10.1016/j.jalgebra.2012.06.021
- J. Baez and M. Stay, Physics, topology, logic and computation: a Rosetta Stone, New structures for physics, Lecture Notes in Phys., vol. 813, Springer, Heidelberg, 2011, pp. 95–172. MR 2767046, DOI 10.1007/978-3-642-12821-9_{2}
- John C. Baez, Hochschild homology in a braided tensor category, Trans. Amer. Math. Soc. 344 (1994), no. 2, 885–906. MR 1240942, DOI 10.1090/S0002-9947-1994-1240942-2
- John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105. MR 1355899, DOI 10.1063/1.531236
- John C. Baez and Martin Neuchl, Higher-dimensional algebra. I. Braided monoidal $2$-categories, Adv. Math. 121 (1996), no. 2, 196–244. MR 1402727, DOI 10.1006/aima.1996.0052
- Georgia Benkart and Tom Halverson, Motzkin algebras, European J. Combin. 36 (2014), 473–502. MR 3131911, DOI 10.1016/j.ejc.2013.09.010
- Georgia Benkart and Tom Halverson, Partition algebras $\mathsf {P}_k(n)$ with $2k>n$ and the fundamental theorems of invariant theory for the symmetric group $\mathsf {S}_n$, J. Lond. Math. Soc. (2) 99 (2019), no. 1, 194–224. MR 3909254, DOI 10.1112/jlms.12175
- Stephen Bigelow, Eric Ramos, and Ren Yi, The Alexander and Jones polynomials through representations of rook algebras, J. Knot Theory Ramifications 21 (2012), no. 12, 1250114, 18. MR 2978881, DOI 10.1142/S0218216512501143
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Mirjana Borisavljević, Kosta Došen, and Zoran Petrić, Kauffman monoids, J. Knot Theory Ramifications 11 (2002), no. 2, 127–143. MR 1895365, DOI 10.1142/S0218216502001524
- Richard Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), no. 4, 857–872. MR 1503378, DOI 10.2307/1968843
- P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), no. 2, 190–206. MR 1658642, DOI 10.1007/s002339900014
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1967. MR 0218472
- J. R. B. Cockett and Stephen Lack, Restriction categories. I. Categories of partial maps, Theoret. Comput. Sci. 270 (2002), no. 1-2, 223–259. MR 1871071, DOI 10.1016/S0304-3975(00)00382-0
- Igor Dolinka, Ivana Đurđev, and James East, Sandwich semigroups in diagram categories, Internat. J. Algebra Comput. 31 (2021), no. 7, 1339–1404. MR 4338057, DOI 10.1142/S021819672150048X
- Igor Dolinka and James East, Semigroups of rectangular matrices under a sandwich operation, Semigroup Forum 96 (2018), no. 2, 253–300. MR 3782643, DOI 10.1007/s00233-017-9873-6
- Igor Dolinka and James East, Twisted Brauer monoids, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 4, 731–750. MR 3841497, DOI 10.1017/S0308210517000282
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, J. Algebra 471 (2017), 251–298. MR 3569186, DOI 10.1016/j.jalgebra.2016.09.018
- Igor Dolinka, Ivana Đurđev, James East, Preeyanuch Honyam, Kritsada Sangkhanan, Jintana Sanwong, and Worachead Sommanee, Sandwich semigroups in locally small categories I: foundations, Algebra Universalis 79 (2018), no. 3, Paper No. 75, 35. MR 3848011, DOI 10.1007/s00012-018-0537-5
- Igor Dolinka, Ivana Đurđev, James East, Preeyanuch Honyam, Kritsada Sangkhanan, Jintana Sanwong, and Worachead Sommanee, Sandwich semigroups in locally small categories II: transformations, Algebra Universalis 79 (2018), no. 3, Paper No. 76, 53. MR 3849129, DOI 10.1007/s00012-018-0539-3
- William F. Doran IV and David B. Wales, The partition algebra revisited, J. Algebra 231 (2000), no. 1, 265–330. MR 1779601, DOI 10.1006/jabr.2000.8365
- Kosta Došen and Zoran Petrić, Syntax for split preorders, Ann. Pure Appl. Logic 164 (2013), no. 4, 443–481. MR 3015321, DOI 10.1016/j.apal.2012.10.008
- D. Easdown and T. G. Lavers, The inverse braid monoid, Adv. Math. 186 (2004), no. 2, 438–455. MR 2073914, DOI 10.1016/j.aim.2003.07.014
- James East, Braids and partial permutations, Adv. Math. 213 (2007), no. 1, 440–461. MR 2331250, DOI 10.1016/j.aim.2007.01.002
- James East, Vines and partial transformations, Adv. Math. 216 (2007), no. 2, 787–810. MR 2351378, DOI 10.1016/j.aim.2007.06.005
- James East, Braids and order-preserving partial permutations, J. Knot Theory Ramifications 19 (2010), no. 8, 1025–1049. MR 2718626, DOI 10.1142/S0218216510008339
- James East, Singular braids and partial permutations, Acta Sci. Math. (Szeged) 81 (2015), no. 1-2, 55–77. MR 3381874, DOI 10.14232/actasm-014-012-7
- James East, Presentations for rook partition monoids and algebras and their singular ideals, J. Pure Appl. Algebra 223 (2019), no. 3, 1097–1122. MR 3862666, DOI 10.1016/j.jpaa.2018.05.016
- James East, Presentations for tensor categories, Preprint (2020, arXiv:2005.01953).
- James East and Robert D. Gray, Diagram monoids and Graham-Houghton graphs: idempotents and generating sets of ideals, J. Combin. Theory Ser. A 146 (2017), 63–128. MR 3574225, DOI 10.1016/j.jcta.2016.09.001
- James East, James D. Mitchell, Nik Ruškuc, and Michael Torpey, Congruence lattices of finite diagram monoids, Adv. Math. 333 (2018), 931–1003. MR 3818094, DOI 10.1016/j.aim.2018.05.016
- James East and Nik Ruškuc, Congruences on infinite partition and partial Brauer monoids, Mosc. Math. J. 22 (2022), no. 2, 295–372. MR 4435760, DOI 10.17323/1609-4514-2022-22-2-295-372
- V. H. Fernandes, The monoid of all injective order preserving partial transformations on a finite chain, Semigroup Forum 62 (2001), no. 2, 178–204. MR 1831507, DOI 10.1007/s002330010056
- Vítor H. Fernandes, Gracinda M. S. Gomes, and Manuel M. Jesus, Congruences on monoids of order-preserving or order-reversing transformations on a finite chain, Glasg. Math. J. 47 (2005), no. 2, 413–424. MR 2203510, DOI 10.1017/S0017089505002648
- Vítor H. Fernandes, Gracinda M. S. Gomes, and Manuel M. Jesus, Congruences on monoids of transformations preserving the orientation of a finite chain, J. Algebra 321 (2009), no. 3, 743–757. MR 2488550, DOI 10.1016/j.jalgebra.2008.11.005
- D. G. FitzGerald and Kwok Wai Lau, On the partition monoid and some related semigroups, Bull. Aust. Math. Soc. 83 (2011), no. 2, 273–288. MR 2784786, DOI 10.1017/S0004972710001851
- Daniel Flath, Tom Halverson, and Kathryn Herbig, The planar rook algebra and Pascal’s triangle, Enseign. Math. (2) 55 (2009), no. 1-2, 77–92. MR 2541502, DOI 10.4171/lem/55-1-3
- Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156–182. MR 1020583, DOI 10.1016/0001-8708(89)90018-2
- Olexandr Ganyushkin and Volodymyr Mazorchuk, Classical finite transformation semigroups, Algebra and Applications, vol. 9, Springer-Verlag London, Ltd., London, 2009. An introduction. MR 2460611, DOI 10.1007/978-1-84800-281-4
- GAP – Groups, Algorithms, and Programming, Version 4.10.1, The GAP Group, 2019.
- N. D. Gilbert, Presentations of the inverse braid monoid, J. Knot Theory Ramifications 15 (2006), no. 5, 571–588. MR 2229328, DOI 10.1142/S0218216506004609
- Gracinda M. S. Gomes and John M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), no. 3, 272–282. MR 1179851, DOI 10.1007/BF03025769
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI 10.1007/BF01232365
- J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2) 44 (1998), no. 3-4, 173–218. MR 1659204
- R. Gray, Idempotent rank in endomorphism monoids of finite independence algebras, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 2, 303–331. MR 2360772, DOI 10.1017/S0308210505000636
- R. Gray, Hall’s condition and idempotent rank of ideals of endomorphism monoids, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 1, 57–72. MR 2391634, DOI 10.1017/S0013091504001397
- Cheryl Grood, The rook partition algebra, J. Combin. Theory Ser. A 113 (2006), no. 2, 325–351. MR 2199277, DOI 10.1016/j.jcta.2005.03.006
- T. E. Hall, On regular semigroups, J. Algebra 24 (1973), 1–24. MR 310098, DOI 10.1016/0021-8693(73)90150-6
- Tom Halverson and Arun Ram, Partition algebras, European J. Combin. 26 (2005), no. 6, 869–921. MR 2143201, DOI 10.1016/j.ejc.2004.06.005
- J. M. Howie, Idempotent generators in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), no. 3-4, 317–323. MR 516422, DOI 10.1017/S0308210500010647
- John M. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, vol. 12, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. MR 1455373
- John M. Howie and Robert B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 3-4, 161–167. MR 1055541, DOI 10.1017/S0308210500024355
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- V. F. R. Jones, The Potts model and the symmetric group, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 259–267. MR 1317365
- V. F. R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, Enseign. Math. (2) 40 (1994), no. 3-4, 313–344. MR 1309131
- Vaughan F. R. Jones, The annular structure of subfactors, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 401–463. MR 1929335
- Vaughan F. R. Jones and David Penneys, Infinite index subfactors and the GICAR categories, Comm. Math. Phys. 339 (2015), no. 2, 729–768. MR 3370617, DOI 10.1007/s00220-015-2407-8
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- J. Kastl, Inverse categories, Algebraische Modelle, Kategorien und Gruppoide, Stud. Algebra Anwendungen, vol. 7, Akademie-Verlag, Berlin, 1979, pp. 51–60. MR 569574
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- G. M. Kelly, On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299–307. MR 0170922
- V. N. Klimov, Congruences of globally idempotent semigroups, Ural. Gos. Univ. Mat. Zap. 10 (1977), no. 3 Issled. po Sovremen. Algebre, 73–105, 217 (Russian). MR 0486237
- Steffen König and Changchang Xi, A characteristic free approach to Brauer algebras, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1489–1505. MR 1806731, DOI 10.1090/S0002-9947-00-02724-0
- Gérard Lallement, Demi-groupes réguliers, Ann. Mat. Pura Appl. (4) 77 (1967), 47–129 (French). MR 225915, DOI 10.1007/BF02416940
- Kwok Wai Lau and D. G. FitzGerald, Ideal structure of the Kauffman and related monoids, Comm. Algebra 34 (2006), no. 7, 2617–2629. MR 2240396, DOI 10.1080/00927870600651414
- T. G. Lavers, The theory of vines, Comm. Algebra 25 (1997), no. 4, 1257–1284. MR 1437671, DOI 10.1080/00927879708825919
- G. I. Lehrer and R. B. Zhang, The Brauer category and invariant theory, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2311–2351. MR 3420509, DOI 10.4171/JEMS/558
- Gustav Lehrer and Ruibin Zhang, The second fundamental theorem of invariant theory for the orthogonal group, Ann. of Math. (2) 176 (2012), no. 3, 2031–2054. MR 2979865, DOI 10.4007/annals.2012.176.3.12
- Gustav I. Lehrer and Ruibin Zhang, Invariants of the special orthogonal group and an enhanced Brauer category, Enseign. Math. 63 (2017), no. 1-2, 181–200. MR 3777135, DOI 10.4171/LEM/63-1/2-6
- A. E. Liber, On symmetric generalized groups, Mat. Sbornik N.S. 33(75) (1953), 531–544 (Russian). MR 0059268
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- A. I. Mal′cev, Symmetric groupoids, Mat. Sbornik N.S. 31(73) (1952), 136–151 (Russian). MR 0050576
- A. I. Mal′cev, Multiplicative congruences of matrices, Doklady Akad. Nauk SSSR (N.S.) 90 (1953), 333–335 (Russian). MR 0055321
- M. Paula O. Marques-Smith and R. P. Sullivan, The congruences on the semigroup of balanced transformations of an infinite set, J. Algebra 234 (2000), no. 1, 1–30. MR 1799477, DOI 10.1006/jabr.2000.8391
- Paul Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1103994, DOI 10.1142/0983
- Paul Martin, Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications 3 (1994), no. 1, 51–82. MR 1265453, DOI 10.1142/S0218216594000071
- Paul Martin, On diagram categories, representation theory and statistical mechanics, Noncommutative rings, group rings, diagram algebras and their applications, Contemp. Math., vol. 456, Amer. Math. Soc., Providence, RI, 2008, pp. 99–136. MR 2416146, DOI 10.1090/conm/456/08886
- Paul Martin and Volodymyr Mazorchuk, On the representation theory of partial Brauer algebras, Q. J. Math. 65 (2014), no. 1, 225–247. MR 3179659, DOI 10.1093/qmath/has043
- Paul P. Martin, The decomposition matrices of the Brauer algebra over the complex field, Trans. Amer. Math. Soc. 367 (2015), no. 3, 1797–1825. MR 3286499, DOI 10.1090/S0002-9947-2014-06163-1
- Volodymyr Mazorchuk, On the structure of Brauer semigroup and its partial analogue, Problems in Algebra 13 (1998), 29–45.
- J. D. Mitchell and others, Semigroups - gap package, version 3.2.0, 2019.
- Kunio Murasugi and Bohdan I. Kurpita, A study of braids, Mathematics and its Applications, vol. 484, Kluwer Academic Publishers, Dordrecht, 1999. MR 1731872, DOI 10.1007/978-94-015-9319-9
- T. E. Nordahl and H. E. Scheiblich, Regular $\ast$-semigroups, Semigroup Forum 16 (1978), no. 3, 369–377. MR 507171, DOI 10.1007/BF02194636
- Jan Okniński, Semigroups of matrices, Series in Algebra, vol. 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. MR 1785162, DOI 10.1142/9789812816290
- H. E. Scheiblich, Concerning congruences on symmetric inverse semigroups, Czechoslovak Math. J. 23(98) (1973), 1–10. MR 315033
- Louis Solomon, Representations of the rook monoid, J. Algebra 256 (2002), no. 2, 309–342. MR 1939108, DOI 10.1016/S0021-8693(02)00004-2
- Catharina Stroppel, Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126 (2005), no. 3, 547–596. MR 2120117, DOI 10.1215/S0012-7094-04-12634-X
- È. G. Šutov, Homomorphisms of the semigroup of all partial transformations, Izv. Vysš. Učebn. Zaved. Matematika 1961 (1961), no. 3 (22), 177–184 (Russian). MR 0150223
- È. G. Šutov, Semigroups of one-to-one transformations, Dokl. Akad. Nauk SSSR 140 (1961), 1026–1028 (Russian). MR 0130923
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- V. G. Turaev, Operator invariants of tangles, and $R$-matrices, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1073–1107, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 411–444. MR 1024455, DOI 10.1070/IM1990v035n02ABEH000711
- Fred Van Oystaeyen and Yinhuo Zhang, The Brauer group of a braided monoidal category, J. Algebra 202 (1998), no. 1, 96–128. MR 1614178, DOI 10.1006/jabr.1997.7295
- Hans Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. (2) 128 (1988), no. 1, 173–193. MR 951511, DOI 10.2307/1971466
- Stewart Wilcox, Cellularity of diagram algebras as twisted semigroup algebras, J. Algebra 309 (2007), no. 1, 10–31. MR 2301230, DOI 10.1016/j.jalgebra.2006.10.016
- Changchang Xi, Partition algebras are cellular, Compositio Math. 119 (1999), no. 1, 99–109. MR 1711582, DOI 10.1023/A:1001776125173
- Hao Bo Yang and Xiu Liang Yang, Maximal subsemigroups of finite transformation semigroups $K(n,r)$, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 3, 475–482. MR 2084710, DOI 10.1007/s10114-004-0367-6