
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Fine Compactified Moduli of Enriched Structures on Stable Curves
About this Title
Owen Biesel and David Holmes
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 285, Number 1416
ISBNs: 978-1-4704-6310-6 (print); 978-1-4704-7486-7 (online)
DOI: https://doi.org/10.1090/memo/1416
Published electronically: April 25, 2023
Table of Contents
Chapters
- 1. Introduction
1. Fine moduli of enriched structures
- 2. Preliminaries
- 3. Defining enriched structures
- 4. Representability of the functor of enriched structures
- 5. Enriched structures over separably closed fields
- 6. The stack of enriched structures and universal Néron models
- 7. Relation to the constructions of Mainò
2. Compactifying the stack of enriched structures
- 8. Defining compactified enriched structures
- 9. Properness of the stack of compactified enriched structures
- 10. Comparison to enriched structures
- A. Defining sheaves on a base for a Grothendieck topology
- Index of notation
Abstract
Enriched structures on stable curves over fields were defined by Mainò in the late 1990s, and have played an important role in the study of limit linear series and degenerating jacobians. In this paper we solve three main problems: we give a definition of enriched structures on stable curves over arbitrary base schemes, and show that the resulting fine moduli problem is representable; we show that the resulting object has a universal property in terms of Néron models; and we construct a compactification of our stack of enriched structures.- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- Alex C. Abreu and Marco Pacini, Enriched curves and their tropical counterpart, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, 689–741 (English, with English and French summaries). MR 3669510
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Lucia Caporaso, Néron models and compactified Picard schemes over the moduli stack of stable curves, Amer. J. Math. 130 (2008), no. 1, 1–47. MR 2382140, DOI 10.1353/ajm.2008.0000
- Renzo Cavalieri, Steffen Marcus, and Jonathan Wise, Polynomial families of tautological classes on $\scr M_{g,n}^{rt}$, J. Pure Appl. Algebra 216 (2012), no. 4, 950–981. MR 2864866, DOI 10.1016/j.jpaa.2011.10.037
- Cyril D’Souza, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. Sect. A Math. Sci. 88 (1979), no. 5, 419–457. MR 569548
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Eduardo Esteves and Nivaldo Medeiros, Limit canonical systems on curves with two components, Invent. Math. 149 (2002), no. 2, 267–338. MR 1918674, DOI 10.1007/s002220200211
- Eduardo Esteves and Parham Salehyan, Limit Weierstrass points on nodal reducible curves, Trans. Amer. Math. Soc. 359 (2007), no. 10, 5035–5056. MR 2320659, DOI 10.1090/S0002-9947-07-04193-1
- Eduardo Esteves, Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3045–3095. MR 1828599, DOI 10.1090/S0002-9947-01-02746-5
- Gerd Faltings, Moduli-stacks for bundles on semistable curves, Math. Ann. 304 (1996), no. 3, 489–515. MR 1375622, DOI 10.1007/BF01446303
- Daniel Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553–585 (French, with English and French summaries). MR 2044495, DOI 10.24033/bsmf.2455
- Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005. Grothendieck’s FGA explained. MR 2222646, DOI 10.1090/surv/123
- Edward Frenkel, Constantin Teleman, and A. J. Tolland, Gromov-Witten gauge theory, Adv. Math. 288 (2016), 201–239. MR 3436385, DOI 10.1016/j.aim.2015.10.008
- Samuel Grushevsky and Dmitry Zakharov, The zero section of the universal semiabelian variety and the double ramification cycle, Duke Math. J. 163 (2014), no. 5, 953–982. MR 3189435, DOI 10.1215/00127094-26444575
- Richard Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 527–578. MR 3184171
- D. Holmes, A Néron model of the universal jacobian, http://arxiv.org/abs/1412.2243 (2014).
- David Holmes, Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math. 747 (2019), 109–145. MR 3905131, DOI 10.1515/crelle-2016-0014
- David Holmes, Quasi-compactness of Néron models, and an application to torsion points, Manuscripta Math. 153 (2017), no. 3-4, 323–330. MR 3662048, DOI 10.1007/s00229-016-0887-2
- F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221–266. MR 3668650, DOI 10.1007/s10240-017-0088-x
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Laila Maino, Moduli space of enriched stable curves, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–Harvard University. MR 2697466
- Laila Maino, Moduli space of enriched stable curves, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–Harvard University. MR 2697466
- Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994. A first introduction to topos theory; Corrected reprint of the 1992 edition. MR 1300636
- D. Mumford and A. Mayer, Further comments on boundary points, Unpublished lecture notes distributed at the Amer. Math. Soc. Cummer Institute, Woods Hole (1964).
- S. Marcus and J. Wise, Stable maps to rational curves and the relative jacobian, arXiv:1310.5981 (2013).
- G. Orecchia, Torsion free rank 1 sheaves on a semi-stable curve, Master’s thesis, https://www.math.leidenuniv.nl/scripties/MasterOrecchia.pdf (2014).
- Brian Osserman, Dimension counts for limit linear series on curves not of compact type, Math. Z. 284 (2016), no. 1-2, 69–93. MR 3545485, DOI 10.1007/s00209-016-1646-5
- Montserrat Teixidor i Bigas, Limit linear series for vector bundles, Tohoku Math. J. (2) 66 (2014), no. 4, 555–562. MR 3350284, DOI 10.2748/tmj/1432229197
- The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu, 2013.