
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Convexity of Singular Affine Structures and Toric-Focus Integrable Hamiltonian Systems
About this Title
Tudor S. Ratiu, Christophe Wacheux and Nguyen Tien Zung
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 287, Number 1424
ISBNs: 978-1-4704-6439-4 (print); 978-1-4704-7540-6 (online)
DOI: https://doi.org/10.1090/memo/1424
Published electronically: June 27, 2023
Keywords: integrable system,
toric-focus,
convexity,
integral affine structure,
singularities
Table of Contents
Chapters
- 1. Introduction
- 2. A brief overview of convexity in symplectic geometry and in integrable Hamiltonian systems
- 3. Toric-focus integrable Hamiltonian systems
- 4. Base spaces and affine manifolds with focus singularities
- 5. Straight lines and convexity
- 6. Local convexity at focus points
- 7. Global convexity
Abstract
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with boundary and corners), analogous to the toric case, but their associated integral affine structures are singular, with non-trivial monodromy, due to focus singularities. We obtain a series of convexity results, both positive and negative, for such singular integral affine base spaces. In particular, near a focus singular point, they are locally convex and the local-global convexity principle still applies. They are also globally convex under some natural additional conditions. However, when the monodromy is sufficiently large, the local-global convexity principle breaks down and the base spaces can be globally non-convex, even for compact manifolds. As a surprising example, we construct a 2-dimensional “integral affine black hole”, which is locally convex but for which a straight ray from the center can never escape.- Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA, 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
- A. Yu. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), no. 2, 241–256. MR 1449971
- Anton Alekseev, Anton Malkin, and Eckhard Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495. MR 1638045
- Valery Alexeev and Michel Brion, Toric degenerations of spherical varieties, Selecta Math. (N.S.) 10 (2004), no. 4, 453–478. MR 2134452, DOI 10.1007/s00029-005-0396-8
- Judith M. Arms, Jerrold E. Marsden, and Vincent Moncrief, Symmetry and bifurcations of momentum mappings, Comm. Math. Phys. 78 (1980/81), no. 4, 455–478. MR 606458
- M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1–15. MR 642416, DOI 10.1112/blms/14.1.1
- M. F. Atiyah and A. N. Pressley, Convexity and loop groups, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 33–63. MR 717605
- Michèle Audin, Torus actions on symplectic manifolds, Second revised edition, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 2004. MR 2091310, DOI 10.1007/978-3-0348-7960-6
- O. Babelon and B. Douçot, Higher index focus-focus singularities in the Jaynes-Cummings-Gaudin model: symplectic invariants and monodromy, J. Geom. Phys. 87 (2015), 3–29. MR 3282354, DOI 10.1016/j.geomphys.2014.07.011
- Thierry Barbot, Variétés affines radiales de dimension 3, Bull. Soc. Math. France 128 (2000), no. 3, 347–389 (French, with English and French summaries). MR 1792474
- Fiammetta Battaglia and Elisa Prato, Generalized toric varieties for simple nonrational convex polytopes, Internat. Math. Res. Notices 24 (2001), 1315–1337. MR 1866747, DOI 10.1155/S1073792801000629
- Yves Benoist, Actions symplectiques de groupes compacts, Geom. Dedicata 89 (2002), 181–245 (French, with English summary). MR 1890958, DOI 10.1023/A:1014253511289
- Petre Birtea, Juan-Pablo Ortega, and Tudor S. Ratiu, A local-to-global principle for convexity in metric spaces, J. Lie Theory 18 (2008), no. 2, 445–469. MR 2431127
- Petre Birtea, Juan-Pablo Ortega, and Tudor S. Ratiu, Openness and convexity for momentum maps, Trans. Amer. Math. Soc. 361 (2009), no. 2, 603–630. MR 2452817, DOI 10.1090/S0002-9947-08-04689-8
- Christina Bjorndahl and Yael Karshon, Revisiting Tietze-Nakajima: local and global convexity for maps, Canad. J. Math. 62 (2010), no. 5, 975–993. MR 2730351, DOI 10.4153/CJM-2010-052-5
- Anthony Bloch, Mohamed Ould El Hadrami, Hermann Flaschka, and Tudor S. Ratiu, Maximal tori of some symplectomorphism groups and applications to convexity, Deformation theory and symplectic geometry (Ascona, 1996) Math. Phys. Stud., vol. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 201–222. MR 1480724
- A. M. Bloch, H. Flaschka, and T. Ratiu, A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra, Duke Math. J. 61 (1990), no. 1, 41–65. MR 1068379, DOI 10.1215/S0012-7094-90-06103-4
- A. M. Bloch, H. Flaschka, and T. Ratiu, A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus, Invent. Math. 113 (1993), no. 3, 511–529. MR 1231835, DOI 10.1007/BF01244316
- Anthony M. Bloch, Hermann Flaschka, and Tudor S. Ratiu, The Toda PDE and the geometry of the diffeomorphism group of the annulus, Mechanics day (Waterloo, ON, 1992) Fields Inst. Commun., vol. 7, Amer. Math. Soc., Providence, RI, 1996, pp. 57–92. MR 1365772, DOI 10.1007/bf01244316
- Leonard M. Blumenthal and Raymond W. Freese, Local convexity in metric spaces, Math. Notae 18 (1962), 15–22 (1962) (Spanish). MR 156317
- A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems, Chapman & Hall/CRC, Boca Raton, FL, 2004. Geometry, topology, classification; Translated from the 1999 Russian original. MR 2036760, DOI 10.1201/9780203643426
- Alexey Bolsinov and Anton Izosimov, Smooth invariants of focus-focus singularities and obstructions to product decomposition, J. Symplectic Geom. 17 (2019), no. 6, 1613–1648. MR 4057723, DOI 10.4310/JSG.2019.v17.n6.a2
- Damien Bouloc, Singular fibers of the bending flows on the moduli space of 3D polygons, J. Symplectic Geom. 16 (2018), no. 3, 585–629. MR 3882168, DOI 10.4310/JSG.2018.v16.n3.a1
- D. Bouloc, E. Miranda, and N. T. Zung, Singular fibres of the Gelfand-Cetlin system on $\mathfrak {u}(n)^*$, Philos. Trans. Roy. Soc. A 376 (2018), no. 2131, 20170423, 28. MR 3868420, DOI 10.1098/rsta.2017.0423
- Michel Brion, Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 177–192 (French). MR 932055, DOI 10.1007/BFb0078526
- Daniel M. Burns, Victor W. Guillemin, and Eugene M. Lerman, Toric symplectic singular spaces. I. Isolated singularities, J. Symplectic Geom. 3 (2005), no. 4, 531–543. Conference on Symplectic Topology. MR 2235853
- Henrique Bursztyn, Marius Crainic, Alan Weinstein, and Chenchang Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), no. 3, 549–607. MR 2068969, DOI 10.1215/S0012-7094-04-12335-8
- Ricardo Castaño Bernard and Diego Matessi, Lagrangian 3-torus fibrations, J. Differential Geom. 81 (2009), no. 3, 483–573. MR 2487600
- J. Cel, A generalization of Tietze’s theorem on local convexity for open sets, Bull. Soc. Roy. Sci. Liège 67 (1998), no. 1-2, 31–33. MR 1633003
- Marc Chaperon, Normalisation of the smooth focus-focus: a simple proof, Acta Math. Vietnam. 38 (2013), no. 1, 3–9. MR 3098197, DOI 10.1007/s40306-012-0003-y
- M. Condevaux, P. Dazord, and P. Molino, Géométrie du moment, Travaux du Séminaire Sud-Rhodanien de Géométrie, I, Publ. Dép. Math. Nouvelle Sér. B, vol. 88, Univ. Claude-Bernard, Lyon, 1988, pp. 131–160 (French). MR 1040871
- M.S. Child, T. Wetson, J. Tennyson, Quantum monodromy in the spectrum of $H_2O$ and other systems: New insight into the level structure of quasi-linear molecules, Molecular Physics 96(3) (2019), 371-379.
- R. Cushman and H. Knörrer, The energy momentum mapping of the Lagrange top, Differential geometric methods in mathematical physics (Clausthal, 1983) Lecture Notes in Math., vol. 1139, Springer, Berlin, 1985, pp. 12–24. MR 820467, DOI 10.1007/BFb0074575
- Richard H. Cushman and Larry M. Bates, Global aspects of classical integrable systems, Birkhäuser Verlag, Basel, 1997. MR 1438060, DOI 10.1007/978-3-0348-8891-2
- J. B. Delos, G. Dhont, D. A. Sadovskií, and B. I. Zhilinskií, Dynamical manifestations of Hamiltonian monodromy, Ann. Physics 324 (2009), no. 9, 1953–1982. MR 2562352, DOI 10.1016/j.aop.2009.03.008
- Thomas Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315–339 (French, with English summary). MR 984900
- Thomas Delzant, Classification des actions hamiltoniennes complètement intégrables de rang deux, Ann. Global Anal. Geom. 8 (1990), no. 1, 87–112 (French). MR 1075241, DOI 10.1007/BF00055020
- Michel Duflo and Michèle Vergne, Une propriété de la représentation coadjointe d’une algèbre de Lie, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A583–A585 (French). MR 245629
- J.-P. Dufour and P. Molino, Compactification d’actions de $\textbf {R}^n$ et variables action-angle avec singularités, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 20, Springer, New York, 1991, pp. 151–167 (French). MR 1104924, DOI 10.1007/978-1-4613-9719-9_{9}
- Jean-Paul Dufour, Pierre Molino, and Anne Toulet, Classification des systèmes intégrables en dimension $2$ et invariants des modèles de Fomenko, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 10, 949–952 (French, with English and French summaries). MR 1278158
- J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), no. 6, 687–706. MR 596430, DOI 10.1002/cpa.3160330602
- J. J. Duistermaat, Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275 (1983), no. 1, 417–429. MR 678361, DOI 10.1090/S0002-9947-1983-0678361-2
- J. J. Duistermaat and G. J. Heckman, Addendum to: “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent. Math. 72 (1983), no. 1, 153–158. MR 696693, DOI 10.1007/BF01389132
- K. Efstathiou, M. Joyeux, D. A. Sadovskií, Global bending quantum number and the absence of monodromy in the $HCN \leftrightarrow CNH$ molecule, Physical Review A 69, 032504 (2004).
- L.H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D. Thesis, University of Stockholm, 1984.
- L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4–35. MR 1036125, DOI 10.1007/BF02566590
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Hermann Flaschka and Tudor Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 6, 787–809. MR 1422991
- A. T. Fomenko and V. V. Trofimov, Integrable systems on Lie algebras and symmetric spaces, Advanced Studies in Contemporary Mathematics, vol. 2, Gordon and Breach Science Publishers, New York, 1988. Translated from the Russian by A. Karaulov, P. D. Rayfield and A. Weisman. MR 949211
- A. Giacobbe,Convexity and multivalued Hamiltonians, Russ. Math. Surv., 55 (2000), 578–580.
- Andrea Giacobbe, Convexity of multi-valued momentum maps, Geom. Dedicata 111 (2005), 1–22. MR 2155173, DOI 10.1007/s10711-004-1620-y
- Viktor L. Ginzburg and Alan Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (1992), no. 2, 445–453. MR 1126117, DOI 10.1090/S0894-0347-1992-1126117-8
- Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011. MR 2722115, DOI 10.1090/cbms/114
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- Marco Gualtieri, Songhao Li, Álvaro Pelayo, and Tudor S. Ratiu, The tropical momentum map: a classification of toric log symplectic manifolds, Math. Ann. 367 (2017), no. 3-4, 1217–1258. MR 3623224, DOI 10.1007/s00208-016-1427-9
- Victor Guillemin, Eva Miranda, Ana Rita Pires, and Geoffrey Scott, Toric actions on $b$-symplectic manifolds, Int. Math. Res. Not. IMRN 14 (2015), 5818–5848. MR 3384459, DOI 10.1093/imrn/rnu108
- Victor Guillemin and Reyer Sjamaar, Convexity properties of Hamiltonian group actions, CRM Monograph Series, vol. 26, American Mathematical Society, Providence, RI, 2005. MR 2175783, DOI 10.1090/crmm/026
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491–513. MR 664117, DOI 10.1007/BF01398933
- V. Guillemin and S. Sternberg, The Gel′fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), no. 1, 106–128. MR 705993, DOI 10.1016/0022-1236(83)90092-7
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping. II, Invent. Math. 77 (1984), no. 3, 533–546. MR 759258, DOI 10.1007/BF01388837
- Victor Guillemin and Shlomo Sternberg, A normal form for the moment map, Differential geometric methods in mathematical physics (Jerusalem, 1982) Math. Phys. Stud., vol. 6, Reidel, Dordrecht, 1984, pp. 161–175. MR 767835
- Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990. MR 1066693
- Megumi Harada and Kiumars Kaveh, Integrable systems, toric degenerations and Okounkov bodies, Invent. Math. 202 (2015), no. 3, 927–985. MR 3425384, DOI 10.1007/s00222-014-0574-4
- Peter Heinzner and Alan Huckleberry, Kählerian potentials and convexity properties of the moment map, Invent. Math. 126 (1996), no. 1, 65–84. MR 1408556, DOI 10.1007/s002220050089
- Joachim Hilgert and Karl-Hermann Neeb, Poisson Lie groups and non-linear convexity theorems, Math. Nachr. 191 (1998), 153–187. MR 1621294, DOI 10.1002/mana.19981910108
- Joachim Hilgert, Karl-Hermann Neeb, and Werner Plank, Symplectic convexity theorems and coadjoint orbits, Compositio Math. 94 (1994), no. 2, 129–180. MR 1302314
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011. Reprint of the 1994 edition. MR 2797558, DOI 10.1007/978-3-0348-0104-1
- Benjamin Hoffman, Toric symplectic stacks, Adv. Math. 368 (2020), 107135, 43. MR 4082991, DOI 10.1016/j.aim.2020.107135
- Sonja Hohloch, Silvia Sabatini, and Daniele Sepe, From compact semi-toric systems to Hamiltonian $S^1$-spaces, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 247–281. MR 3286957, DOI 10.3934/dcds.2015.35.247
- Alfred Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620–630. MR 63336, DOI 10.2307/2372705
- Alfred Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc. 5 (1954), 4–7. MR 61573, DOI 10.1090/S0002-9939-1954-0061573-6
- Patrick Iglésias, Les $\textrm {SO}(3)$-variétés symplectiques et leur classification en dimension $4$, Bull. Soc. Math. France 119 (1991), no. 3, 371–396 (French, with English summary). MR 1125672
- Hiroaki Ishida, Torus invariant transverse Kähler foliations, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5137–5155. MR 3632563, DOI 10.1090/tran/7070
- A. M. Izosimov, Classification of almost toric singularities of Lagrangian foliations, Mat. Sb. 202 (2011), no. 7, 95–116 (Russian, with Russian summary); English transl., Sb. Math. 202 (2011), no. 7-8, 1021–1042. MR 2857795, DOI 10.1070/SM2011v202n07ABEH004175
- V. G. Kac and D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math. 76 (1984), no. 1, 1–14. MR 739620, DOI 10.1007/BF01388487
- Michael Kapovich and John J. Millson, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479–513. MR 1431002
- Yael Karshon and Eugene Lerman, Non-compact symplectic toric manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 055, 37. MR 3371718, DOI 10.3842/SIGMA.2015.055
- Yael Karshon and Susan Tolman, Centered complexity one Hamiltonian torus actions, Trans. Amer. Math. Soc. 353 (2001), no. 12, 4831–4861. MR 1852084, DOI 10.1090/S0002-9947-01-02799-4
- Yael Karshon and Susan Tolman, Classification of Hamiltonian torus actions with two-dimensional quotients, Geom. Topol. 18 (2014), no. 2, 669–716. MR 3180483, DOI 10.2140/gt.2014.18.669
- Ludmil Katzarkov, Ernesto Lupercio, Laurent Meersseman, and Alberto Verjovsky, The definition of a non-commutative toric variety, Algebraic topology: applications and new directions, Contemp. Math., vol. 620, Amer. Math. Soc., Providence, RI, 2014, pp. 223–250. MR 3290094, DOI 10.1090/conm/620/12370
- David C. Kay, Generalizations of Tietze’s theorem on local convexity for sets in $\textbf {R}^d$, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 179–191. MR 809205, DOI 10.1111/j.1749-6632.1985.tb14552.x
- Frances Kirwan, Convexity properties of the moment mapping. III, Invent. Math. 77 (1984), no. 3, 547–552. MR 759257, DOI 10.1007/BF01388838
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- V. L. Klee Jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443–466. MR 44014
- Friedrich Knop, Convexity of Hamiltonian manifolds, J. Lie Theory 12 (2002), no. 2, 571–582. MR 1923787
- Friedrich Knop, Automorphisms of multiplicity free Hamiltonian manifolds, J. Amer. Math. Soc. 24 (2011), no. 2, 567–601. MR 2748401, DOI 10.1090/S0894-0347-2010-00686-8
- Mikhail Kogan and Ezra Miller, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes, Adv. Math. 193 (2005), no. 1, 1–17. MR 2132758, DOI 10.1016/j.aim.2004.03.017
- Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385. MR 2181810, DOI 10.1007/0-8176-4467-9_{9}
- Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413–455 (1974). MR 364552
- Bernhard Krötz and Michael Otto, Lagrangian submanifolds and moment convexity, Trans. Amer. Math. Soc. 358 (2006), no. 2, 799–818. MR 2177041, DOI 10.1090/S0002-9947-05-03723-2
- Eugene Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247–258. MR 1338784, DOI 10.4310/MRL.1995.v2.n3.a2
- Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230. MR 1401525, DOI 10.1090/S0002-9947-97-01821-7
- Eugene Lerman, Eckhard Meinrenken, Sue Tolman, and Chris Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998), no. 2, 245–259. MR 1489203, DOI 10.1016/S0040-9383(97)00030-X
- Naichung Conan Leung and Margaret Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom. 8 (2010), no. 2, 143–187. MR 2670163
- Serge Levendorskiĭ and Yan Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), no. 1, 141–170. MR 1116413
- Yi Lin and Reyer Sjamaar, Convexity properties of presymplectic moment maps, J. Symplectic Geom. 17 (2019), no. 4, 1159–1200. MR 4031537, DOI 10.4310/JSG.2019.v17.n4.a6
- Ivan V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1105–1134 (English, with English and French summaries). MR 2543664
- Jiang-Hua Lu, Multiplicative and affine Poisson structures on Lie groups, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)–University of California, Berkeley. MR 2685337
- Jiang-Hua Lu and Tudor Ratiu, On the nonlinear convexity theorem of Kostant, J. Amer. Math. Soc. 4 (1991), no. 2, 349–363. MR 1086967, DOI 10.1090/S0894-0347-1991-1086967-2
- Jiang-Hua Lu and Alan Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), no. 2, 501–526. MR 1037412
- C.-M. Marle, Le voisinage d’une orbite d’une action hamiltonienne d’un groupe de Lie, South Rhone seminar on geometry, II (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 19–35 (French, with English summary). MR 753857
- Charles-Michel Marle, Modèle d’action hamiltonienne d’un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), no. 2, 227–251 (1986) (French, with English summary). MR 859857
- Jerrold E. Marsden, Lectures on geometric methods in mathematical physics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 37, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1981. MR 619693
- Albert W. Marshall, Ingram Olkin, and Barry C. Arnold, Inequalities: theory of majorization and its applications, 2nd ed., Springer Series in Statistics, Springer, New York, 2011. MR 2759813, DOI 10.1007/978-0-387-68276-1
- V. S. Matveev, Integrable Hamiltonian systems with two degrees of freedom. Topological structure of saturated neighborhoods of points of focus-focus and saddle-saddle types, Mat. Sb. 187 (1996), no. 4, 29–58 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 4, 495–524. MR 1401062, DOI 10.1070/SM1996v187n04ABEH000122
- Rafe Mazzeo and Richard B. Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1998), no. 4, 833–866. Mikio Sato: a great Japanese mathematician of the twentieth century. MR 1734130, DOI 10.4310/AJM.1998.v2.n4.a9
- John Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1958), 215–223. MR 95518, DOI 10.1007/BF02564579
- H. Mineur, Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant $n$ intégrales premieres uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld, Journal de l’Ecole Polytechnique, Série III, 143ème année (1937), 173–191 and 237–270.
- E. Miranda, On Symplectic Linearization of Singular Lagrangian Foliations, Ph.D. thesis, 2003.
- Eva Miranda and Nguyen Tien Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 819–839 (English, with English and French summaries). MR 2119240, DOI 10.1016/j.ansens.2004.10.001
- A. S. Miščenko and A. T. Fomenko, A generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen. 12 (1978), no. 2, 46–56, 96 (Russian). MR 516342
- S.M. Mousavi, A Convexity Theorem for Symplectomorphism Groups, Ph.D. Thesis, University of Western Ontario, London, Ontario, Canada, 2012.
- S. Nakajima, Über konvexe Kurven and Flächen, Tôhoku Math. J., 29 (1928), 227–230.
- Andreas Neumann, An infinite-dimensional version of the Schur-Horn convexity theorem, J. Funct. Anal. 161 (1999), no. 2, 418–451. MR 1674643, DOI 10.1006/jfan.1998.3348
- Andreas Neumann, An infinite dimensional version of the Kostant convexity theorem, J. Funct. Anal. 189 (2002), no. 1, 80–131. MR 1887630, DOI 10.1006/jfan.2000.3739
- Yuichi Nohara and Kazushi Ueda, Toric degenerations of integrable systems on Grassmannians and polygon spaces, Nagoya Math. J. 214 (2014), 125–168. MR 3211821, DOI 10.1215/00277630-2643839
- Juan-Pablo Ortega and Tudor S. Ratiu, The optimal momentum map, Geometry, mechanics, and dynamics, Springer, New York, 2002, pp. 329–362. MR 1919835, DOI 10.1007/0-387-21791-6_{1}1
- Juan-Pablo Ortega and Tudor S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (2002), no. 1, 81–93. MR 1894237, DOI 10.1023/A:1014407427842
- Juan-Pablo Ortega and Tudor S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2021152, DOI 10.1007/978-1-4757-3811-7
- Álvaro Pelayo, Tudor S. Ratiu, and San Vũ Ngọc, Fiber connectivity and bifurcation diagrams of almost toric integrable systems, J. Symplectic Geom. 13 (2015), no. 2, 343–386. MR 3338895, DOI 10.4310/JSG.2015.v13.n2.a4
- Álvaro Pelayo, Tudor S. Ratiu, and San Vũ Ngọc, The affine invariant of proper semitoric integrable systems, Nonlinearity 30 (2017), no. 11, 3993–4028. MR 3718729, DOI 10.1088/1361-6544/aa8aec
- A. Pelayo, X. Tang, Vũ Ngọc’s conjecture on focus-focus singular fibers with multiple pinched points, ArXiv e-prints, DOI 10.48550/arXiv.1803.00998
- Alvaro Pelayo and San Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math. 177 (2009), no. 3, 571–597. MR 2534101, DOI 10.1007/s00222-009-0190-x
- Álvaro Pelayo and San Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math. 206 (2011), no. 1, 93–125. MR 2784664, DOI 10.1007/s11511-011-0060-4
- Álvaro Pelayo and San Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 3, 409–455. MR 2801777, DOI 10.1090/S0273-0979-2011-01338-6
- Markus J. Pflaum, Analytic and geometric study of stratified spaces, Lecture Notes in Mathematics, vol. 1768, Springer-Verlag, Berlin, 2001. MR 1869601
- Elisa Prato, Convexity properties of the moment map for certain non-compact manifolds, Comm. Anal. Geom. 2 (1994), no. 2, 267–278. MR 1312689, DOI 10.4310/CAG.1994.v2.n2.a5
- Elisa Prato, Simple non-rational convex polytopes via symplectic geometry, Topology 40 (2001), no. 5, 961–975. MR 1860537, DOI 10.1016/S0040-9383(00)00006-9
- Tudor Ratiu and Nguyen Tien Zung, Presymplectic convexity and (ir)rational polytopes, J. Symplectic Geom. 17 (2019), no. 5, 1479–1511. MR 4039815, DOI 10.4310/JSG.2019.v17.n5.a8
- R. Sacksteder, E. G. Straus, and F. A. Valentine, A generalization of a theorem of Tietze and Nakajima on local convexity, J. London Math. Soc. 36 (1961), 52–56. MR 124817, DOI 10.1112/jlms/s1-36.1.52
- I. J. Schoenberg, On local convexity in Hilbert space, Bull. Amer. Math. Soc. 48 (1942), 432–436. MR 8118, DOI 10.1090/S0002-9904-1942-07693-2
- I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsberichte der Berliner Math. Gesellschaft, 22 (1923), 9–20.
- Daniele Sepe and San Vũ Ngọc, Integrable systems, symmetries, and quantization, Lett. Math. Phys. 108 (2018), no. 3, 499–571. MR 3765971, DOI 10.1007/s11005-017-1018-z
- Roman Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251–272. MR 222799, DOI 10.4064/cm-18-1-251-272
- Reyer Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46–91. MR 1645052, DOI 10.1006/aima.1998.1739
- P. Sleewaegen, Application Moment et Théorème de Convexité de Kostant, Ph.D. Thesis, Université Libre de Bruxelles, 1999.
- J. Śniatycki, Differential geometry of singular spaces and reduction of symmetry, New Mathematical Monographs, vol. 23, Cambridge University Press, Cambridge, 2013. MR 3112888, DOI 10.1017/CBO9781139136990
- Margaret Symington, Four dimensions from two in symplectic topology, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 153–208. MR 2024634, DOI 10.1090/pspum/071/2024634
- Heinrich Tietze, Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928), no. 1, 697–707 (German). MR 1544985, DOI 10.1007/BF01181191
- J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math. 100 (1978), no. 3, 591–614 (French). MR 501141, DOI 10.2307/2373841
- San Vũ Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses [Panoramas and Syntheses], vol. 22, Société Mathématique de France, Paris, 2006 (French, with English and French summaries). MR 2331010
- San Vũ Ngọc, On semi-global invariants for focus-focus singularities, Topology 42 (2003), no. 2, 365–380. MR 1941440, DOI 10.1016/S0040-9383(01)00026-X
- San Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. Math. 208 (2007), no. 2, 909–934. MR 2304341, DOI 10.1016/j.aim.2006.04.004
- San Vũ Ngọc and Christophe Wacheux, Smooth normal forms for integrable Hamiltonian systems near a focus-focus singularity, Acta Math. Vietnam. 38 (2013), no. 1, 107–122. MR 3098203, DOI 10.1007/s40306-013-0012-5
- Christophe Wacheux, Asymptotics of action variables near semi-toric singularities, J. Geom. Phys. 98 (2015), 28–39. MR 3414940, DOI 10.1016/j.geomphys.2015.07.023
- C. Wacheux. Local model of semi-toric integrable systems, preprint arxiv 1408.1166, 2015.
- R. Wang, On Integrable Systems and Rigidity for PDEs with Symmetry, Ph.D. Thesis, Utrecht Universiteit, 2017.
- Jordan Watts, Diffeologies, Differential Spaces, and Symplectic Geometry, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–University of Toronto (Canada). MR 3153238
- Alan Weinstein, Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions, Lett. Math. Phys. 56 (2001), no. 1, 17–30. EuroConférence Moshé Flato 2000, Part I (Dijon). MR 1848163, DOI 10.1023/A:1010913023218
- Hermann Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408–411. MR 30693, DOI 10.1073/pnas.35.7.408
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794
- John Williamson, On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems, Amer. J. Math. 58 (1936), no. 1, 141–163. MR 1507138, DOI 10.2307/2371062
- Ping Xu, Momentum maps and Morita equivalence, J. Differential Geom. 67 (2004), no. 2, 289–333. MR 2153080
- B. Zhilinskii, Hamiltonian monodromy as lattice defect, Topology in condensed matter, Springer Ser. Solid-State Sci., vol. 150, Springer, Berlin, 2006, pp. 165–186. MR 2208875, DOI 10.1007/3-540-31264-1_{8}
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities, Compositio Math. 101 (1996), no. 2, 179–215. MR 1389366
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I. Arnold-Liouville with singularities, Compositio Math. 101 (1996), no. 2, 179–215. MR 1389366
- Tien Zung Nguyen, A note on focus-focus singularities, Differential Geom. Appl. 7 (1997), no. 2, 123–130. MR 1454718, DOI 10.1016/S0926-2245(96)00042-3
- Nguyen Tien Zung, Another note on focus-focus singularities, Lett. Math. Phys. 60 (2002), no. 1, 87–99. MR 1908416, DOI 10.1023/A:1015761729603
- Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II. Topological classification, Compositio Math. 138 (2003), no. 2, 125–156. MR 2018823, DOI 10.1023/A:1026133814607
- Nguyen Tien Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2) 161 (2005), no. 1, 141–156. MR 2150385, DOI 10.4007/annals.2005.161.141
- Nguyen Tien Zung, Proper groupoids and momentum maps: linearization, affinity, and convexity, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 5, 841–869 (English, with English and French summaries). MR 2292634, DOI 10.1016/j.ansens.2006.09.002
- Nguyen Tien Zung, A conceptual approach to the problem of action-angle variables, Arch. Ration. Mech. Anal. 229 (2018), no. 2, 789–833. MR 3803776, DOI 10.1007/s00205-018-1227-3