
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Unitarizability in Corank Three for Classical $p$-adic Groups
About this Title
Marko Tadić
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 286, Number 1421
ISBNs: 978-1-4704-6283-3 (print); 978-1-4704-7515-4 (online)
DOI: https://doi.org/10.1090/memo/1421
Published electronically: May 16, 2023
Keywords: Non-archimedean local fields,
classical groups,
unitarizability
Table of Contents
Chapters
- 1. Introduction
- 2. Notation and Preliminary Results
- 3. Unitarizability in the Critical Case (Corank 1 and 2)
- 4. Unitarizability in the Critical Case (Corank 3, $\alpha >1$)
- 5. Remaining Cases for $\alpha =\frac 12$ and $\alpha =1$
- 6. The Case $\alpha =0$
- 7. Introductory Remarks on Unitarizability and Corank 2
- 8. Unitarizability in Corank 3
- 9. Unitarizability in Mixed Case for Corank $\leq 3$
- A. The Arthur Packet of $L(\nu ^{\alpha }\rho , \nu ^{\alpha -1}\rho ;\delta (\nu ^\alpha \rho ;\sigma ))$ by Colette Mœglin
- B. Jacquet Module of $L(\nu ^{\alpha }\rho , \nu ^{\alpha -1}\rho ;\delta (\nu ^\alpha \rho ;\sigma ))$
Abstract
Let $G$ be the $F$-points of a classical group defined over a $p$-adic field $F$ of characteristic $0$. We classify the irreducible unitarizable representation of $G$ that are subquotients of the parabolic induction of cuspidal representations of Levi subgroup of corank at most 3 in $G$.- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Anne-Marie Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif $p$-adique, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2179–2189 (French, with English summary). MR 1285969, DOI 10.1090/S0002-9947-1995-1285969-0
- A. I. Badulescu and D. Renard, Unitary dual of $\textrm {GL}(n)$ at Archimedean places and global Jacquet-Langlands correspondence, Compos. Math. 146 (2010), no. 5, 1115–1164. MR 2684298, DOI 10.1112/S0010437X10004707
- A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III 39(59) (2004), no. 1, 49–54 (French, with English summary). MR 2055385, DOI 10.3336/gm.39.1.05
- Alexandru Ioan Badulescu, On $p$-adic Speh representations, Bull. Soc. Math. France 142 (2014), no. 2, 255–267 (English, with English and French summaries). MR 3269346, DOI 10.24033/bsmf.2665
- Dan Barbasch and Allen Moy, A unitarity criterion for $p$-adic groups, Invent. Math. 98 (1989), no. 1, 19–37. MR 1010153, DOI 10.1007/BF01388842
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
- J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR 771671
- Joseph Bernstein, Roman Bezrukavnikov, and David Kazhdan, Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.) 24 (2018), no. 1, 7–20. MR 3769724, DOI 10.1007/s00029-018-0391-5
- Joseph N. Bernstein, $P$-invariant distributions on $\textrm {GL}(N)$ and the classification of unitary representations of $\textrm {GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102. MR 748505, DOI 10.1007/BFb0073145
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Colin J. Bushnell and Philip C. Kutzko, The admissible dual of $\textrm {GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. MR 1204652, DOI 10.1515/9781400882496
- B. Casselman. Introduction to admissible representations of $p$-adic groups. Unpublished notes, 1995. http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf.
- L. Clozel, Spectral theory of automorphic forms, Automorphic forms and applications, IAS/Park City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 43–93. MR 2331344, DOI 10.1090/pcms/012/03
- I. M. Gel′fand and M. A. Naĭmark, Unitary representations of semisimple Lie groups. I, Mat. Sbornik N.S. 21(63) (1947), 405–434 (Russian). MR 23246
- I. M. Gel′fand and M. A. Naĭmark. Unitarnye predstavleniya klassičeskih grupp. Trudy Mat. Inst. Steklov., vol. 36. Izdat. Nauk SSSR, Moscow-Leningrad, 1950.
- Marcela Hanzer, The unitary dual of the Hermitian quaternionic group of split rank 2, Pacific J. Math. 226 (2006), no. 2, 353–388. MR 2247868, DOI 10.2140/pjm.2006.226.353
- Marcela Hanzer, Unitarizability of a certain class of irreducible representations of classical groups, Manuscripta Math. 127 (2008), no. 3, 275–307. MR 2448433, DOI 10.1007/s00229-008-0204-9
- Marcela Hanzer, Unitary dual of the non-split inner form of $\textrm {Sp}(8,F)$, Trans. Amer. Math. Soc. 360 (2008), no. 2, 1005–1034. MR 2346481, DOI 10.1090/S0002-9947-07-04286-9
- Marcela Hanzer and Chris Jantzen, A method of proving non-unitarity of representations of $p$-adic groups, J. Lie Theory 22 (2012), no. 4, 1109–1124. MR 3052686
- Marcela Hanzer and Marko Tadić, A method of proving non-unitarity of representations of $p$-adic groups I, Math. Z. 265 (2010), no. 4, 799–816. MR 2652536, DOI 10.1007/s00209-009-0542-7
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- Chris Jantzen, On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), no. 6, 1213–1262. MR 1481814
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 209390
- Takuya Konno, A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383–409. MR 2050093, DOI 10.2206/kyushujm.57.383
- Arno Kret and Erez Lapid, Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 937–940 (English, with English and French summaries). MR 2996769, DOI 10.1016/j.crma.2012.10.014
- S. S. Kudla. Notes on the local theta correspondence. Unpublished Notes.
- Erez Lapid and Alberto Mínguez, On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), no. 4, 2347–2400. MR 3573961, DOI 10.1007/s00029-016-0281-7
- Erez Lapid, Goran Muić, and Marko Tadić, On the generic unitary dual of quasisplit classical groups, Int. Math. Res. Not. 26 (2004), 1335–1354. MR 2046512, DOI 10.1155/S1073792804132832
- Erez Lapid and Marko Tadić, Some results on reducibility of parabolic induction for classical groups, Amer. J. Math. 142 (2020), no. 2, 505–546. MR 4084162, DOI 10.1353/ajm.2020.0014
- Ivan Matić, The unitary dual of $p$-adic $\textrm {SO}(5)$, Proc. Amer. Math. Soc. 138 (2010), no. 2, 759–767. MR 2557193, DOI 10.1090/S0002-9939-09-10065-5
- Ivan Matić and Marko Tadić, On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), no. 3-4, 437–476. MR 3360752, DOI 10.1007/s00229-015-0727-9
- F. I. Mautner, Spherical functions over ${\mathfrak {P}}$-adic fields. I, Amer. J. Math. 80 (1958), 441–457. MR 93558, DOI 10.2307/2372794
- Dragan Miličić, On $C^{\ast }$-algebras with bounded trace, Glasnik Mat. Ser. III 8(28) (1973), 7–22 (English, with Serbo-Croatian summary). MR 324429
- C. Mœglin, Sur la classification des séries discrètes des groupes classiques $p$-adiques: paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 2, 143–200 (French, with English summary). MR 1913095, DOI 10.1007/s100970100033
- C. Mœglin, Sur certains paquets d’Arthur et involution d’Aubert-Schneider-Stuhler généralisée, Represent. Theory 10 (2006), 86–129 (French, with English summary). MR 2209850, DOI 10.1090/S1088-4165-06-00270-6
- C. Mœglin, Multiplicité 1 dans les paquets d’Arthur aux places $p$-adiques, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 333–374 (French, with English summary). MR 2767522
- Colette Mœglin and Marko Tadić, Construction of discrete series for classical $p$-adic groups, J. Amer. Math. Soc. 15 (2002), no. 3, 715–786. MR 1896238, DOI 10.1090/S0894-0347-02-00389-2
- Colette Moeglin and Jean-Loup Waldspurger, Stabilisation de la formule des traces tordue. Vol. 1, Progress in Mathematics, vol. 316, Birkhäuser/Springer, Cham, 2016 (French). MR 3823813, DOI 10.1007/978-3-319-30049-8
- Colette Moeglin and Jean-Loup Waldspurger, Stabilisation de la formule des traces tordue. Vol. 2, Progress in Mathematics, vol. 317, Birkhäuser/Springer, Cham, 2016. MR 3823814, DOI 10.1007/978-3-319-30058-0
- Goran Muić and Marko Tadić, Unramified unitary duals for split classical $p$-adic groups; the topology and isolated representations, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 375–438. MR 2767523
- David Renard, Représentations des groupes réductifs $p$-adiques, Cours Spécialisés [Specialized Courses], vol. 17, Société Mathématique de France, Paris, 2010 (French). MR 2567785
- François Rodier, Les représentations de $\textrm {GSp}\ (4, k)$ où $k$ est un corps local, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 7, Ai, A429–A431 (French, with English summary). MR 447491
- François Rodier, Représentations de $\textrm {GL}(n,\,k)$ où $k$ est un corps $p$-adique, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 201–218 (French). MR 689531
- Paul J. Sally Jr. and Marko Tadić, Induced representations and classifications for $\textrm {GSp}(2,F)$ and $\textrm {Sp}(2,F)$, Mém. Soc. Math. France (N.S.) 52 (1993), 75–133 (English, with English and French summaries). MR 1212952
- Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97–191. MR 1471867
- Vincent Sécherre, Proof of the Tadić conjecture (U0) on the unitary dual of $\textrm {GL}_m(D)$, J. Reine Angew. Math. 626 (2009), 187–203. MR 2492994, DOI 10.1515/CRELLE.2009.007
- Allan J. Silberger, The Langlands quotient theorem for $p$-adic groups, Math. Ann. 236 (1978), no. 2, 95–104. MR 507262, DOI 10.1007/BF01351383
- Allan J. Silberger, Special representations of reductive $p$-adic groups are not integrable, Ann. of Math. (2) 111 (1980), no. 3, 571–587. MR 577138, DOI 10.2307/1971110
- M. Tadić, The topology of the dual space of a reductive group over a local field, Glas. Mat. Ser. III 18(38) (1983), no. 2, 259–279 (English, with Serbo-Croatian summary). MR 733166
- M. Tadić, Some bounds on unitary duals of classical groups—non-archimeden case, Bull. Iranian Math. Soc. 43 (2017), no. 4, 405–433. MR 3711838
- Marko Tadić, Proof of a conjecture of Bernstein, Math. Ann. 272 (1985), no. 1, 11–16. MR 794086, DOI 10.1007/BF01455923
- M. Tadić. Unitary representations of general linear group over real and complex field. Preprint MPI/SFB 85-22 Bonn, 1985. http://www.mpim-bonn.mpg.de/preblob/5395.
- Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382. MR 870688
- Marko Tadić, Geometry of dual spaces of reductive groups (non-Archimedean case), J. Analyse Math. 51 (1988), 139–181. MR 963153, DOI 10.1007/BF02791122
- Marko Tadić, Induced representations of $\textrm {GL}(n,A)$ for $p$-adic division algebras $A$, J. Reine Angew. Math. 405 (1990), 48–77. MR 1040995, DOI 10.1515/crll.1990.405.48
- Marko Tadić, An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215–252. MR 1181278, DOI 10.1090/S0273-0979-1993-00372-0
- Marko Tadić, Representations of $p$-adic symplectic groups, Compositio Math. 90 (1994), no. 2, 123–181. MR 1266251
- Marko Tadić, Structure arising from induction and Jacquet modules of representations of classical $p$-adic groups, J. Algebra 177 (1995), no. 1, 1–33. MR 1356358, DOI 10.1006/jabr.1995.1284
- Marko Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91. MR 1658535, DOI 10.1007/BF02764004
- Marko Tadić, On classification of some classes of irreducible representations of classical groups, Representations of real and $p$-adic groups, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 2, Singapore Univ. Press, Singapore, 2004, pp. 95–162. MR 2090870, DOI 10.1142/9789812562500_{0}004
- Marko Tadić, On reducibility and unitarizability for classical $p$-adic groups, some general results, Canad. J. Math. 61 (2009), no. 2, 427–450. MR 2504024, DOI 10.4153/CJM-2009-022-7
- Marko Tadić, $\textrm {GL}(n,\Bbb C)\sphat$ and $\textrm {GL}(n,\Bbb R)\sphat$, Automorphic forms and $L$-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 285–313. MR 2537046, DOI 10.1090/conm/489/09551
- Marko Tadić, On automorphic duals and isolated representations; new phenomena, J. Ramanujan Math. Soc. 25 (2010), no. 3, 295–328. MR 2742213
- Marko Tadić, Reducibility and discrete series in the case of classical $p$-adic groups; an approach based on examples, Geometry and analysis of automorphic forms of several variables, Ser. Number Theory Appl., vol. 7, World Sci. Publ., Hackensack, NJ, 2012, pp. 254–333. MR 2908042, DOI 10.1142/9789814355605_{0}010
- Marko Tadić, On interactions between harmonic analysis and the theory of automorphic forms, Automorphic representations and $L$-functions, Tata Inst. Fundam. Res. Stud. Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 591–650. MR 3156864
- Marko Tadić, On tempered and square integrable representations of classical $p$-adic groups, Sci. China Math. 56 (2013), no. 11, 2273–2313. MR 3123571, DOI 10.1007/s11425-013-4667-0
- Marko Tadić, Remark on representation theory of general linear groups over a non-archimedean local division algebra, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19(523) (2015), 27–53 (English, with English and Croatian summaries). MR 3456591, DOI 10.1016/j.spasta.2015.05.002
- Marko Tadić, On unitarizability in the case of classical $p$-adic groups, Geometric aspects of the trace formula, Simons Symp., Springer, Cham, 2018, pp. 405–453. MR 3969882
- David A. Vogan Jr., The unitary dual of $\textrm {GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505. MR 827363, DOI 10.1007/BF01394418
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084