
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume
About this Title
Roelof Bruggeman and Anke Dorothea Pohl
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 287, Number 1423
ISBNs: 978-1-4704-6545-2 (print); 978-1-4704-7539-0 (online)
DOI: https://doi.org/10.1090/memo/1423
Published electronically: June 28, 2023
Keywords: automorphic forms,
funnel forms,
transfer operator,
cohomology,
mixed cohomology,
period functions,
Hecke triangle groups,
infinite covolume
Table of Contents
Chapters
- 1. Introduction
1. Preliminaries, properties of period functions, and some insights
- 2. Notations
- 3. Elements from hyperbolic geometry
- 4. Hecke triangle groups with infinite covolume
- 5. Automorphic forms
- 6. Principal series
- 7. Transfer operators and period functions
- 8. An intuition and some insights
2. Semi-analytic cohomology
- 9. Abstract cohomology spaces
- 10. Modules
3. Automorphic forms and cohomology
- 11. Invariant eigenfunctions via a group cohomology
- 12. Tesselation cohomology
- 13. Extension of cocycles
- 14. Surjectivity I: Boundary germs
- 15. Surjectivity II: From cocycles to funnel forms
- 16. Relation between cohomology spaces
- 17. Proof of Theorem D
4. Transfer operators and cohomology
- 18. The map from functions to cocycles
- 19. Real period functions and semi-analytic cocycles
- 20. Complex period functions and semi-analytic cohomology
- 21. Proof of Theorem E
5. Proofs of Theorems A and B, and a recapitulation
6. Parity
- 22. The triangle group in the projective general linear group
- 23. Odd and even funnel forms, cocycles, and period functions
- 24. Isomorphisms with parity
7. Complements and outlook
- 25. Fredholm determinant of the fast transfer operator
- 26. Outlook
Abstract
We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume and the dynamics of their geodesic flows.- Alexander Adam and Anke Pohl, A transfer-operator-based relation between Laplace eigenfunctions and zeros of Selberg zeta functions, Ergodic Theory Dynam. Systems 40 (2020), no. 3, 612–662. MR 4059792, DOI 10.1017/etds.2018.51
- Emil Artin, Ein mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, 170–175 (German). MR 3069425, DOI 10.1007/BF02954622
- Roelof Bruggeman, YoungJu Choie, and Nikolaos Diamantis, Holomorphic automorphic forms and cohomology, Mem. Amer. Math. Soc. 253 (2018), no. 1212, vii+167. MR 3783825, DOI 10.1090/memo/1212
- David Borthwick, Chris Judge, and Peter A. Perry, Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces, Comment. Math. Helv. 80 (2005), no. 3, 483–515. MR 2165200, DOI 10.4171/CMH/23
- R. Bruggeman, J. Lewis, and D. Zagier, Function theory related to the group $\textrm {PSL}_2(\Bbb R)$, From Fourier analysis and number theory to Radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, pp. 107–201. MR 2986956, DOI 10.1007/978-1-4614-4075-8_{7}
- R. Bruggeman, J. Lewis, and D. Zagier, Period functions for Maass wave forms and cohomology, Mem. Am. Math. Soc. 1118 (2015), iii–v + 128.
- R. W. Bruggeman and T. Mühlenbruch, Eigenfunctions of transfer operators and cohomology, J. Number Theory 129 (2009), no. 1, 158–181. MR 2468476, DOI 10.1016/j.jnt.2008.08.003
- Ulrich Bunke and Martin Olbrich, Gamma-cohomology and the Selberg zeta function, J. Reine Angew. Math. 467 (1995), 199–219. MR 1355929
- Ulrich Bunke and Martin Olbrich, Resolutions of distribution globalizations of Harish-Chandra modules and cohomology, J. Reine Angew. Math. 497 (1998), 47–81. MR 1617426, DOI 10.1515/crll.1998.043
- Ulrich Bunke and Martin Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. of Math. (2) 149 (1999), no. 2, 627–689. MR 1689342, DOI 10.2307/120977
- David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, 2nd ed., Progress in Mathematics, vol. 318, Birkhäuser/Springer, [Cham], 2016. MR 3497464, DOI 10.1007/978-3-319-33877-4
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Roelof W. Bruggeman, Automorphic forms, hyperfunction cohomology, and period functions, J. Reine Angew. Math. 492 (1997), 1–39. MR 1488063, DOI 10.1515/crll.1997.492.1
- Cheng-Hung Chang and Dieter Mayer, The period function of the nonholomorphic Eisenstein series for $\textrm {PSL}(2,\textbf {Z})$, Math. Phys. Electron. J. 4 (1998), Paper 6, 8. MR 1647288
- Cheng-Hung Chang and Dieter H. Mayer, The transfer operator approach to Selberg’s zeta function and modular and Maass wave forms for $\textrm {PSL}(2,\textbf {Z})$, Emerging applications of number theory (Minneapolis, MN, 1996) IMA Vol. Math. Appl., vol. 109, Springer, New York, 1999, pp. 73–141. MR 1691529, DOI 10.1007/978-1-4612-1544-8_{3}
- Anton Deitmar and Joachim Hilgert, Cohomology of arithmetic groups with infinite dimensional coefficient spaces, Doc. Math. 10 (2005), 199–216. MR 2148074
- Anton Deitmar and Joachim Hilgert, A Lewis correspondence for submodular groups, Forum Math. 19 (2007), no. 6, 1075–1099. MR 2367955, DOI 10.1515/FORUM.2007.042
- Isaac Efrat, Dynamics of the continued fraction map and the spectral theory of $\textrm {SL}(2,\mathbf Z)$, Invent. Math. 114 (1993), no. 1, 207–218. MR 1235024, DOI 10.1007/BF01232667
- M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298 (German). MR 89928, DOI 10.1007/BF01258863
- M. Fraczek, D. Mayer, and T. Mühlenbruch, A realization of the Hecke algebra on the space of period functions for $\Gamma _0(n)$, J. Reine Angew. Math. 603 (2007), 133–163. MR 2312556, DOI 10.1515/CRELLE.2007.014
- Ksenia Fedosova and Anke Pohl, Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Selecta Math. (N.S.) 26 (2020), no. 1, Paper No. 9, 55. MR 4056838, DOI 10.1007/s00029-019-0534-3
- Laurent Guillopé, Fonctions zêta de Selberg et surfaces de géométrie finie, Zeta functions in geometry (Tokyo, 1990) Adv. Stud. Pure Math., vol. 21, Kinokuniya, Tokyo, 1992, pp. 33–70 (French, with English and French summaries). MR 1210782, DOI 10.2969/aspm/02110033
- E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), no. 1, 664–699 (German). MR 1513069, DOI 10.1007/BF01565437
- Erich Hecke, Lectures on Dirichlet series, modular functions and quadratic forms, Vandenhoeck & Ruprecht, Göttingen, 1983. Edited by Bruno Schoeneberg; With the collaboration of Wilhelm Maak. MR 693092
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,R)$. Vol. I, Lecture Notes in Mathematics, Vol. 548, Springer-Verlag, Berlin-New York, 1976. MR 439755
- Dennis A. Hejhal, The Selberg trace formula for $\textrm {PSL}(2,\,\textbf {R})$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983. MR 711197, DOI 10.1007/BFb0061302
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Marvin Knopp and Henok Mawi, Eichler cohomology theorem for automorphic forms of small weights, Proc. Amer. Math. Soc. 138 (2010), no. 2, 395–404. MR 2557156, DOI 10.1090/S0002-9939-09-10070-9
- Marvin I. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. Soc. 80 (1974), 607–632. MR 344454, DOI 10.1090/S0002-9904-1974-13520-2
- Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, RI, 1964. MR 164033
- John B. Lewis, Spaces of holomorphic functions equivalent to the even Maass cusp forms, Invent. Math. 127 (1997), no. 2, 271–306. MR 1427619, DOI 10.1007/s002220050120
- J. Lewis and D. Zagier, Period functions for Maass wave forms. I, Ann. of Math. (2) 153 (2001), no. 1, 191–258. MR 1826413, DOI 10.2307/2661374
- Bernard Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7 (1971), 219–230. MR 297997, DOI 10.1016/S0001-8708(71)80003-8
- Dieter H. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys. 130 (1990), no. 2, 311–333. MR 1059321
- Dieter H. Mayer, The thermodynamic formalism approach to Selberg’s zeta function for $\textrm {PSL}(2,\textbf {Z})$, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 55–60. MR 1080004, DOI 10.1090/S0273-0979-1991-16023-4
- Dieter Mayer, Tobias Mühlenbruch, and Fredrik Strömberg, The transfer operator for the Hecke triangle groups, Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2453–2484. MR 2900555, DOI 10.3934/dcds.2012.32.2453
- M. Möller and A. D. Pohl, Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant, Ergodic Theory Dynam. Systems 33 (2013), no. 1, 247–283. MR 3009112, DOI 10.1017/S0143385711000794
- Dieter Mayer and Fredrik Strömberg, Symbolic dynamics for the geodesic flow on Hecke surfaces, J. Mod. Dyn. 2 (2008), no. 4, 581–627. MR 2449139, DOI 10.3934/jmd.2008.2.581
- Anke D. Pohl, A dynamical approach to Maass cusp forms, J. Mod. Dyn. 6 (2012), no. 4, 563–596. MR 3008410, DOI 10.3934/jmd.2012.6.563
- Anke D. Pohl, Period functions for Maass cusp forms for $\Gamma _0(p)$: a transfer operator approach, Int. Math. Res. Not. IMRN 14 (2013), 3250–3273. MR 3085759, DOI 10.1093/imrn/rns146
- Anke D. Pohl, Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds, Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 2173–2241. MR 3124731, DOI 10.3934/dcds.2014.34.2173
- Anke D. Pohl, A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area, Comm. Math. Phys. 337 (2015), no. 1, 103–126. MR 3324157, DOI 10.1007/s00220-015-2304-1
- Anke D. Pohl, Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow, Ergodic Theory Dynam. Systems 36 (2016), no. 1, 142–172. MR 3436758, DOI 10.1017/etds.2014.64
- Anke D. Pohl, Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations, Dynamics and numbers, Contemp. Math., vol. 669, Amer. Math. Soc., Providence, RI, 2016, pp. 205–236. MR 3546670, DOI 10.1090/conm/669/13430
- S. J. Patterson and Peter A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106 (2001), no. 2, 321–390. Appendix A by Charles Epstein. MR 1813434, DOI 10.1215/S0012-7094-01-10624-8
- Anke Pohl and Don Zagier, Dynamics of geodesics, and Maass cusp forms, Enseign. Math. 66 (2020), no. 3-4, 305–340. MR 4254263, DOI 10.4171/lem/66-3/4-2
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI 10.1112/jlms/s2-31.1.69
- Goro Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291–311 (French). MR 120372, DOI 10.2969/jmsj/01140291
- A. B. Venkov, Spectral theory of automorphic functions, Trudy Mat. Inst. Steklov. 153 (1981), 172 (Russian). MR 665585