
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Representation Theory of the Increasing Monoid
About this Title
Andrew Snowden and Sema Güntürkün
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 286, Number 1420
ISBNs: 978-1-4704-6546-9 (print); 978-1-4704-7514-7 (online)
DOI: https://doi.org/10.1090/memo/1420
Published electronically: May 16, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. The increasing monoid
- 3. Representation categories
- 4. Monomial modules
- 5. Gröbner theory
- 6. Concatenation, shift, and transpose
- 7. Finite length modules
- 8. Multiplicities
- 9. The smooth category as a Serre quotient of the graded category
- 10. Completions
- 11. The theorem on level
- 12. Grothendieck groups, Hilbert series, and Krull dimension
- 13. Induction and coinduction
- 14. Injective modules
- 15. Local cohomology and saturation
- 16. Structure of level categories
- 17. Koszul duality
- 18. Grothendieck groups revisited
- A. Categorical background
Abstract
We study the representation theory of the increasing monoid. Our results provide a fairly comprehensive picture of the representation category: for example, we describe the Grothendieck group (including the effective cone), classify injective objects, establish properties of injective and projective resolutions, construct a derived auto-duality, and so on. Our work is motivated by numerous connections of this theory to other areas, such as representation stability, commutative algebra, simplicial theory, and shuffle algebras.- M. Aschenbrenner, C. J. Hillar. Finite generation of symmetric ideals. Trans. Amer. Math. Soc., 359 (2007), 5171–5192; erratum, ibid. 361 (2009), 5627–5627. \arxiv{math/0411514}
- D. E. Cohen, On the laws of a metabelian variety, J. Algebra 5 (1967), 267–273. MR 206104, DOI 10.1016/0021-8693(67)90039-7
- Daniel E. Cohen, Closure relations. Buchberger’s algorithm, and polynomials in infinitely many variables, Computation theory and logic, Lecture Notes in Comput. Sci., vol. 270, Springer, Berlin, 1987, pp. 78–87. MR 907514, DOI 10.1007/3-540-18170-9_{1}56
- Thomas Church and Jordan S. Ellenberg, Homology of FI-modules, Geom. Topol. 21 (2017), no. 4, 2373–2418. MR 3654111, DOI 10.2140/gt.2017.21.2373
- Thomas Church, Jordan S. Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), no. 9, 1833–1910. MR 3357185, DOI 10.1215/00127094-3120274
- Jan Draisma, Noetherianity up to symmetry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 33–61. MR 3329086, DOI 10.1007/978-3-319-04870-3_{2}
- W. G. Dwyer, Homology of integral upper-triangular matrices, Proc. Amer. Math. Soc. 94 (1985), no. 3, 523–528. MR 787905, DOI 10.1090/S0002-9939-1985-0787905-9
- Vladimir Dotsenko and Anton Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, Algebra Number Theory 7 (2013), no. 3, 673–700. MR 3095223, DOI 10.2140/ant.2013.7.673
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud, Gunnar Fløystad, and Jerzy Weyman, The existence of equivariant pure free resolutions, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 905–926 (English, with English and French summaries). MR 2918721, DOI 10.5802/aif.2632
- David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888. MR 2505303, DOI 10.1090/S0894-0347-08-00620-6
- Christopher J. Hillar and Seth Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1–25. MR 2854168, DOI 10.1016/j.aim.2011.08.009
- Robert Krone, Anton Leykin, and Andrew Snowden, Hilbert series of symmetric ideals in infinite polynomial rings via formal languages, J. Algebra 485 (2017), 353–362. MR 3659339, DOI 10.1016/j.jalgebra.2017.05.014
- R. P. Laudone. Syzygies of secant ideals of Plücker-embedded Grassmannians are generated in bounded degree. \arxiv{1803.04259}
- Robert P. Laudone Jr, Representation Stability for Sequences of 0-Hecke Modules, ProQuest LLC, Ann Arbor, MI, 2020. Thesis (Ph.D.)–The University of Wisconsin - Madison. MR 4094317
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Wee Liang Gan and Liping Li, An inductive method for OI-modules, J. Algebra 568 (2021), 547–575. MR 4171683, DOI 10.1016/j.jalgebra.2020.09.047
- Sema Güntürkün and Uwe Nagel, Equivariant Hilbert series of monomial orbits, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2381–2393. MR 3778142, DOI 10.1090/proc/13943
- S. Güntürkün, A. Snowden. Hilbert series of $\operatorname {Inc}(\bN )$-equivariant modules. In preparation.
- Dinh Van Le, Uwe Nagel, Hop D. Nguyen, and Tim Römer, Castelnuovo-Mumford regularity up to symmetry, Int. Math. Res. Not. IMRN 14 (2021), 11010–11049. MR 4285742, DOI 10.1093/imrn/rnz382
- Uwe Nagel and Tim Römer, Equivariant Hilbert series in non-noetherian polynomial rings, J. Algebra 486 (2017), 204–245. MR 3666212, DOI 10.1016/j.jalgebra.2017.05.011
- Uwe Nagel and Tim Römer, FI- and OI-modules with varying coefficients, J. Algebra 535 (2019), 286–322. MR 3979092, DOI 10.1016/j.jalgebra.2019.06.029
- Andrew Putman, Steven V. Sam, and Andrew Snowden, Stability in the homology of unipotent groups, Algebra Number Theory 14 (2020), no. 1, 119–154. MR 4076809, DOI 10.2140/ant.2020.14.119
- María Ronco, Shuffle bialgebras, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 799–850 (English, with English and French summaries). MR 2918719, DOI 10.5802/aif.2630
- Jan-Erik Roos, Derived functors of inverse limits revisited, J. London Math. Soc. (2) 73 (2006), no. 1, 65–83. MR 2197371, DOI 10.1112/S0024610705022416
- Steven V. Sam, Ideals of bounded rank symmetric tensors are generated in bounded degree, Invent. Math. 207 (2017), no. 1, 1–21. MR 3592755, DOI 10.1007/s00222-016-0668-2
- Stacks Project, http://stacks.math.columbia.edu, 2016.
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- S. V. Sam, A. Snowden. Introduction to twisted commutative algebras. \arxiv{1209.5122v1}
- Steven V. Sam and Andrew Snowden, Stability patterns in representation theory, Forum Math. Sigma 3 (2015), Paper No. e11, 108. MR 3376738, DOI 10.1017/fms.2015.10
- Steven V. Sam and Andrew Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1097–1158. MR 3430359, DOI 10.1090/tran/6355
- Steven V. Sam and Andrew Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017), no. 1, 159–203. MR 3556290, DOI 10.1090/jams/859
- Steven V. Sam and Andrew Snowden, GL-equivariant modules over polynomial rings in infinitely many variables. II, Forum Math. Sigma 7 (2019), Paper No. e5, 71. MR 3922401, DOI 10.1017/fms.2018.27
- Steven V Sam and Andrew Snowden, Regularity bounds for twisted commutative algebras, Bull. Lond. Math. Soc. 52 (2020), no. 2, 299–315. MR 4171367, DOI 10.1112/blms.12326
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136