
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters
About this Title
Giao Ky Duong, Nejla Nouaili and Hatem Zaag
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 285, Number 1411
ISBNs: 978-1-4704-6121-8 (print); 978-1-4704-7481-2 (online)
DOI: https://doi.org/10.1090/memo/1411
Published electronically: April 25, 2023
Keywords: Blow-up profile,
Complex Ginzburg-Landau equation
Table of Contents
Chapters
- 1. Introduction
- 2. Formal approach
- 3. Formulation of the problem
- 4. Existence
- 5. Single point blow-up and final profile
- A. Spectral properties of $\mathcal {L}_{\beta }$
- B. Details of expansions of the potential terms: $V_1$ and $V_2$
- C. Details of some expansions of $B(q)$
- D. Details of expansions of $R^*(y,s, \theta ’(s))$
- E. Formal derivation of constants $b$ and $\mu$
- F. Cancellation of some coefficient in the ODE of $\tilde q_2$
Abstract
We construct a solution for the Complex Ginzburg-Landau (CGL) equation in a general critical case, which blows up in finite time $T$ only at one blow-up point. We also give a sharp description of its profile. In the first part, we formally construct a blow-up solution. In the second part we give the rigorous proof. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows to prove the stability of the constructed solution. We would like to mention that the asymptotic profile of our solution is different from previously known profiles for CGL or for the semilinear heat equation.- Igor S. Aranson and Lorenz Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys. 74 (2002), no. 1, 99–143. MR 1895097, DOI 10.1103/RevModPhys.74.99
- Bouthaina Abdelhedi and Hatem Zaag, Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations 272 (2021), 1–45. MR 4156118, DOI 10.1016/j.jde.2020.09.020
- J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity 7 (1994), no. 2, 539–575. MR 1267701
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Raphaël Côte and Hatem Zaag, Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math. 66 (2013), no. 10, 1541–1581. MR 3084698, DOI 10.1002/cpa.21452
- Giao Ky Duong and Hatem Zaag, Profile of a touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci. 29 (2019), no. 7, 1279–1348. MR 3974168, DOI 10.1142/S0218202519500222
- Giao Ky Duong, Van Tien Nguyen, and Hatem Zaag, Construction of a stable blowup solution with a prescribed behavior for a non-scaling-invariant semilinear heat equation, Tunis. J. Math. 1 (2019), no. 1, 13–45. MR 3907732, DOI 10.2140/tunis.2019.1.13
- Giao Ky Duong, A blowup solution of a complex semi-linear heat equation with an irrational power, J. Differential Equations 267 (2019), no. 9, 4975–5048. MR 3991552, DOI 10.1016/j.jde.2019.05.024
- Giao Ky Duong, Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation, J. Funct. Anal. 277 (2019), no. 5, 1531–1579. MR 3969198, DOI 10.1016/j.jfa.2019.05.009
- M. A. Ebde and H. Zaag, Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term, SeMA J. 55 (2011), 5–21. MR 2849015, DOI 10.1007/bf03322590
- Yoshikazu Giga and Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), no. 6, 845–884. MR 1003437, DOI 10.1002/cpa.3160420607
- Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag, Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term, J. Differential Equations 263 (2017), no. 8, 4517–4564. MR 3680932, DOI 10.1016/j.jde.2017.05.023
- Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag, Blowup solutions for a reaction-diffusion system with exponential nonlinearities, J. Differential Equations 264 (2018), no. 12, 7523–7579. MR 3779644, DOI 10.1016/j.jde.2018.02.022
- Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag, Construction and stability of blowup solutions for a non-variational semilinear parabolic system, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 6, 1577–1630 (English, with English and French summaries). MR 3846237, DOI 10.1016/j.anihpc.2018.01.003
- Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag, Construction and stability of type I blowup solutions for non-variational semilinear parabolic systems, Adv. Pure Appl. Math. 10 (2019), no. 4, 299–312. MR 4015203, DOI 10.1515/apam-2018-0168
- Tej-Eddine Ghoul, Van Tien Nguyen, and Hatem Zaag, Construction of type I blowup solutions for a higher order semilinear parabolic equation, Adv. Nonlinear Anal. 9 (2020), no. 1, 388–412. MR 3962631, DOI 10.1515/anona-2020-0006
- Jean Ginibre and Giorgio Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation, Differential equations, asymptotic analysis, and mathematical physics (Potsdam, 1996) Math. Res., vol. 100, Akademie Verlag, Berlin, 1997, pp. 138–152. MR 1456184
- J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods, Comm. Math. Phys. 187 (1997), no. 1, 45–79. MR 1463822, DOI 10.1007/s002200050129
- L. M. Hocking and K. Stewartson, On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance, Proc. Roy. Soc. London Ser. A 326 (1972), 289–313. MR 329419, DOI 10.1098/rspa.1972.0010
- L. M. Hocking, K. Stewartson, J. T. Stuart, and S. N. Brown, A nonlinear instability in plane parallel flow, J. Fluid. Mech 51 (1972), 705–735.
- P. Kolodner, D. Bensimon, and M. Surko, Traveling wave convection in an annulus, Phys.Rev.Lett. 60 (1988), 1723–1726.
- Paul Kolodner, Said Slimani, Nadine Aubry, and Ricardo Lima, Characterization of dispersive chaos and related states of binary-fluid convection, Phys. D 85 (1995), no. 1-2, 165–224. MR 1339236, DOI 10.1016/0167-2789(95)00061-8
- Frank Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), no. 3, 263–300. MR 1151268, DOI 10.1002/cpa.3160450303
- Frank Merle and Hatem Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u+|u|^{p-1}u$, Duke Math. J. 86 (1997), no. 1, 143–195. MR 1427848, DOI 10.1215/S0012-7094-97-08605-1
- Nader Masmoudi and Hatem Zaag, Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal. 255 (2008), no. 7, 1613–1666. MR 2442077, DOI 10.1016/j.jfa.2008.03.008
- Van Tien Nguyen and Hatem Zaag, Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 4, 1275–1314. MR 3616335
- Nejla Nouaili and Hatem Zaag, Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Comm. Partial Differential Equations 40 (2015), no. 7, 1197–1217. MR 3341202, DOI 10.1080/03605302.2015.1018997
- Nejla Nouaili and Hatem Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal. 228 (2018), no. 3, 995–1058. MR 3780144, DOI 10.1007/s00205-017-1211-3
- Petr Plecháč and Vladimír Šverák, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math. 54 (2001), no. 10, 1215–1242. MR 1843986, DOI 10.1002/cpa.3006
- Stefan Popp, Olaf Stiller, Evgenii Kuznetsov, and Lorenz Kramer, The cubic complex Ginzburg-Landau equation for a backward bifurcation, Phys. D 114 (1998), no. 1-2, 81–107. MR 1612047, DOI 10.1016/S0167-2789(97)00170-X
- Vivi Rottschäfer, Multi-bump, self-similar, blow-up solutions of the Ginzburg-Landau equation, Phys. D 237 (2008), no. 4, 510–539. MR 2451604, DOI 10.1016/j.physd.2007.09.022
- V. Rottschäfer, Asymptotic analysis of a new type of multi-bump, self-similar, blowup solutions of the Ginzburg-Landau equation, European J. Appl. Math. 24 (2013), no. 1, 103–129. MR 3041705, DOI 10.1017/S0956792512000320
- Pierre Raphaël and Remi Schweyer, Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math. 66 (2013), no. 3, 414–480. MR 3008229, DOI 10.1002/cpa.21435
- Pierre Raphaël and Rémi Schweyer, On the stability of critical chemotactic aggregation, Math. Ann. 359 (2014), no. 1-2, 267–377. MR 3201901, DOI 10.1007/s00208-013-1002-6
- K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech. 48 (1971), 529–545. MR 309420, DOI 10.1017/S0022112071001733
- Slim Tayachi and Hatem Zaag, Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc. 371 (2019), no. 8, 5899–5972. MR 3937314, DOI 10.1090/tran/7631
- J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1567–1596. MR 1187622, DOI 10.1080/03605309208820896
- J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc. 338 (1993), no. 1, 441–464. MR 1134760, DOI 10.1090/S0002-9947-1993-1134760-2
- J. J. L. Velázquez, Estimates on the $(n-1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J. 42 (1993), no. 2, 445–476. MR 1237055, DOI 10.1512/iumj.1993.42.42021
- J. J. L. Velázquez, V. A. Galaktionov, and M. A. Herrero, The space structure near a blow-up point for semilinear heat equations: a formal approach, Zh. Vychisl. Mat. i Mat. Fiz. 31 (1991), no. 3, 399–411 (English, with Russian summary); English transl., Comput. Math. Math. Phys. 31 (1991), no. 3, 46–55 (1992). MR 1107061
- Hatem Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 5, 581–622. MR 1643389, DOI 10.1016/S0294-1449(98)80002-4
- Hatem Zaag, A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure, Comm. Pure Appl. Math. 54 (2001), no. 1, 107–133. MR 1787109, DOI 10.1002/1097-0312(200101)54:1<107::AID-CPA5>3.3.CO;2-L
- Hatem Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 19 (2002), no. 5, 505–542 (English, with English and French summaries). MR 1922468, DOI 10.1016/S0294-1449(01)00088-9
- Hatem Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations, Comm. Math. Phys. 225 (2002), no. 3, 523–549. MR 1888872, DOI 10.1007/s002200100589
- Hatem Zaag, Regularity of the blow-up set and singular behavior for semilinear heat equations, Mathematics & mathematics education (Bethlehem, 2000) World Sci. Publ., River Edge, NJ, 2002, pp. 337–347. MR 1911245