
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Representation Theory of Geigle-Lenzing Complete Intersections
About this Title
Martin Herschend, Osamu Iyama, Hiroyuki Minamoto and Steffen Oppermann
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 285, Number 1412
ISBNs: 978-1-4704-5631-3 (print); 978-1-4704-7482-9 (online)
DOI: https://doi.org/10.1090/memo/1412
Published electronically: April 25, 2023
Keywords: Auslander-Reiten theory,
weighted projective line,
canonical algebra,
Geigle-Lenzing projective space,
derived category,
tilting theory,
Cohen-Macaulay module,
$d$-representation infinite algebra,
Fano algebra
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
1. Geigle-Lenzing complete intersections
- 3. Geigle-Lenzing complete intersections
- 4. Cohen-Macaulay representations on Geigle-Lenzing complete intersections
2. Geigle-Lenzing projective spaces
- 5. Geigle-Lenzing projective spaces
- 6. $d$-canonical algebras
- 7. Tilting theory on Geigle-Lenzing projective spaces
Abstract
Weighted projective lines, introduced by Geigle and Lenzing in 1987, are important objects in representation theory. They have tilting bundles, whose endomorphism algebras are the canonical algebras introduced by Ringel. The aim of this paper is to study their higher dimensional analogs. First, we introduce a certain class of commutative Gorenstein rings $R$ graded by abelian groups $\mathbb {L}$ of rank $1$, which we call Geigle-Lenzing complete intersections. We study the stable category $\underline {\mathsf {CM}}^{\mathbb {L}}R$ of Cohen-Macaulay representations, which coincides with the singularity category $\mathsf {D}^{\mathbb {L}}_{\mathrm {sg}}(R)$. We show that $\underline {\mathsf {CM}}^{\mathbb {L}}R$ is triangle equivalent to $\mathsf {D}^{\mathrm {b}}(\mathsf {mod} A^{\mathrm {CM}})$ for a finite dimensional algebra $A^{\mathrm {CM}}$, which we call the CM-canonical algebra. As an application, we classify the $(R,\mathbb {L})$ that are Cohen-Macaulay finite. We also give sufficient conditions for $(R,\mathbb {L})$ to be $d$-Cohen-Macaulay finite in the sense of higher Auslander-Reiten theory. Secondly, we study a new class of non-commutative projective schemes in the sense of Artin-Zhang, i.e. the category $\mathsf {coh}\mathbb {X}=\mathsf {mod}^{\mathbb {L}}R/\mathsf {mod}^{\mathbb {L}}_0R$ of coherent sheaves on the Geigle-Lenzing projective space $\mathbb {X}$. Geometrically this is the quotient stack $\mathbb {X}=[X/G]$ for $X={\mathrm {Spec}}\,R\setminus \{R_+\}$ and $G={\mathrm {Spec}}\,k[\mathbb {L}]$. We show that $\mathsf {D}^{\mathrm {b}}(\mathsf {coh}\mathbb {X})$ is triangle equivalent to $\mathsf {D}^{\mathrm {b}}(\mathsf {mod} A^{ca})$ for a finite dimensional algebra $A^{\mathrm {ca}}$, which we call a $d$-canonical algebra. We study when $\mathbb {X}$ is $d$-vector bundle finite, and when $\mathbb {X}$ is derived equivale’nt to a $d$-representation infinite algebra in the sense of higher Auslander-Reiten theory. Our $d$-canonical algebras provide a rich source of $d$-Fano and $d$-anti-Fano algebras in non-commutative algebraic geometry. We also observe Orlov-type semiorthogonal decompositions of $\mathsf {D}_{\mathrm {sg}}^{\mathbb {L}}(R)$ and $\mathsf {D}^{b}(\mathsf {coh}\mathbb {X})$.- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- Claire Amiot, Osamu Iyama, and Idun Reiten, Stable categories of Cohen-Macaulay modules and cluster categories, Amer. J. Math. 137 (2015), no. 3, 813–857. MR 3357123, DOI 10.1353/ajm.2015.0019
- Lidia Angeleri Hügel, Dieter Happel, and Henning Krause (eds.), Handbook of tilting theory, London Mathematical Society Lecture Note Series, vol. 332, Cambridge University Press, Cambridge, 2007. MR 2385175, DOI 10.1017/CBO9780511735134
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 3, London Mathematical Society Student Texts, vol. 72, Cambridge University Press, Cambridge, 2007. Representation-infinite tilted algebras. MR 2382332
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Lect. Notes Pure Appl. Math., Vol. 37, Dekker, New York-Basel, 1978, pp. 1–244. MR 480688
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), no. 2, 511–531. MR 816307, DOI 10.1090/S0002-9947-1986-0816307-7
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969. MR 269685
- Maurice Auslander and Ragnar-Olaf Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mém. Soc. Math. France (N.S.) 38 (1989), 5–37 (English, with French summary). Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044344
- Maurice Auslander, Songqing Ding, and Øyvind Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273–317. MR 1216471, DOI 10.1006/jabr.1993.1076
- Maurice Auslander and Idun Reiten, Almost split sequences for $\textbf {Z}$-graded rings, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 232–243. MR 915178, DOI 10.1007/BFb0078847
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426–454. MR 617088, DOI 10.1016/0021-8693(81)90214-3
- Luchezar L. Avramov, Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 1–118. MR 1648664
- Matthew Ballard, David Favero, and Ludmil Katzarkov, A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 1–111. MR 3270588, DOI 10.1007/s10240-013-0059-9
- Dagmar Baer, Tilting sheaves in representation theory of algebras, Manuscripta Math. 60 (1988), no. 3, 323–347. MR 928291, DOI 10.1007/BF01169343
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- M. P. Brodmann and R. Y. Sharp, Local cohomology, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic introduction with geometric applications. MR 3014449
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- R. O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished manuscript.
- R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, DOI 10.1007/BF01405096
- R. O. Buchweitz, L. Hille, in preparation.
- Marta Casanellas and Robin Hartshorne, ACM bundles on cubic surfaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 709–731. MR 2781930, DOI 10.4171/JEMS/265
- X. Chen, H. Krause, Introduction to coherent sheaves on weighted projective lines, arXiv:0911.4473.
- Laura Costa, Rosa M. Miró-Roig, and Joan Pons-Llopis, The representation type of Segre varieties, Adv. Math. 230 (2012), no. 4-6, 1995–2013. MR 2927362, DOI 10.1016/j.aim.2012.03.034
- Koen de Naeghel and Michel van den Bergh, Ideal classes of three-dimensional Sklyanin algebras, J. Algebra 276 (2004), no. 2, 515–551. MR 2058456, DOI 10.1016/j.jalgebra.2003.09.023
- Tobias Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. 159 (2011), no. 2, 223–274. MR 2824483, DOI 10.1215/00127094-1415869
- Yuri A. Drozd and Gert-Martin Greuel, Tame and wild projective curves and classification of vector bundles, J. Algebra 246 (2001), no. 1, 1–54. MR 1872612, DOI 10.1006/jabr.2001.8934
- Ju. A. Drozd and A. V. Roĭter, Commutative rings with a finite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 783–798 (Russian). MR 220716
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Jürgen Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347–352. MR 929541, DOI 10.1007/BF01456058
- Hélène Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63–71. MR 809966, DOI 10.1515/crll.1985.362.63
- Masahiro Futaki and Kazushi Ueda, Homological mirror symmetry for Brieskorn-Pham singularities, Selecta Math. (N.S.) 17 (2011), no. 2, 435–452. MR 2803848, DOI 10.1007/s00029-010-0055-6
- P. Gabriel, The universal cover of a representation-finite algebra, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 903, Springer, Berlin-New York, 1981, pp. 68–105. MR 654725
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 210125
- Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, DOI 10.1007/BFb0078849
- Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607, DOI 10.1016/0021-8693(91)90107-J
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- G.-M. Greuel and H. Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (1985), no. 3, 417–425 (German). MR 774367, DOI 10.1007/BF01473437
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 217084
- Tor Holtedahl Gulliksen, A proof of the existence of minimal $R$-algebra resolutions, Acta Math. 120 (1968), 53–58. MR 224607, DOI 10.1007/BF02394606
- Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Papers in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, ON, 1969. MR 262227
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Dieter Happel, A characterization of hereditary categories with tilting object, Invent. Math. 144 (2001), no. 2, 381–398. MR 1827736, DOI 10.1007/s002220100135
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093
- Martin Herschend and Osamu Iyama, $n$-representation-finite algebras and twisted fractionally Calabi-Yau algebras, Bull. Lond. Math. Soc. 43 (2011), no. 3, 449–466. MR 2820136, DOI 10.1112/blms/bdq101
- Martin Herschend, Osamu Iyama, and Steffen Oppermann, $n$-representation infinite algebras, Adv. Math. 252 (2014), 292–342. MR 3144232, DOI 10.1016/j.aim.2013.09.023
- Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1978), no. 1, 21–34 (German). MR 463155, DOI 10.1007/BF01351494
- Lutz Hille and Jürgen Müller, On tensor products of path algebras of type $A$, Linear Algebra Appl. 448 (2014), 222–244. MR 3182982, DOI 10.1016/j.laa.2014.01.035
- Akira Ishii and Kazushi Ueda, A note on derived categories of Fermat varieties, Derived categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 103–110. MR 3050701
- Osamu Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50. MR 2298819, DOI 10.1016/j.aim.2006.06.002
- Osamu Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. MR 2298820, DOI 10.1016/j.aim.2006.06.003
- Osamu Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), no. 1, 1–61. MR 2735750, DOI 10.1016/j.aim.2010.03.004
- Osamu Iyama and Boris Lerner, Tilting bundles on orders on $\Bbb {P}^d$, Israel J. Math. 211 (2016), no. 1, 147–169. MR 3474959, DOI 10.1007/s11856-015-1263-8
- Osamu Iyama and Steffen Oppermann, $n$-representation-finite algebras and $n$-APR tilting, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6575–6614. MR 2833569, DOI 10.1090/S0002-9947-2011-05312-2
- Osamu Iyama and Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Amer. J. Math. 130 (2008), no. 4, 1087–1149. MR 2427009, DOI 10.1353/ajm.0.0011
- Osamu Iyama and Ryo Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann. 356 (2013), no. 3, 1065–1105. MR 3063907, DOI 10.1007/s00208-012-0842-9
- Osamu Iyama and Michael Wemyss, Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521–586. MR 3251829, DOI 10.1007/s00222-013-0491-y
- Osamu Iyama and Michael Wemyss, Weighted projective lines and rational surface singularities, Épijournal Géom. Algébrique 3 (2019), Art. 13, 51. MR 4071177, DOI 10.46298/epiga.2020.volume3.4761
- Osamu Iyama and Dong Yang, Quotients of triangulated categories and equivalences of Buchweitz, Orlov, and Amiot-Guo-Keller, Amer. J. Math. 142 (2020), no. 5, 1641–1659. MR 4150654, DOI 10.1353/ajm.2020.0041
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- H. Jacobinski, Sur les ordres commutatifs avec un nombre fini de réseaux indécomposables, Acta Math. 118 (1967), 1–31 (French). MR 212001, DOI 10.1007/BF02392474
- Hiroshige Kajiura, Kyoji Saito, and Atsushi Takahashi, Matrix factorization and representations of quivers. II. Type $ADE$ case, Adv. Math. 211 (2007), no. 1, 327–362. MR 2313537, DOI 10.1016/j.aim.2006.08.005
- Hiroshige Kajiura, Kyoji Saito, and Atsushi Takahashi, Triangulated categories of matrix factorizations for regular systems of weights with $\epsilon =-1$, Adv. Math. 220 (2009), no. 5, 1602–1654. MR 2493621, DOI 10.1016/j.aim.2008.11.001
- Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406
- Bernhard Keller, Daniel Murfet, and Michel Van den Bergh, On two examples by Iyama and Yoshino, Compos. Math. 147 (2011), no. 2, 591–612. MR 2776613, DOI 10.1112/S0010437X10004902
- Yuta Kimura, Tilting and cluster tilting for preprojective algebras and Coxeter groups, Int. Math. Res. Not. IMRN 18 (2019), 5597–5634. MR 4012121, DOI 10.1093/imrn/rnx265
- Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153–164. MR 877010, DOI 10.1007/BF01405095
- Igor Kříž and J. P. May, Operads, algebras, modules and motives, Astérisque 233 (1995), iv+145pp (English, with English and French summaries). MR 1361938
- Dirk Kussin, Noncommutative curves of genus zero: related to finite dimensional algebras, Mem. Amer. Math. Soc. 201 (2009), no. 942, x+128. MR 2548114, DOI 10.1090/memo/0942
- Dirk Kussin, Helmut Lenzing, and Hagen Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math. 237 (2013), 194–251. MR 3028577, DOI 10.1016/j.aim.2013.01.006
- H. Lenzing, Rings of singularities, Advanced School and Conference on Homological and Geometrical Methods in Representation Theory.
- Helmut Lenzing, Weighted projective lines and applications, Representations of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 153–187. MR 2931898, DOI 10.4171/101-1/5
- Boris Lerner and Steffen Oppermann, A recollement approach to Geigle-Lenzing weighted projective varieties, Nagoya Math. J. 226 (2017), 71–105. MR 3650972, DOI 10.1017/nmj.2016.39
- Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145, DOI 10.1090/surv/181
- Di Ming Lu, John H. Palmieri, Quan Shui Wu, and James J. Zhang, Koszul equivalences in $A_\infty$-algebras, New York J. Math. 14 (2008), 325–378. MR 2430869
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Hagen Meltzer, Exceptional vector bundles, tilting sheaves and tilting complexes for weighted projective lines, Mem. Amer. Math. Soc. 171 (2004), no. 808, viii+139. MR 2074151, DOI 10.1090/memo/0808
- Hiroyuki Minamoto, Ampleness of two-sided tilting complexes, Int. Math. Res. Not. IMRN 1 (2012), 67–101. MR 2874928, DOI 10.1093/imrn/rnr001
- Hiroyuki Minamoto and Izuru Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011), no. 5, 4061–4095. MR 2770441, DOI 10.1016/j.aim.2010.11.004
- Jun-ichi Miyachi, Localization of triangulated categories and derived categories, J. Algebra 141 (1991), no. 2, 463–483. MR 1125707, DOI 10.1016/0021-8693(91)90243-2
- Jun-ichi Miyachi and Amnon Yekutieli, Derived Picard groups of finite-dimensional hereditary algebras, Compositio Math. 129 (2001), no. 3, 341–368. MR 1868359, DOI 10.1023/A:1012579131516
- Constantin Năstăsescu and F. Van Oystaeyen, Graded and filtered rings and modules, Lecture Notes in Mathematics, vol. 758, Springer, Berlin, 1979. MR 551625
- C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-Holland Mathematical Library, vol. 28, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 676974
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, MA, 1980. MR 561910
- Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 503–531. MR 2641200, DOI 10.1007/978-0-8176-4747-6_{1}6
- Dmitri Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), no. 1, 206–217. MR 2735755, DOI 10.1016/j.aim.2010.06.016
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 340375
- Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317. MR 1027750, DOI 10.1016/0022-4049(89)90081-9
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Hans Schoutens, Projective dimension and the singular locus, Comm. Algebra 31 (2003), no. 1, 217–239. MR 1969220, DOI 10.1081/AGB-120016756
- Ryo Takahashi, Classifying thick subcategories of the stable category of Cohen-Macaulay modules, Adv. Math. 225 (2010), no. 4, 2076–2116. MR 2680200, DOI 10.1016/j.aim.2010.04.009
- Ryo Takahashi, Reconstruction from Koszul homology and applications to module and derived categories, Pacific J. Math. 268 (2014), no. 1, 231–248. MR 3207608, DOI 10.2140/pjm.2014.268.231
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
- Michel van den Bergh, Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 749–770. MR 2077594
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685