
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Solving $S$-unit, Mordell, Thue, Thue–Mahler and Generalized Ramanujan–Nagell Equations via the Shimura–Taniyama Conjecture
About this Title
Rafael von Känel and Benjamin Matschke
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 286, Number 1419
ISBNs: 978-1-4704-6416-5 (print); 978-1-4704-7513-0 (online)
DOI: https://doi.org/10.1090/memo/1419
Published electronically: May 12, 2023
Keywords: Algorithms for classical diophantine equations,
Faltings’ method,
modularity,
S-unit equations,
Mordell equations,
Thue equations,
Thue–Mahler equations,
generalized Ramanujan–Nagell equations,
sieves,
height bounds,
elliptic curves with good reduction outside S,
integral points on elliptic curves,
Diophantine approximation,
elliptic logarithms
Table of Contents
1. Algorithms
- 1. Introduction
- 2. The Shimura–Taniyama conjecture
- 3. Algorithms for S-unit equations
- 4. Algorithms for Mordell equations
- 5. Algorithms for Thue and Thue–Mahler equations
- 6. Algorithms for generalized Ramanujan–Nagell equations
2. Height bounds
- 7. Mordell equations and almost primitive solutions
- 8. Height bounds for Thue and Thue–Mahler equations
- 9. Height bounds for Ramanujan–Nagell equations
- 10. Height bounds for Mordell and S-unit equations
3. Elliptic logarithm sieve
- 11. The elliptic logarithm sieve
Abstract
In the first part we construct algorithms (over $\mathbb {Q}$) which we apply to solve $S$-unit, Mordell, cubic Thue, cubic Thue–Mahler and generalized Ramanujan–Nagell equations. As a byproduct we obtain alternative practical approaches for various classical Diophantine problems, including the fundamental problem of finding all elliptic curves over $\mathbb {Q}$ with good reduction outside a given finite set of rational primes. The first type of our algorithms uses modular symbols, and the second type combines explicit height bounds with efficient sieves. In particular we construct a refined sieve for $S$-unit equations which combines Diophantine approximation techniques of de Weger with new geometric ideas. To illustrate the utility of our algorithms we determined the solutions of large classes of equations, containing many examples of interest which are out of reach for the known methods. In addition we used the resulting data to motivate various conjectures and questions, including Baker’s explicit $abc$-conjecture and a new conjecture on $S$-integral points of any hyperbolic genus one curve over $\mathbb {Q}$.
In the second part we establish new results for certain old Diophantine problems (e.g. the difference of squares and cubes) related to Mordell equations, and we prove explicit height bounds for cubic Thue, cubic Thue–Mahler and generalized Ramanujan–Nagell equations. As a byproduct, we obtain here an alternative proof of classical theorems of Baker, Coates and Vinogradov–Sprindžuk. In fact we get refined versions of their theorems, which improve the actual best results in many fundamental cases. We also conduct some effort to work out optimized height bounds for $S$-unit and Mordell equations which are used in our algorithms of the first part. Our results and algorithms all ultimately rely on the method of Faltings (Arakelov, Paršin, Szpiro) combined with the Shimura–Taniyama conjecture, and they all do not use lower bounds for linear forms in (elliptic) logarithms.
In the third part we solve the problem of constructing an efficient sieve for the $S$-integral points of bounded height on any elliptic curve $E$ over $\mathbb {Q}$ with given Mordell–Weil basis of $E(\mathbb {Q})$. Here we combine a geometric interpretation of the known elliptic logarithm reduction (initiated by Zagier) with several conceptually new ideas. The resulting “elliptic logarithm sieve” is crucial for some of our algorithms of the first part. Moreover, it considerably extends the class of elliptic Diophantine equations which can be solved in practice: To demonstrate this we solved many notoriously difficult equations by combining our sieve with known height bounds based on the theory of logarithmic forms.
- Amod Agashe, Kenneth A. Ribet, and William A. Stein, The modular degree, congruence primes, and multiplicity one, Number theory, analysis and geometry, Springer, New York, 2012, pp. 19–49. MR 2867910, DOI 10.1007/978-1-4614-1260-1_{2}
- M. K. Agrawal, J. H. Coates, D. C. Hunt, and A. J. van der Poorten, Elliptic curves of conductor $11$, Math. Comp. 35 (1980), no. 151, 991–1002. MR 572871, DOI 10.1090/S0025-5718-1980-0572871-5
- A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, C. Vincent, and M. West, A robust implementation for solving the S-unit equation and several applications, preprint, arXiv:1903.00977 (2020), 40 pages.
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68), 173–191. MR 228424, DOI 10.1098/rsta.1968.0010
- A. Baker, Contributions to the theory of Diophantine equations. II. The Diophantine equation $y^{2}=x^{3}+k$, Philos. Trans. Roy. Soc. London Ser. A 263 (1967/68), 193–208. MR 228425, DOI 10.1098/rsta.1968.0011
- A. Baker, The Diophantine equation $y^{2}=ax^{3}+bx^{2}+cx+d$, J. London Math. Soc. 43 (1968), 1–9. MR 231783, DOI 10.1112/jlms/s1-43.1.1
- Alan Baker, Experiments on the $abc$-conjecture, Publ. Math. Debrecen 65 (2004), no. 3-4, 253–260. MR 2107944, DOI 10.5486/pmd.2004.3348
- A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI 10.1093/qmath/20.1.129
- A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs, vol. 9, Cambridge University Press, Cambridge, 2007. MR 2382891
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Quadratic Chabauty: $p$-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. MR 3565969, DOI 10.1515/crelle-2014-0048
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403–1434. MR 3614022, DOI 10.1090/mcom/3130
- K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no. 219, 1213–1237. MR 1415795, DOI 10.1090/S0025-5718-97-00846-6
- Michael A. Bennett and Nicolas Billerey, Sums of two $S$-units via Frey-Hellegouarch curves, Math. Comp. 86 (2017), no. 305, 1375–1401. MR 3614021, DOI 10.1090/mcom/3129
- Michael A. Bennett and Sander R. Dahmen, Klein forms and the generalized superelliptic equation, Ann. of Math. (2) 177 (2013), no. 1, 171–239. MR 2999040, DOI 10.4007/annals.2013.177.1.4
- Michael A. Bennett and Amir Ghadermarzi, Mordell’s equation: a classical approach, LMS J. Comput. Math. 18 (2015), no. 1, 633–646. MR 3406453, DOI 10.1112/S1461157015000182
- Michael A. Bennett, Adela Gherga, and Andrew Rechnitzer, Computing elliptic curves over $\Bbb {Q}$, Math. Comp. 88 (2019), no. 317, 1341–1390. MR 3904149, DOI 10.1090/mcom/3370
- Michael A. Bennett and Andrew Rechnitzer, Computing elliptic curves over $\Bbb Q$: bad reduction at one prime, Recent progress and modern challenges in applied mathematics, modeling and computational science, Fields Inst. Commun., vol. 79, Springer, New York, 2017, pp. 387–415. MR 3700057
- Michael A. Bennett and Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), no. 1, 23–54. MR 2031121, DOI 10.4153/CJM-2004-002-2
- A. J. Best and B. Matschke, Elliptic curves with good reduction outside of the first six primes, preprint, arXiv:2007.10535 (2020), 19 pages.
- M. Bhargava and A. Shankar, The average size of the 5-selmer group of elliptic curves is 6, and the average rank is less than 1, preprint, arXiv:1312.7333 (2013), 1175–1237.
- Yu. Bilu, Solving superelliptic Diophantine equations by the method of Gelfond-Baker, 1994.
- Yuri Bilu and Guillaume Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), no. 2, 373–392. MR 1412969, DOI 10.1006/jnth.1996.0129
- Yuri F. Bilu and Guillaume Hanrot, Solving superelliptic Diophantine equations by Baker’s method, Compositio Math. 112 (1998), no. 3, 273–312. MR 1631771, DOI 10.1023/A:1000305028888
- Yuri Bilu and Guillaume Hanrot, Thue equations with composite fields, Acta Arith. 88 (1999), no. 4, 311–326. MR 1690372, DOI 10.4064/aa-88-4-311-326
- E. Bombieri and P. B. Cohen, Effective Diophantine approximation on $\mathbf G_M$. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 2, 205–225. MR 1487954
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- E. Bombieri, J. Mueller, and M. Poe, The unit equation and the cluster principle, Acta Arith. 79 (1997), no. 4, 361–389. MR 1450918, DOI 10.4064/aa-79-4-361-389
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- Armand Brumer and Kenneth Kramer, The conductor of an abelian variety, Compositio Math. 92 (1994), no. 2, 227–248. MR 1283229
- Armand Brumer and Joseph H. Silverman, The number of elliptic curves over $\mathbf Q$ with conductor $N$, Manuscripta Math. 91 (1996), no. 1, 95–102. MR 1404420, DOI 10.1007/BF02567942
- Yann Bugeaud, Bornes effectives pour les solutions des équations en $S$-unités et des équations de Thue-Mahler, J. Number Theory 71 (1998), no. 2, 227–244 (French, with English summary). MR 1633809, DOI 10.1006/jnth.1998.2245
- Yann Bugeaud, On the greatest prime factor of $ax^m+by^n$. II, Bull. London Math. Soc. 32 (2000), no. 6, 673–678. MR 1781579, DOI 10.1112/S0024609300007487
- Yann Bugeaud and Kálmán Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), no. 3, 273–292. MR 1373714, DOI 10.4064/aa-74-3-273-292
- Yann Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math. 539 (2001), 55–74. MR 1863854, DOI 10.1515/crll.2001.079
- J. Coates, An effective $p$-adic analogue of a theorem of Thue, Acta Arith. 15 (1968/69), 279–305. MR 242768, DOI 10.4064/aa-15-3-279-305
- J. Coates, An effective $p$-adic analogue of a theorem of Thue. II. The greatest prime factor of a binary form, Acta Arith. 16 (1969/70), 399–412. MR 263741, DOI 10.4064/aa-16-4-399-412
- J. Coates, An effective $p$-adic analogue of a theorem of Thue. III. The diophantine equation $y^{2}=x^{3}+k$, Acta Arith. 16 (1969/70), 425–435. MR 263742, DOI 10.4064/aa-16-4-425-436
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
- John Cremona, The elliptic curve database for conductors to 130000, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 11–29. MR 2282912, DOI 10.1007/11792086_{2}
- J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math. 16 (2007), no. 3, 303–312. MR 2367320
- Ishai Dan-Cohen, Mixed Tate motives and the unit equation II, Algebra Number Theory 14 (2020), no. 5, 1175–1237. MR 4129385, DOI 10.2140/ant.2020.14.1175
- Ishai Dan-Cohen and Stefan Wewers, Explicit Chabauty-Kim theory for the thrice punctured line in depth 2, Proc. Lond. Math. Soc. (3) 110 (2015), no. 1, 133–171. MR 3299602, DOI 10.1112/plms/pdu034
- Ishai Dan-Cohen and Stefan Wewers, Mixed Tate motives and the unit equation, Int. Math. Res. Not. IMRN 17 (2016), 5291–5354. MR 3556439, DOI 10.1093/imrn/rnv239
- Carlos D’Andrea, Teresa Krick, and Martín Sombra, Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 4, 549–627 (2013) (English, with English and French summaries). MR 3098424, DOI 10.24033/asens.2196
- H. Darmon and A. Granville, On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$, Bull. London Math. Soc. 27 (1995), no. 6, 513–543.
- Sinnou David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv+143 (French, with English and French summaries). MR 1385175
- B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), no. 3, 325–367. MR 901244, DOI 10.1016/0022-314X(87)90088-6
- Mou-Jie Deng, A note on the Diophantine equation $x^2+q^m=c^{2n}$, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 2, 15–18. MR 3310965, DOI 10.3792/pjaa.91.15
- Fred Diamond and Kenneth Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (1995), no. 3, 299–304. MR 1338788, DOI 10.4310/MRL.1995.v2.n3.a6
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Bas Edixhoven, Arnold de Groot, and Jaap Top, Elliptic curves over the rationals with bad reduction at only one prime, Math. Comp. 54 (1990), no. 189, 413–419. MR 995209, DOI 10.1090/S0025-5718-1990-0995209-4
- Jordan S. Ellenberg and Akshay Venkatesh, Reflection principles and bounds for class group torsion, Int. Math. Res. Not. IMRN 1 (2007), Art. ID rnm002, 18. MR 2331900, DOI 10.1093/imrn/rnm002
- W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl, and D. S. Stall, The Diophantine equation $y^{2}+k=x^{3}$, J. Number Theory 4 (1972), 107–117. MR 316376, DOI 10.1016/0022-314X(72)90058-3
- P. Erdös, C. L. Stewart, and R. Tijdeman, Some Diophantine equations with many solutions, Compositio Math. 66 (1988), no. 1, 37–56. MR 937987
- J.-H. Evertse, On equations in $S$-units and the Thue-Mahler equation, Invent. Math. 75 (1984), no. 3, 561–584. MR 735341, DOI 10.1007/BF01388644
- Jan-Hendrik Evertse and Kálmán Győry, Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, vol. 146, Cambridge University Press, Cambridge, 2015. MR 3524535, DOI 10.1017/CBO9781316160749
- Jan-Hendrik Evertse and Kálmán Győry, Discriminant equations in Diophantine number theory, New Mathematical Monographs, vol. 32, Cambridge University Press, Cambridge, 2017. MR 3586280, DOI 10.1017/CBO9781316160763
- J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, On $S$-unit equations in two unknowns, Invent. Math. 92 (1988), no. 3, 461–477. MR 939471, DOI 10.1007/BF01393743
- J.-H. Evertse, P. Moree, C. L. Stewart, and R. Tijdeman, Multivariate Diophantine equations with many solutions, Acta Arith. 107 (2003), no. 2, 103–125. MR 1970818, DOI 10.4064/aa107-2-1
- J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to $Y^n=f(X)$, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 2, 237–248. MR 848850, DOI 10.1017/S0305004100066068
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI 10.2307/2007043
- Claus Fieker, István Gaál, and Michael Pohst, On computing integral points of a Mordell curve over rational function fields in characteristic $>3$, J. Number Theory 133 (2013), no. 2, 738–750. MR 2994384, DOI 10.1016/j.jnt.2012.08.012
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI 10.1090/S0025-5718-1985-0777278-8
- Gerhard Frey, Some remarks concerning points of finite order on elliptic curves over global fields, Ark. Mat. 15 (1977), no. 1, 1–19. MR 457444, DOI 10.1007/BF02386030
- Gerhard Frey, Links between solutions of $A-B=C$ and elliptic curves, Number theory (Ulm, 1987) Lecture Notes in Math., vol. 1380, Springer, New York, 1989, pp. 31–62. MR 1009792, DOI 10.1007/BFb0086544
- Gerhard Frey, On ternary equations of Fermat type and relations with elliptic curves, Modular forms and Fermat’s last theorem (Boston, MA, 1995) Springer, New York, 1997, pp. 527–548. MR 1638494
- Rudolf Fueter, Ueber kubische diophantische Gleichungen, Comment. Math. Helv. 2 (1930), no. 1, 69–89 (German). MR 1509405, DOI 10.1007/BF01214451
- J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171–192. MR 1305199, DOI 10.4064/aa-68-2-171-192
- J. Gebel, A. Pethő, and H. G. Zimmer, Computing $S$-integral points on elliptic curves, Algorithmic number theory (Talence, 1996), 1996, pp. 157–171.
- J. Gebel, A. Pethö, and H. G. Zimmer, Computing integral points on Mordell’s elliptic curves, Collect. Math. 48 (1997), no. 1-2, 115–136. Journées Arithmétiques (Barcelona, 1995). MR 1464020
- J. Gebel, A. Pethö, and H. G. Zimmer, On Mordell’s equation, Compositio Math. 110 (1998), no. 3, 335–367. MR 1602064, DOI 10.1023/A:1000281602647
- Josef Gebel and Horst G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over $\mathbf Q$, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc., Providence, RI, 1994, pp. 61–83. MR 1260955, DOI 10.1090/crmp/004/05
- K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), no. 4, 583–600. MR 552678, DOI 10.1007/BF02566294
- Kálmán Győry and Kunrui Yu, Bounds for the solutions of $S$-unit equations and decomposable form equations, Acta Arith. 123 (2006), no. 1, 9–41. MR 2232500, DOI 10.4064/aa123-1-2
- Lajos Hajdu, Optimal systems of fundamental $S$-units for LLL-reduction, Period. Math. Hungar. 59 (2009), no. 1, 53–79. MR 2544620, DOI 10.1007/s10998-009-9053-x
- L. Hajdu and T. Herendi, Explicit bounds for the solutions of elliptic equations with rational coefficients, J. Symbolic Comput. 25 (1998), no. 3, 361–366. MR 1615334, DOI 10.1006/jsco.1997.0181
- L. Hajdu and T. Kovács, Parallel LLL-reduction for bounding the integral solutions of elliptic Diophantine equations, Math. Comp. 78 (2009), no. 266, 1201–1210. MR 2476581, DOI 10.1090/S0025-5718-08-02160-1
- A. Harper, On finding many solutions to S-unit equations by solving linear equations on average, preprint, arXiv:1108.3819 (2011), 32 pages.
- H. A. Helfgott and A. Venkatesh, Integral points on elliptic curves and 3-torsion in class groups, J. Amer. Math. Soc. 19 (2006), no. 3, 527–550. MR 2220098, DOI 10.1090/S0894-0347-06-00515-7
- Y. Hellegouarch, Points d’ordre $2p^{h}$ sur les courbes elliptiques, Acta Arith. 26 (1974/75), no. 3, 253–263 (French). MR 379507, DOI 10.4064/aa-26-3-253-263
- N. Hirata-Kohno, Linear forms in p-adic elliptic logarithms.
- Noriko Hirata-Kohno, Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Invent. Math. 104 (1991), no. 2, 401–433 (French). MR 1098616, DOI 10.1007/BF01245082
- N. Hirata-Kohno and T. Kovács, Computing S-integral points on elliptic curves of rank at least $3$, RIMS Kokyuroku 1898 (2014), 92–102.
- Robert Juricevic, Explicit estimates of solutions of some Diophantine equations. part 2, Funct. Approx. Comment. Math. 38 (2008), no. part 2, 171–194. MR 2492855
- R. von Känel, Height and conductor of elliptic curves. in preparation.
- R. von Känel, On elliptic Diophantine equations. in preparation.
- R. von Känel, An effective proof of the hyperelliptic Shafarevich conjecture and applications, E-collection: ETH Zurich thesis 19482 (2011), 1–69.
- R. von Känel, The effective Shafarevich conjecture for abelian varieties of $GL2$-type, Preprint. (2013), 35 pages. Sections 1, 2, 4, 5, 8, 9 of \cite{rvk:modular} with adapted introduction.
- R. von Känel, Modularity and integral points on moduli schemes, preprint, arXiv:1310.7263 (2013), 75 pages. Sections 1–7 are in \cite{rvk:intpointsmodell}, and Sections 1, 2, 4, 5, 8, 9 are in \cite{rvk:gl2}.
- Rafael von Känel, On Szpiro’s discriminant conjecture, Int. Math. Res. Not. IMRN 16 (2014), 4457–4491. MR 3250040, DOI 10.1093/imrn/rnt079
- Rafael von Känel, Integral points on moduli schemes of elliptic curves, Trans. London Math. Soc. 1 (2014), no. 1, 85–115. MR 3296485, DOI 10.1112/tlms/tlu003
- R. von Känel and A. Kret, Integral points on Hilbert moduli schemes, preprint, arXiv:1904.03503 (2019), 53 pages.
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828, DOI 10.1090/coll/045
- M. A. Kenku, On the number of $\textbf {Q}$-isomorphism classes of elliptic curves in each $\textbf {Q}$-isogeny class, J. Number Theory 15 (1982), no. 2, 199–202. MR 675184, DOI 10.1016/0022-314X(82)90025-7
- Dohyeong Kim, A modular approach to cubic Thue-Mahler equations, Math. Comp. 86 (2017), no. 305, 1435–1471. MR 3614023, DOI 10.1090/mcom/3139
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- V. A. Kolyvagin, Finiteness of $E(\textbf {Q})$ and SH$(E,\textbf {Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523–541. MR 954295, DOI 10.1070/IM1989v032n03ABEH000779
- S. Konyagin and K. Soundararajan, Two $S$-unit equations with many solutions, J. Number Theory 124 (2007), no. 1, 193–199. MR 2321000, DOI 10.1016/j.jnt.2006.07.017
- Angelos Koutsianas, Computing all elliptic curves over an arbitrary number field with prescribed primes of bad reduction, Exp. Math. 28 (2019), no. 1, 1–15. MR 3938573, DOI 10.1080/10586458.2017.1325791
- Thomas J. Kretschmer, Construction of elliptic curves with large rank, Math. Comp. 46 (1986), no. 174, 627–635. MR 829634, DOI 10.1090/S0025-5718-1986-0829634-8
- J. C. Lagarias and K. Soundararajan, Counting smooth solutions to the equation $A+B=C$, Proc. Lond. Math. Soc. (3) 104 (2012), no. 4, 770–798. MR 2908782, DOI 10.1112/plms/pdr037
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- M. H. Le, The Diophantine equation $x^2+D^m=p^n$, Acta Arith. 52 (1989), no. 3, 255–265.
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- Ming-Guang Leu and Guan-Wei Li, The Diophantine equation $2x^2+1=3^n$, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3643–3645. MR 1998169, DOI 10.1090/S0002-9939-03-07212-5
- The Magma Group, The Magma algebra system, 2015. versions: 2.20-8 until 2.21-9.
- Kurt Mahler, Zur Approximation algebraischer Zahlen. I, Math. Ann. 107 (1933), no. 1, 691–730 (German). MR 1512822, DOI 10.1007/BF01448915
- Ju. I. Manin, Cyclotomic fields and modular curves, Uspehi Mat. Nauk 26 (1971), no. 6(162), 7–71 (Russian). MR 401653
- Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (Russian). MR 314846
- Greg Martin, Dimensions of the spaces of cusp forms and newforms on $\Gamma _0(N)$ and $\Gamma _1(N)$, J. Number Theory 112 (2005), no. 2, 298–331. MR 2141534, DOI 10.1016/j.jnt.2004.10.009
- David Masser, Elliptic functions and transcendence, Lecture Notes in Mathematics, Vol. 437, Springer-Verlag, Berlin-New York, 1975. MR 379391
- D. W. Masser, On $abc$ and discriminants, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3141–3150. MR 1912990, DOI 10.1090/S0002-9939-02-06589-9
- D. W. Masser and G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), no. 3, 407–464. MR 704399, DOI 10.1007/BF01398396
- B. Matschke, A general $S$-unit equation solver and tables of elliptic curves over number fields. in preparation.
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Jean-François Mestre, Construction d’une courbe elliptique de rang $\geq 12$, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 643–644 (French, with English summary). MR 688896
- J.-F. Mestre and J. Oesterlé, Courbes de Weil semi-stables de discriminant une puissance $m$-ième, J. Reine Angew. Math. 400 (1989), 173–184 (French). MR 1013729, DOI 10.1515/crll.1989.400.173
- Shinichi Mochizuki, The absolute anabelian geometry of hyperbolic curves, Galois theory and modular forms, Dev. Math., vol. 11, Kluwer Acad. Publ., Boston, MA, 2004, pp. 77–122. MR 2059759, DOI 10.1007/978-1-4613-0249-0_{5}
- L. J. Mordell, Note on the integer solutions of the equation $E:y^{2}=Ax^{3}+Bx^2+Cx+D$, Messenger Math. 51 (1922), 169–171.
- L. J. Mordell, On the Integer Solutions of the Equation ey2 = ax3+bx2+cx+d, Proc. London Math. Soc. (2) 21 (1923), 415–419. MR 1575372, DOI 10.1112/plms/s2-21.1.415
- M. Ram Murty, Bounds for congruence primes, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996) Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 177–192. MR 1703750, DOI 10.1090/pspum/066.1/1703750
- M. Ram Murty and Hector Pasten, Modular forms and effective Diophantine approximation, J. Number Theory 133 (2013), no. 11, 3739–3754. MR 3084298, DOI 10.1016/j.jnt.2013.05.006
- The Pari Group, PARI/GP, 2015. versions: November 2012 until December 2015, Univ. Bordeaux.
- H. Pasten, Shimura curves and the abc conjecture, preprint, arXiv:1705.09251v4 (2018), 88 pages.
- A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1986), no. 176, 713–727. MR 856715, DOI 10.1090/S0025-5718-1986-0856715-5
- A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), no. 3-4, 189–196 (German). MR 934900, DOI 10.5486/pmd.1987.34.3-4.04
- Attila Pethő, Horst G. Zimmer, Josef Gebel, and Emanuel Herrmann, Computing all $S$-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 3, 383–402. MR 1713117, DOI 10.1017/S0305004199003916
- Michel Raynaud, Hauteurs et isogénies, Astérisque 127 (1985), 199–234 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801923
- Gaël Rémond and Florent Urfels, Approximation diophantienne de logarithmes elliptiques $p$-adiques, J. Number Theory 57 (1996), no. 1, 133–169 (French, with English and French summaries). MR 1378579, DOI 10.1006/jnth.1996.0040
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- The Sage Developers, Sagemath, the Sage Mathematics Software System, 2015. https://www.sagemath.org, versions: November 2012 until December 2015.
- Takeshi Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J. 57 (1988), no. 1, 151–173. MR 952229, DOI 10.1215/S0012-7094-88-05706-7
- G. Salmon, Lessons introductory to the modern higher algebra, Hodges, Foster and Co., Dublin, 1876.
- N. Saradha and Anitha Srinivasan, Generalized Lebesgue-Ramanujan-Nagell equations, Diophantine equations, Tata Inst. Fund. Res. Stud. Math., vol. 20, Tata Inst. Fund. Res., Mumbai, 2008, pp. 207–223. MR 1500228
- Samir Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), no. 4, 1501–1538. MR 1371352, DOI 10.1216/rmjm/1181072159
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979
- Joseph H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), no. 192, 723–743. MR 1035944, DOI 10.1090/S0025-5718-1990-1035944-5
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- N. P. Smart, $S$-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 391–399. MR 1291748, DOI 10.1017/S0305004100072698
- N. P. Smart, Determining the small solutions to $S$-unit equations, Math. Comp. 68 (1999), no. 228, 1687–1699. MR 1653990, DOI 10.1090/S0025-5718-99-01140-0
- H. M. Stark, Effective estimates of solutions of some Diophantine equations, Acta Arith. 24 (1973), 251–259. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, III.
- C. L. Stewart and Kunrui Yu, On the $abc$ conjecture. II, Duke Math. J. 108 (2001), no. 1, 169–181. MR 1831823, DOI 10.1215/S0012-7094-01-10815-6
- Jörg Stiller, The Diophantine equation $x^2+119=15\cdot 2^n$ has exactly six solutions, Rocky Mountain J. Math. 26 (1996), no. 1, 295–298. MR 1386166, DOI 10.1216/rmjm/1181072117
- R. J. Stroeker and N. Tzanakis, On the application of Skolem’s $p$-adic method to the solution of Thue equations, J. Number Theory 29 (1988), no. 2, 166–195. MR 945593, DOI 10.1016/0022-314X(88)90098-4
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196. MR 1291875, DOI 10.4064/aa-67-2-177-196
- Roel J. Stroeker and Nikos Tzanakis, On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement, Experiment. Math. 8 (1999), no. 2, 135–149. MR 1700575
- R. J. Stroeker and N. Tzanakis, Computing all integer solutions of a genus 1 equation, Math. Comp. 72 (2003), no. 244, 1917–1933. MR 1986812, DOI 10.1090/S0025-5718-03-01497-2
- L. Szpiro, La conjecture de Mordell (d’après G. Faltings), Astérisque 121-122 (1985), 83–103. Seminar Bourbaki, Vol. 1983/84.
- Lucien Szpiro, Small points and torsion points, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 251–260. MR 860420, DOI 10.1090/conm/058.1/860420
- L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 229–246 (French). MR 1106917, DOI 10.1007/978-0-8176-4576-2_{9}
- John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 419359, DOI 10.1007/BF01389745
- J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 476, Springer, Berlin-New York, 1975, pp. 33–52. MR 393039
- R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572.
- Nobuhiro Terai, The Diophantine equation $x^2+q^m=p^n$, Acta Arith. 63 (1993), no. 4, 351–358. MR 1218462, DOI 10.4064/aa-63-4-351-358
- Nobuhiro Terai, A note on the Diophantine equation $x^2+q^m=c^n$, Bull. Aust. Math. Soc. 90 (2014), no. 1, 20–27. MR 3227126, DOI 10.1017/S0004972713000981
- Edlyn Teske, A space efficient algorithm for group structure computation, Math. Comp. 67 (1998), no. 224, 1637–1663. MR 1474658, DOI 10.1090/S0025-5718-98-00968-5
- Nikos Tzanakis, Elliptic Diophantine equations, De Gruyter Series in Discrete Mathematics and Applications, vol. 2, Walter de Gruyter GmbH & Co. KG, Berlin, 2013. A concrete approach via the elliptic logarithm. MR 3134738, DOI 10.1515/9783110281149
- N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), no. 2, 99–132. MR 987566, DOI 10.1016/0022-314X(89)90014-0
- N. Tzanakis and B. M. M. de Weger, Solving a specific Thue-Mahler equation, Math. Comp. 57 (1991), no. 196, 799–815. MR 1094961, DOI 10.1090/S0025-5718-1991-1094961-0
- N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), no. 3, 223–288. MR 1189890
- A. I. Vinogradov and V. G. Sprindžuk, The representation of numbers by binary forms, Mat. Zametki 3 (1968), 369–376.
- B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
- B. M. M. de Weger, The weighted sum of two $S$-units being a square, Indag. Math. (N.S.) 1 (1990), no. 2, 243–262. MR 1060828, DOI 10.1016/0019-3577(90)90007-A
- K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, J. Number Theory 82 (2000), no. 2, 188–224 (German, with English summary). MR 1761620, DOI 10.1006/jnth.1999.2414
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
- G. Wüstholz, Recent progress in transcendence theory, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 280–296. MR 756102, DOI 10.1007/BFb0099460
- Don Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), no. 177, 425–436. MR 866125, DOI 10.1090/S0025-5718-1987-0866125-3
- Don Zagier, Polylogarithms, Dedekind zeta functions and the algebraic $K$-theory of fields, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391–430. MR 1085270, DOI 10.1007/978-1-4612-0457-2_{1}9
- Shou-Wu Zhang, Gross-Zagier formula for $\rm GL(2)$. II, Heegner points and Rankin $L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 191–214. MR 2083213, DOI 10.1017/CBO9780511756375.008