
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential
About this Title
Yi Huang and Zhe Sun
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 286, Number 1422
ISBNs: 978-1-4704-6312-0 (print); 978-1-4704-7516-1 (online)
DOI: https://doi.org/10.1090/memo/1422
Published electronically: May 16, 2023
Keywords: McShane’s identity,
Fock–Goncharov $\mathcal {A}$ moduli space,
Goncharov–Shen potential
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminary
- 3. Properties of projective invariants
- 4. Goncharov–Shen potentials
- 5. Identities for $\operatorname {PGL}_3(\mathbb {R})$-representations with unipotent boundary
- 6. Simple geodesic sparsity for convex real projective surfaces
- 7. McShane identities for higher Teichmüller space
- 8. Applications
- A. Fuchsian rigidity
- B. More on the length spectrum of cusped strictly convex real projective surfaces
Abstract
We derive generalizations of McShane’s identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen, which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman–Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.- Ilesanmi Adeboye and Daryl Cooper, The area of convex projective surfaces and Fock-Goncharov coordinates, J. Topol. Anal. 12 (2020), no. 2, 533–546. MR 4119114, DOI 10.1142/S1793525319500560
- Hirotaka Akiyoshi, Hideki Miyachi, and Makoto Sakuma, A refinement of McShane’s identity for quasifuchsian punctured torus groups, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 21–40. MR 2145054, DOI 10.1090/conm/355/06443
- Hirotaka Akiyoshi, Hideki Miyachi, and Makoto Sakuma, Variations of McShane’s identity for punctured surface groups, Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., vol. 329, Cambridge Univ. Press, Cambridge, 2006, pp. 151–185. MR 2258748
- Jean-Paul Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960), 229–332 (French). MR 124005
- Ara Basmajian, The orthogonal spectrum of a hyperbolic manifold, Amer. J. Math. 115 (1993), no. 5, 1139–1159. MR 1246187, DOI 10.2307/2375068
- Martin Bridgeman, Richard Canary, and François Labourie, Simple length rigidity for Hitchin representations, Adv. Math. 360 (2020), 106901, 61. MR 4035950, DOI 10.1016/j.aim.2019.106901
- Martin Bridgeman, Richard Canary, and Andrés Sambarino, An introduction to pressure metrics for higher Teichmüller spaces, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2001–2035. MR 3833339, DOI 10.1017/etds.2016.111
- Francis Bonahon and Guillaume Dreyer, Parameterizing Hitchin components, Duke Math. J. 163 (2014), no. 15, 2935–2975. MR 3285861, DOI 10.1215/0012794-2838654
- Francis Bonahon and Guillaume Dreyer, Hitchin characters and geodesic laminations, Acta Math. 218 (2017), no. 2, 201–295. MR 3733100, DOI 10.4310/ACTA.2017.v218.n2.a1
- Yves Benoist, Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 339–374 (French, with English summary). MR 2094116
- —, Convexes hyperboliques et fonctions quasisymétriques, Publications Mathématiques de l’IHÉS 97 (2003), no. 1, 181–237.
- Yves Benoist and Dominique Hulin, Cubic differentials and finite volume convex projective surfaces, Geom. Topol. 17 (2013), no. 1, 595–620. MR 3039771, DOI 10.2140/gt.2013.17.595
- Yves Benoist and Dominique Hulin, Cubic differentials and hyperbolic convex sets, J. Differential Geom. 98 (2014), no. 1, 1–19. MR 3238310
- Joan S. Birman and Caroline Series, Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24 (1985), no. 2, 217–225. MR 793185, DOI 10.1016/0040-9383(85)90056-4
- Francis Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 2, 233–297 (English, with English and French summaries). MR 1413855
- B. H. Bowditch, A proof of McShane’s identity via Markoff triples, Bull. London Math. Soc. 28 (1996), no. 1, 73–78. MR 1356829, DOI 10.1112/blms/28.1.73
- B. H. Bowditch, A variation of McShane’s identity for once-punctured torus bundles, Topology 36 (1997), no. 2, 325–334. MR 1415591, DOI 10.1016/0040-9383(96)00017-1
- B. H. Bowditch, Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. (3) 77 (1998), no. 3, 697–736. MR 1643429, DOI 10.1112/S0024611598000604
- Martin Bridgeman, Orthospectra of geodesic laminations and dilogarithm identities on moduli space, Geom. Topol. 15 (2011), no. 2, 707–733. MR 2800364, DOI 10.2140/gt.2011.15.707
- Martin Bridgeman and Jeremy Kahn, Hyperbolic volume of manifolds with geodesic boundary and orthospectra, Geom. Funct. Anal. 20 (2010), no. 5, 1210–1230. MR 2746952, DOI 10.1007/s00039-010-0095-2
- Stephen M. Buckley and Simon L. Kokkendorff, Comparing the Floyd and ideal boundaries of a metric space, Trans. Amer. Math. Soc. 361 (2009), no. 2, 715–734. MR 2452822, DOI 10.1090/S0002-9947-08-04580-7
- Suhyoung Choi and William M. Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), no. 2, 657–661. MR 1145415, DOI 10.1090/S0002-9939-1993-1145415-8
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the Monge-Ampère equation $\textrm {det}(\partial ^{2}u/\partial x_{i}\partial sx_{j})=F(x,u)$, Comm. Pure Appl. Math. 30 (1977), no. 1, 41–68. MR 437805, DOI 10.1002/cpa.3160300104
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- V. V. Fock and A. B. Goncharov, Moduli spaces of convex projective structures on surfaces, Adv. Math. 208 (2007), no. 1, 249–273. MR 2304317, DOI 10.1016/j.aim.2006.02.007
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- Federica Fanoni and Maria Beatrice Pozzetti, Basmajian-type inequalities for maximal representations, J. Differential Geom. 116 (2020), no. 3, 405–458. MR 4182893, DOI 10.4310/jdg/1606964414
- F. R. Gantmacher and M. G. Krein, Oscillation matrices and small oscillations of mechanical systems, Moscow-Leningrad, 1941 (Russian). MR 5985
- William M. Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), no. 3, 791–845. MR 1053346
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Alexander Goncharov and Linhui Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202 (2015), no. 2, 487–633. MR 3418241, DOI 10.1007/s00222-014-0568-2
- Ren Guo, Characterizations of hyperbolic geometry among Hilbert geometries, Handbook of Hilbert geometry, IRMA Lect. Math. Theor. Phys., vol. 22, Eur. Math. Soc., Zürich, 2014, pp. 147–158. MR 3329880
- Yan Mary He, Identities for hyperconvex Anosov representations, preprint, arXiv:1909.11595.
- N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449–473. MR 1174252, DOI 10.1016/0040-9383(92)90044-I
- Yi Huang and Paul Norbury, Simple geodesics and Markoff quads, Geom. Dedicata 186 (2017), 113–148. MR 3602888, DOI 10.1007/s10711-016-0182-0
- Yi Huang, Robert C. Penner, and Anton M. Zeitlin, Super McShane identity, preprint, arXiv:1907.09978, accepted by J. Differential Geom. (2019).
- Hengnan Hu, Ser Peow Tan, and Ying Zhang, Polynomial automorphisms of $\Bbb C^n$ preserving the Markoff-Hurwitz polynomial, Geom. Dedicata 192 (2018), 207–243. MR 3749429, DOI 10.1007/s10711-017-0235-z
- Yi Huang, Moduli spaces of surfaces, Bull. Aust. Math. Soc. 92 (2015), no. 1, 168–170. MR 3366461, DOI 10.1017/S0004972715000246
- Yi Huang, A McShane-type identity for closed surfaces, Nagoya Math. J. 219 (2015), 65–86. MR 3413573, DOI 10.1215/00277630-2887835
- Yi Huang, McShane-type identities for quasifuchsian representations of nonorientable surfaces, Int. Math. Res. Not. IMRN 3 (2021), 1760–1808. MR 4206599, DOI 10.1093/imrn/rnaa149
- Inkang Kim, Primitive stable representations in higher rank semisimple Lie groups, preprint arXiv:1504.08056v4 (2019).
- Allen Knutson and Terence Tao, The honeycomb model of $\textrm {GL}_n(\textbf {C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055–1090. MR 1671451, DOI 10.1090/S0894-0347-99-00299-4
- François Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1, 51–114. MR 2221137, DOI 10.1007/s00222-005-0487-3
- François Labourie, Cross ratios, surface groups, $\textrm {PSL}(n,\textbf {R})$ and diffeomorphisms of the circle, Publ. Math. Inst. Hautes Études Sci. 106 (2007), 139–213. MR 2373231, DOI 10.1007/s10240-007-0009-5
- François Labourie and Gregory McShane, Cross ratios and identities for higher Teichmüller-Thurston theory, Duke Math. J. 149 (2009), no. 2, 279–345. MR 2541705, DOI 10.1215/00127094-2009-040
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- Donghi Lee and Makoto Sakuma, A variation of McShane’s identity for 2-bridge links, Geom. Topol. 17 (2013), no. 4, 2061–2101. MR 3109863, DOI 10.2140/gt.2013.17.2061
- Feng Luo and Ser Peow Tan, A dilogarithm identity on moduli spaces of curves, J. Differential Geom. 97 (2014), no. 2, 255–274. MR 3263507
- Gye-Seon Lee and Tengren Zhang, Collar lemma for Hitchin representations, Geom. Topol. 21 (2017), no. 4, 2243–2280. MR 3654108, DOI 10.2140/gt.2017.21.2243
- Ludovic Marquis, Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010), no. 4, 2103–2149 (French, with English and French summaries). MR 2740643, DOI 10.2140/gt.2010.14.2103
- Ludovic Marquis, Surface projective convexe de volume fini, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 325–392 (French, with English and French summaries). MR 2986273
- Greg McShane, A remarkable identity for lengths of curves, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–University of Warwick (United Kingdom). MR 3389436
- Greg McShane, Simple geodesics and a series constant over Teichmuller space, Invent. Math. 132 (1998), no. 3, 607–632. MR 1625712, DOI 10.1007/s002220050235
- Greg McShane and Igor Rivin, Geometry of geodesics and a norm on homology, International Mathematics Research Notices 2 (1995), 61-69.
- Maryam Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007), no. 1, 179–222. MR 2264808, DOI 10.1007/s00222-006-0013-2
- Maryam Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), no. 1, 1–23. MR 2257394, DOI 10.1090/S0894-0347-06-00526-1
- Hideki Miyachi, The limit sets of quasifuchsian punctured surface groups and the Teichmüller distances, Kodai Math. J. 28 (2005), no. 2, 301–309. MR 2153918, DOI 10.2996/kmj/1123767011
- Paul Norbury, Lengths of geodesics on non-orientable hyperbolic surfaces, Geom. Dedicata 134 (2008), 153–176. MR 2399656, DOI 10.1007/s10711-008-9251-3
- R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339. MR 919235
- Rafael Potrie and Andrés Sambarino, Eigenvalues and entropy of a Hitchin representation, Invent. Math. 209 (2017), no. 3, 885–925. MR 3681396, DOI 10.1007/s00222-017-0721-9
- Athanase Papadopoulos and Guillaume Théret, Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1775–1784. MR 2587462, DOI 10.1090/S0002-9939-09-10195-8
- Igor Rivin, Simple curves on surfaces, Geom. Dedicata 87 (2001), no. 1-3, 345–360. MR 1866856, DOI 10.1023/A:1012010721583
- I. J. Schoenberg, Convex domains and linear combinations of continuous functions, Bull. Amer. Math. Soc. 39 (1933), no. 4, 273–280. MR 1562598, DOI 10.1090/S0002-9904-1933-05610-0
- Zhe Sun, Rank $n$ swapping algebra for $\textrm {PGL}_n$ Fock-Goncharov $\mathcal X$ moduli space, Math. Ann. 380 (2021), no. 3-4, 1311–1353. MR 4297187, DOI 10.1007/s00208-020-02025-1
- Zhe Sun, Volume of the moduli space of unmarked bounded positive convex $\mathbb {RP}^2$ structures, preprint, arXiv:2001.01295 (2020).
- Douglas Stanford and Edward Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020), no. 6, 1475–1680. MR 4285616, DOI 10.4310/ATMP.2020.v24.n6.a4
- Zhe Sun and Tengren Zhang, The Goldman symplectic form on the $\operatorname {PGL}(V)$-Hitchin component, preprint, arXiv:1709.03589 (2017).
- Zhe Sun, Anna Wienhard, and Tengren Zhang, Flows on the $\textrm {PGL}(V)$-Hitchin component, Geom. Funct. Anal. 30 (2020), no. 2, 588–692. MR 4108617, DOI 10.1007/s00039-020-00534-4
- Nicolas Tholozan, Volume entropy of Hilbert metrics and length spectrum of Hitchin representations into $\textrm {PSL}(3,\Bbb {R})$, Duke Math. J. 166 (2017), no. 7, 1377–1403. MR 3649358, DOI 10.1215/00127094-00000010X
- William P Thurston, Minimal stretch maps between hyperbolic surfaces, preprint, arXiv:math/9801039 (1998).
- Dylan P. Thurston, From rubber bands to rational maps: a research report, Res. Math. Sci. 3 (2016), Paper No. 15, 49. MR 3500499, DOI 10.1186/s40687-015-0039-4
- Ser Peow Tan, Yan Loi Wong, and Ying Zhang, Generalizations of McShane’s identity to hyperbolic cone-surfaces, J. Differential Geom. 72 (2006), no. 1, 73–112. MR 2215456
- Ser Peow Tan, Yan Loi Wong, and Ying Zhang, McShane’s identity for classical Schottky groups, Pacific J. Math. 237 (2008), no. 1, 183–200. MR 2415214, DOI 10.2140/pjm.2008.237.183
- Nicholas G. Vlamis and Andrew Yarmola, Basmajian’s identity in higher Teichmüller-Thurston theory, J. Topol. 10 (2017), no. 3, 744–764. MR 3797594, DOI 10.1112/topo.12022
- Anna Wienhard, An invitation to higher Teichmüller theory, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1013–1039. MR 3966798