
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits
About this Title
Pablo Candela and Balázs Szegedy
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 287, Number 1425
ISBNs: 978-1-4704-6548-3 (print); 978-1-4704-7541-3 (online)
DOI: https://doi.org/10.1090/memo/1425
Published electronically: June 27, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Measure-theoretic preliminaries
- 3. Cubic couplings
- 4. The structure theorem for cubic couplings
- 5. On characteristic factors associated with nilpotent group actions
- 6. On cubic exchangeability
- 7. Limits of functions on compact nilspaces
- A. Background results from measure theory
Abstract
We study a class of measure-theoretic objects that we call cubic couplings, on which there is a common generalization of the Gowers norms and the Host–Kra seminorms. Our main result yields a complete structural description of cubic couplings, using nilspaces. We give three applications. Firstly, we describe the characteristic factors of Host–Kra type seminorms for measure-preserving actions of countable nilpotent groups. This yields an extension of the structure theorem of Host and Kra. Secondly, we characterize sequences of random variables with a property that we call cubic exchangeability. These are sequences indexed by the infinite discrete cube, such that for every integer $k\geq 0$ the joint distribution’s marginals on affine subcubes of dimension $k$ are all equal. In particular, our result gives a description, in terms of compact nilspaces, of a related exchangeability property considered by Austin, inspired by a problem of Aldous. Finally, using nilspaces we obtain limit objects for sequences of functions on compact abelian groups (more generally on compact nilspaces) such that the densities of certain patterns in these functions converge. The paper thus proposes a measure-theoretic framework on which the area of higher-order Fourier analysis can be based, and which yields new applications of this area in a unified way in ergodic theory and arithmetic combinatorics.- David J. Aldous, Representations for partially exchangeable arrays of random variables, J. Multivariate Anal. 11 (1981), no. 4, 581–598. MR 637937, DOI 10.1016/0047-259X(81)90099-3
- David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198. MR 883646, DOI 10.1007/BFb0099421
- Tim Austin, On exchangeable random variables and the statistics of large graphs and hypergraphs, Probab. Surv. 5 (2008), 80–145. MR 2426176, DOI 10.1214/08-PS124
- T. Austin, On the geometry of a class of invariant measures and a problem of Aldous, arXiv:0808.2268.
- Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1324786
- V. I. Bogachev, Measure Theory, Vol. I. Springer-Verlag, Berlin, 2007.
- V. I. Bogachev, Measure Theory, Vol. II. Springer-Verlag, Berlin, 2007.
- Vitaly Bergelson, Terence Tao, and Tamar Ziegler, An inverse theorem for the uniformity seminorms associated with the action of $\Bbb F^\infty _p$, Geom. Funct. Anal. 19 (2010), no. 6, 1539–1596. MR 2594614, DOI 10.1007/s00039-010-0051-1
- O. A. Camarena, B. Szegedy, Nilspaces, nilmanifolds and their morphisms, arXiv:1009.3825.
- Pablo Candela, Notes on nilspaces: algebraic aspects, Discrete Anal. , posted on (2017), Paper No. 15, 59. MR 3695478, DOI 10.19086/da.2105
- Pablo Candela, Notes on compact nilspaces, Discrete Anal. , posted on (2017), Paper No. 16, 57. MR 3695479, DOI 10.19086/da.2106
- Pablo Candela, Diego González-Sánchez, and Balázs Szegedy, On nilspace systems and their morphisms, Ergodic Theory Dynam. Systems 40 (2020), no. 11, 3015–3029. MR 4157473, DOI 10.1017/etds.2019.24
- Persi Diaconis and Svante Janson, Graph limits and exchangeable random graphs, Rend. Mat. Appl. (7) 28 (2008), no. 1, 33–61. MR 2463439
- Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel, Operator theoretic aspects of ergodic theory, Graduate Texts in Mathematics, vol. 272, Springer, Cham, 2015. MR 3410920, DOI 10.1007/978-3-319-16898-2
- B. de Finetti, Funzione caratteristica di un fenomeno aleatorio, Mem. R. Acc. Naz. Lincei, 4(6) (1930), 86–133.
- Nikos Frantzikinakis, Some open problems on multiple ergodic averages, Bull. Hellenic Math. Soc. 60 (2016), 41–90. MR 3613710
- Nikos Frantzikinakis, The structure of strongly stationary systems, J. Anal. Math. 93 (2004), 359–388. MR 2110334, DOI 10.1007/BF02789313
- D. H. Fremlin, Measure theory. Vol. 4, Torres Fremlin, Colchester, 2006. Topological measure spaces. Part I, II; Corrected second printing of the 2003 original. MR 2462372
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures. MR 603625
- Eli Glasner, Yonatan Gutman, and XiangDong Ye, Higher order regionally proximal equivalence relations for general minimal group actions, Adv. Math. 333 (2018), 1004–1041. MR 3818095, DOI 10.1016/j.aim.2018.05.023
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI 10.1007/s00039-001-0332-9
- W. T. Gowers, Generalizations of Fourier analysis, and how to apply them, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 1, 1–44. MR 3584096, DOI 10.1090/bull/1550
- W. T. Gowers and J. Wolf, The true complexity of a system of linear equations, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 155–176. MR 2578471, DOI 10.1112/plms/pdp019
- Ben Green, Approximate algebraic structure, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa, Seoul, 2014, pp. 341–367. MR 3728475
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), no. 2, 481–547. MR 2415379, DOI 10.4007/annals.2008.167.481
- Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), no. 2, 465–540. MR 2877065, DOI 10.4007/annals.2012.175.2.2
- Yonatan Gutman, Freddie Manners, and Péter P. Varjú, The structure theory of nilspaces I, J. Anal. Math. 140 (2020), no. 1, 299–369. MR 4094466, DOI 10.1007/s11854-020-0093-8
- Yonatan Gutman, Freddie Manners, and Péter P. Varjú, The structure theory of nilspaces II: Representation as nilmanifolds, Trans. Amer. Math. Soc. 371 (2019), no. 7, 4951–4992. MR 3934474, DOI 10.1090/tran/7503
- Yonatan Gutman, Freddie Manners, and Péter P. Varjú, The structure theory of nilspaces III: Inverse limit representations and topological dynamics, Adv. Math. 365 (2020), 107059, 53. MR 4068503, DOI 10.1016/j.aim.2020.107059
- Ben Green, Terence Tao, and Tamar Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm, Ann. of Math. (2) 176 (2012), no. 2, 1231–1372. MR 2950773, DOI 10.4007/annals.2012.176.2.11
- D. N. Hoover, Relations on probability spaces and arrays of random variables, preprint, Institute for Advanced Study, Princeton, NJ, 1979.
- Bernard Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), no. 1, 31–49. MR 2539560, DOI 10.4064/sm195-1-3
- Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR 3839640, DOI 10.1090/surv/236
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Parallelepipeds, nilpotent groups and Gowers norms, Bull. Soc. Math. France 136 (2008), no. 3, 405–437 (English, with English and French summaries). MR 2415348, DOI 10.24033/bsmf.2561
- Steven Kalikow and Randall McCutcheon, An outline of ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 122, Cambridge University Press, Cambridge, 2010. MR 2650005, DOI 10.1017/CBO9780511801600
- Olav Kallenberg, Symmetries on random arrays and set-indexed processes, J. Theoret. Probab. 5 (1992), no. 4, 727–765. MR 1182678, DOI 10.1007/BF01058727
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Hans G. Kellerer, Duality theorems for marginal problems, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 4, 399–432. MR 761565, DOI 10.1007/BF00532047
- László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012035, DOI 10.1090/coll/060
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 205288
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Jan K. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978/79), no. 1, 157–168. MR 523833, DOI 10.7146/math.scand.a-11771
- Luca Pratelli, Sur le lemme de mesurabilité de Doob, Séminaire de Probabilités, XXIV, 1988/89, Lecture Notes in Math., vol. 1426, Springer, Berlin, 1990, pp. 46–51 (French). MR 1071531, DOI 10.1007/BFb0083756
- H. L. Royden, P. M. Fitzpatrick, Real Analysis, Fourth Edition, Prentice Hall, 2010.
- Thierry de la Rue, Espaces de Lebesgue, Séminaire de Probabilités, XXVII, Lecture Notes in Math., vol. 1557, Springer, Berlin, 1993, pp. 15–21 (French). MR 1308547, DOI 10.1007/BFb0087958
- B. Szegedy, On higher order Fourier analysis, arXiv:1203.2260.
- Balázs Szegedy, Limits of functions on groups, Trans. Amer. Math. Soc. 370 (2018), no. 11, 8135–8153. MR 3852460, DOI 10.1090/tran/7432
- Benjamin Weiss, Actions of amenable groups, Topics in dynamics and ergodic theory, London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 226–262. MR 2052281, DOI 10.1017/CBO9780511546716.012
- Catherine Huafei Yan, Decomposition of Lebesgue spaces, Adv. Math. 135 (1998), no. 2, 330–350. MR 1620846, DOI 10.1006/aima.1998.1725
- Catherine Huafei Yan, The theory of commuting Boolean sigma-algebras, Adv. Math. 144 (1999), no. 1, 94–116. MR 1692556, DOI 10.1006/aima.1998.1823
- Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, DOI 10.1090/S0894-0347-06-00532-7