
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Free Energy and Equilibrium States for Families of Interval Maps
About this Title
Neil Dobbs and Mike Todd
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 286, Number 1417
ISBNs: 978-1-4704-6126-3 (print); 978-1-4704-7511-6 (online)
DOI: https://doi.org/10.1090/memo/1417
Published electronically: May 12, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Topological structures
- 3. Measures and entropy
- 4. Light limit measures and upper-semicontinuity of metric entropy
- 5. Non-positive Schwarzian derivative
- 6. Almost upper-semicontinuity of the free energy
- 7. Katok theory, pressure and exponential tails
- 8. Instability for Collet-Eckmann maps
- 9. Positive entropy does not imply statistical stability
Abstract
We study continuity, and lack thereof, of thermodynamical properties for one-dimensional dynamical systems. Under quite general hypotheses, the free energy is shown to be almost upper-semicontinuous: some normalised component of a limit measure will have free energy at least that of the limit of the free energies. From this, we deduce results concerning existence and continuity of equilibrium states (including statistical stability). Metric entropy, not semicontinuous as a general multimodal map varies, is shown to be upper semicontinuous under an appropriate hypothesis on critical orbits. Equilibrium states vary continuously, under mild hypotheses, as one varies the parameter and the map. We give a general method for constructing induced maps which automatically give strong exponential tail estimates. This also allows us to recover, and further generalise, recent results concerning statistical properties (decay of correlations, etc.). Counterexamples to statistical stability are given which also show sharpness of the main results.- Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
- L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959), 647–650 (Russian). MR 113984
- Jawad Al-Khal, Henk Bruin, and Michael Jakobson, New examples of $S$-unimodal maps with a sigma-finite absolutely continuous invariant measure, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 35–61. MR 2410946, DOI 10.3934/dcds.2008.22.35
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, 2nd ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1807264, DOI 10.1142/4205
- José F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity 17 (2004), no. 4, 1193–1215. MR 2069701, DOI 10.1088/0951-7715/17/4/004
- José F. Alves, Maria Carvalho, and Jorge Milhazes Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), no. 2, 595–637. MR 2595193, DOI 10.1016/j.anihpc.2009.09.009
- José F. Alves and Mohammad Soufi, Statistical stability of geometric Lorenz attractors, Fund. Math. 224 (2014), no. 3, 219–231. MR 3194415, DOI 10.4064/fm224-3-2
- José F. Alves and Marcelo Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 1–32. MR 1889563, DOI 10.1017/S0143385702000019
- Vítor Araújo, Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 371–386. MR 2257439, DOI 10.3934/dcds.2007.17.371
- Artur Avila and Mikhail Lyubich, Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc. 21 (2008), no. 2, 305–363. MR 2373353, DOI 10.1090/S0894-0347-07-00583-8
- Viviane Baladi, On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys. 275 (2007), no. 3, 839–859. MR 2336367, DOI 10.1007/s00220-007-0320-5
- Viviane Baladi, Linear response despite critical points, Nonlinearity 21 (2008), no. 6, T81–T90. MR 2422371, DOI 10.1088/0951-7715/21/6/T01
- Viviane Baladi, Michael Benedicks, and Daniel Schnellmann, Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps, Invent. Math. 201 (2015), no. 3, 773–844. MR 3385635, DOI 10.1007/s00222-014-0554-8
- Viviane Baladi and Daniel Smania, Linear response formula for piecewise expanding unimodal maps, Nonlinearity 21 (2008), no. 4, 677–711. MR 2399821, DOI 10.1088/0951-7715/21/4/003
- Viviane Baladi and Daniel Smania, Analyticity of the SRB measure for holomorphic families of quadratic-like Collet-Eckmann maps, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1431–1437. MR 2465669, DOI 10.1090/S0002-9939-08-09651-2
- Michael Benedicks and Lennart Carleson, On iterations of $1-ax^2$ on $(-1,1)$, Ann. of Math. (2) 122 (1985), no. 1, 1–25. MR 799250, DOI 10.2307/1971367
- Michael Benedicks and MichałMisiurewicz, Absolutely continuous invariant measures for maps with flat tops, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 203–213. MR 1019965
- A. M. Blokh and M. Yu. Lyubich, Ergodicity of transitive unimodal transformations of the interval, Ukrain. Mat. Zh. 41 (1989), no. 7, 985–988, 1008 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 7, 841–844 (1990). MR 1024300, DOI 10.1007/BF01060708
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393
- H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), no. 3, 571–580. MR 1328254
- Henk Bruin and Gerhard Keller, Equilibrium states for $S$-unimodal maps, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 765–789. MR 1645373, DOI 10.1017/S0143385798108337
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI 10.2307/2118654
- Henk Bruin and Mike Todd, Equilibrium states for interval maps: potentials with $\sup \phi -\inf \phi <h_\textrm {top}(f)$, Comm. Math. Phys. 283 (2008), no. 3, 579–611. MR 2434739, DOI 10.1007/s00220-008-0596-0
- Henk Bruin and Mike Todd, Equilibrium states for interval maps: the potential $-t\log |Df|$, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 4, 559–600 (English, with English and French summaries). MR 2568876, DOI 10.24033/asens.2103
- Henk Bruin and Mike Todd, Wild attractors and thermodynamic formalism, Monatsh. Math. 178 (2015), no. 1, 39–83. MR 3384890, DOI 10.1007/s00605-015-0747-2
- J. Buzzi, On entropy-expanding maps, Preprint CMLS, 2000.
- S. Cedervall, Invariant Measures and Correlation Decay for S-multimodal Interval Maps, PhD thesis, Imperial College, London, 2006.
- P. Collet and J.-P. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), no. 1, 13–46. MR 743027, DOI 10.1017/S0143385700001802
- Jean-François Colombeau, Differential calculus and holomorphy, Notas de Matemática [Mathematical Notes], vol. 84, North-Holland Publishing Co., Amsterdam-New York, 1982. Real and complex analysis in locally convex spaces; R & E, 2; North-Holland Mathematics Studies, 64. MR 671252
- Gonzalo Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z. 210 (1992), no. 1, 97–111. MR 1161172, DOI 10.1007/BF02571785
- Daniel Coronel and Juan Rivera-Letelier, Low-temperature phase transitions in the quadratic family, Adv. Math. 248 (2013), 453–494. MR 3107518, DOI 10.1016/j.aim.2013.08.008
- Mark F. Demers and Mike Todd, Asymptotic escape rates and limiting distributions for multimodal maps, Ergodic Theory Dynam. Systems 41 (2021), no. 6, 1656–1705. MR 4252206, DOI 10.1017/etds.2020.14
- Neil Dobbs, Renormalisation-induced phase transitions for unimodal maps, Comm. Math. Phys. 286 (2009), no. 1, 377–387. MR 2470935, DOI 10.1007/s00220-008-0656-5
- Neil Dobbs, On cusps and flat tops, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 571–605 (English, with English and French summaries). MR 3330915
- Neil Dobbs and Nicolae Mihalache, Diabolical entropy, Comm. Math. Phys. 365 (2019), no. 3, 1091–1123. MR 3916991, DOI 10.1007/s00220-019-03293-y
- Peyman Eslami and MichałMisiurewicz, Singular limits of absolutely continuous invariant measures for families of transitive maps, J. Difference Equ. Appl. 18 (2012), no. 4, 739–750. MR 2905294, DOI 10.1080/10236198.2011.590480
- Jorge Milhazes Freitas, Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps, Nonlinearity 18 (2005), no. 2, 831–854. MR 2122687, DOI 10.1088/0951-7715/18/2/019
- Jorge Milhazes Freitas and Mike Todd, The statistical stability of equilibrium states for interval maps, Nonlinearity 22 (2009), no. 2, 259–281. MR 2475546, DOI 10.1088/0951-7715/22/2/002
- Katrin Gelfert, Feliks Przytycki, and MichałRams, On the Lyapunov spectrum for rational maps, Math. Ann. 348 (2010), no. 4, 965–1004. MR 2721648, DOI 10.1007/s00208-010-0508-4
- Jacek Graczyk and Grzegorz Światek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) 146 (1997), no. 1, 1–52. MR 1469316, DOI 10.2307/2951831
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), no. 3, 213–237 (1980). MR 570882, DOI 10.1007/BF02760884
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), no. 1-2, 107–115. MR 599481, DOI 10.1007/BF02761854
- Franz Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Relat. Fields 72 (1986), no. 3, 359–386. MR 843500, DOI 10.1007/BF00334191
- Franz Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval, Lyapunov exponents (Oberwolfach, 1990) Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 227–231. MR 1178961, DOI 10.1007/BFb0086672
- Franz Hofbauer and Gerhard Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), no. 2, 319–337. MR 1037108
- Franz Hofbauer and Peter Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), no. 1, 84–98. MR 1157469, DOI 10.4153/CMB-1992-013-x
- Ale Jan Homburg and Todd Young, Intermittency and Jakobson’s theorem near saddle-node bifurcations, Discrete Contin. Dyn. Syst. 17 (2007), no. 1, 21–58. MR 2257416, DOI 10.3934/dcds.2007.17.21
- Godofredo Iommi and Mike Todd, Natural equilibrium states for multimodal maps, Comm. Math. Phys. 300 (2010), no. 1, 65–94. MR 2725183, DOI 10.1007/s00220-010-1112-x
- Godofredo Iommi and Mike Todd, Dimension theory for multimodal maps, Ann. Henri Poincaré 12 (2011), no. 3, 591–620. MR 2785139, DOI 10.1007/s00023-011-0086-3
- M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), no. 1, 39–88. MR 630331
- Stewart D. Johnson, Singular measures without restrictive intervals, Comm. Math. Phys. 110 (1987), no. 2, 185–190. MR 887994
- A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581–597. MR 1022308, DOI 10.1007/BF01393838
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 203473
- Gerhard Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), no. 4, 313–333. MR 685377, DOI 10.1007/BF01667385
- Gerhard Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), no. 2-3, 183–200. MR 1026617, DOI 10.1007/BF01308670
- Gerhard Keller, Equilibrium states in ergodic theory, London Mathematical Society Student Texts, vol. 42, Cambridge University Press, Cambridge, 1998. MR 1618769, DOI 10.1017/CBO9781107359987
- O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math. (2) 152 (2000), no. 3, 743–762. MR 1815700, DOI 10.2307/2661353
- François Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 77–93. MR 627788, DOI 10.1017/s0143385700001176
- Zhenyang Li, PawełGóra, Abraham Boyarsky, Harald Proppe, and Peyman Eslami, Family of piecewise expanding maps having singular measure as a limit of ACIMs, Ergodic Theory Dynam. Systems 33 (2013), no. 1, 158–167. MR 3009107, DOI 10.1017/S0143385711000836
- A. Libchaber, P. Góra, C. Laroche, and S. Fauve, Period doublingcascade in mercury, a quantitative measurement, J. Physique Lett. 43 (1982), 221–216.
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI 10.1007/BF02392694
- R. Daniel Mauldin and Mariusz Urbański, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets. MR 2003772, DOI 10.1017/CBO9780511543050
- Ian Melbourne and Matthew Nicol, Almost sure invariance principle for nonuniformly hyperbolic systems, Comm. Math. Phys. 260 (2005), no. 1, 131–146. MR 2175992, DOI 10.1007/s00220-005-1407-5
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- MichałMisiurewicz, Structure of mappings of an interval with zero entropy, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 5–16. MR 623532
- MichałMisiurewicz, Possible jumps of entropy for interval maps, Qual. Theory Dyn. Syst. 2 (2001), no. 2, 289–306. MR 1913288, DOI 10.1007/BF02969344
- MichałMisiurewicz and Sergeĭ V. Shlyachkov, Entropy of piecewise continuous interval maps, European Conference on Iteration Theory (Batschuns, 1989) World Sci. Publ., River Edge, NJ, 1991, pp. 239–245. MR 1184170
- Yakov Pesin and Samuel Senti, Equilibrium measures for maps with inducing schemes, J. Mod. Dyn. 2 (2008), no. 3, 397–430. MR 2417478, DOI 10.3934/jmd.2008.2.397
- Vilton Pinheiro, Expanding measures, Ann. Inst. H. Poincaré C Anal. Non Linéaire 28 (2011), no. 6, 889–939. MR 2859932, DOI 10.1016/j.anihpc.2011.07.001
- Feliks Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309–317. MR 1186141, DOI 10.1090/S0002-9939-1993-1186141-9
- Feliks Przytycki and Juan Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 (2011), no. 3, 661–707. MR 2784276, DOI 10.1007/s00220-010-1158-9
- Feliks Przytycki and Juan Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Mem. Amer. Math. Soc. 259 (2019), no. 1246, v+81. MR 3948574, DOI 10.1090/memo/1246
- Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 891–914. MR 2062924, DOI 10.1017/S0143385703000385
- Feliks Przytycki and Mariusz Urbański, Conformal fractals: ergodic theory methods, London Mathematical Society Lecture Note Series, vol. 371, Cambridge University Press, Cambridge, 2010. MR 2656475, DOI 10.1017/CBO9781139193184
- Peter Raith, Stability of the maximal measure for piecewise monotonic interval maps, Ergodic Theory Dynam. Systems 17 (1997), no. 6, 1419–1436. MR 1488327, DOI 10.1017/S0143385797086410
- D. A. Rand, The singularity spectrum $f(\alpha )$ for cookie-cutters, Ergodic Theory Dynam. Systems 9 (1989), no. 3, 527–541. MR 1016670, DOI 10.1017/S0143385700005162
- Juan Rivera-Letelier, Asymptotic expansion of smooth interval maps, Astérisque 416 (2020), 33–63 (English, with English and French summaries). Some aspects of the theory of dynamical systems: a tribute to Jean-Christophe Yoccoz. Vol. II. MR 4142456, DOI 10.24033/ast
- David Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619–654. MR 415683, DOI 10.2307/2373810
- David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99–107. MR 684247, DOI 10.1017/s0143385700009603
- David Ruelle, Differentiation of SRB states, Comm. Math. Phys. 187 (1997), no. 1, 227–241. MR 1463827, DOI 10.1007/s002200050134
- David Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity 22 (2009), no. 4, 855–870. MR 2486360, DOI 10.1088/0951-7715/22/4/009
- David Ruelle, Structure and $f$-dependence of the A.C.I.M. for a unimodal map $f$ is Misiurewicz type, Comm. Math. Phys. 287 (2009), no. 3, 1039–1070. MR 2486672, DOI 10.1007/s00220-008-0637-8
- Marek Rychlik and Eugene Sorets, Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys. 150 (1992), no. 2, 217–236. MR 1194016
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 399421
- Dennis Sullivan, Bounds, quadratic differentials, and renormalization conjectures, American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992, pp. 417–466. MR 1184622
- Hans Thunberg, Unfolding of chaotic unimodal maps and the parameter dependence of natural measures, Nonlinearity 14 (2001), no. 2, 323–337. MR 1819800, DOI 10.1088/0951-7715/14/2/308
- Masato Tsujii, Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math. 111 (1993), no. 1, 113–137. MR 1193600, DOI 10.1007/BF01231282
- Masato Tsujii, On continuity of Bowen-Ruelle-Sinai measures in families of one-dimensional maps, Comm. Math. Phys. 177 (1996), no. 1, 1–11. MR 1382217
- Paulo Varandas and Marcelo Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), no. 2, 555–593 (English, with English and French summaries). MR 2595192, DOI 10.1016/j.anihpc.2009.10.002
- Carlos H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems 27 (2007), no. 1, 253–283. MR 2297096, DOI 10.1017/S0143385706000721
- Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, DOI 10.1007/BF02808180
- Roland Zweimüller, Invariant measures for general(ized) induced transformations, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2283–2295. MR 2138871, DOI 10.1090/S0002-9939-05-07772-5