AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Embeddings of Decomposition Spaces
About this Title
Felix Voigtlaender
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 287, Number 1426
ISBNs: 978-1-4704-5990-1 (print); 978-1-4704-7542-0 (online)
DOI: https://doi.org/10.1090/memo/1426
Published electronically: June 28, 2023
Keywords: Function spaces,
smoothness spaces,
decomposition spaces,
embeddings,
frequency coverings,
Besov spaces,
$\alpha$-modulation spaces,
Coorbit spaces
Table of Contents
Chapters
- 1. Introduction
- 2. Different classes of coverings and their relations
- 3. (Fourier-side) decomposition spaces
- 4. Nested sequence spaces
- 5. Sufficient conditions for embeddings
- 6. Necessary conditions for embeddings
- 7. An overview of the derived embedding results
- 8. Decomposition spaces as spaces of tempered distributions
- 9. Applications
Abstract
Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two?
A decomposition space $\mathcal {D}(\mathcal {Q}, L^p, Y)$ is determined by a covering $\mathcal {Q} = (Q_i)_{i \in I}$ of the frequency domain, an integrability exponent $p$, and a sequence space ${Y \subset \mathbb {C}^I}$. Given these ingredients, the decomposition space norm of a distribution $g$ is defined as ${ \left \Vert g \right \Vert _{\mathcal {D}(\mathcal {Q}, L^p, Y)} = \left \Vert \left ( \left \Vert \mathcal {F}^{-1} \left ( \varphi _{i} \cdot \widehat {g} \right ) \right \Vert _{L^{p}} \right )_{i \in I} \right \Vert _{Y} } ,$ where $(\varphi _i)_{i \in I}$ is a suitable partition of unity for $\mathcal {Q}$.
We establish readily verifiable criteria which ensure the existence of a continuous inclusion (âan embeddingâ) $\mathcal {D}(\mathcal {Q},L^{p_1},Y) \hookrightarrow \mathcal {D}(\mathcal {P},L^{p_2},Z)$, mostly concentrating on the case where $Y = \ell _{w}^{q_{1}} ( I )$ and $Z = \ell _{v}^{q_{2}} (J)$. Under suitable assumptions on $\mathcal {Q}, \mathcal {P}$, we will see that the relevant sufficient conditions are $p_{1} \leq p_{2}$ and finiteness of a nested norm of the form \[ \left \Vert \left ( \left \Vert \left ( \alpha _{i} \beta _{j} \cdot v_{j} / w_{i} \right )_{ i \in I_{j}} \right \Vert _{\ell ^{t}} \right )_{j\in J} \right \Vert _{\ell ^{s}} \, , \quad \text {with} \quad I_{j} = \left \{ i \in I \,:\, Q_{i} \cap P_{j} \neq \varnothing \right \} \quad \text {for } j \in J \,. \] Like the sets $I_j$, the exponents $t, s$ and the weights $\alpha , \beta$ only depend on the quantities used to define the decomposition spaces.
In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings.
These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of $p_1, p_2$, our criteria yield a complete characterization for the existence of the embedding. The same holds for arbitrary values of $p_1, p_2$ under more strict assumptions on the coverings.
We also prove a rigidity result, namely thatâfor $(p_{1}, q_{1}) \neq (2, 2)$âtwo decomposition spaces $\mathcal {D}(\mathcal {Q}, L^{p_1}, \ell _w^{q_1})$ and $\mathcal {D}(\mathcal {P}, L^{p_2}, \ell _v^{q_2})$ can only coincide if their âingredientsâ are equivalent, that is, if $p_{1} = p_{2}$ and $q_{1} = q_{2}$ and if the coverings $\mathcal {Q}, \mathcal {P}$ and the weights $w, v$ are equivalent in a suitable sense.
The resulting embedding theory is illustrated by applications to $\alpha$-modulation and Besov spaces. All known embedding results for these spaces are special cases of our approach; often, we improve considerably upon the state of the art.
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275
- Lasse Borup and Morten Nielsen, Banach frames for multivariate $\alpha$-modulation spaces, J. Math. Anal. Appl. 321 (2006), no. 2, 880â895. MR 2241162, DOI 10.1016/j.jmaa.2005.08.091
- Lasse Borup and Morten Nielsen, Boundedness for pseudodifferential operators on multivariate $\alpha$-modulation spaces, Ark. Mat. 44 (2006), no. 2, 241â259. MR 2292720, DOI 10.1007/s11512-006-0020-y
- Lasse Borup and Morten Nielsen, Frame decomposition of decomposition spaces, J. Fourier Anal. Appl. 13 (2007), no. 1, 39â70. MR 2296727, DOI 10.1007/s00041-006-6024-y
- GĂ©rard Bourdaud, Realizations of homogeneous Besov and Lizorkin-Triebel spaces, Math. Nachr. 286 (2013), no. 5-6, 476â491. MR 3048126, DOI 10.1002/mana.201100151
- Marcin Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250 (2005), no. 3, 539â571. MR 2179611, DOI 10.1007/s00209-005-0765-1
- Dimitri Bytchenkoff and Felix Voigtlaender, Design and properties of wave packet smoothness spaces, J. Math. Pures Appl. (9) 133 (2020), 185â262 (English, with English and French summaries). MR 4044680, DOI 10.1016/j.matpur.2019.05.006
- Yuan Shih Chow and Henry Teicher, Probability theory, 3rd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1997. Independence, interchangeability, martingales. MR 1476912, DOI 10.1007/978-1-4612-1950-7
- Stephan Dahlke, Massimo Fornasier, Holger Rauhut, Gabriele Steidl, and Gerd Teschke, Generalized coorbit theory, Banach frames, and the relation to $\alpha$-modulation spaces, Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 464â506. MR 2396847, DOI 10.1112/plms/pdm051
- Stephan Dahlke, Sören HĂ€user, Gabriele Steidl, and Gerd Teschke, Shearlet coorbit spaces: traces and embeddings in higher dimensions, Monatsh. Math. 169 (2013), no. 1, 15â32. MR 3016517, DOI 10.1007/s00605-012-0408-7
- Stephan Dahlke, Sören HÀuser, and Gerd Teschke, Coorbit space theory for the Toeplitz shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 4, 1250037, 13. MR 2957902, DOI 10.1142/S0219691312500373
- Stephan Dahlke, Gitta Kutyniok, Gabriele Steidl, and Gerd Teschke, Shearlet coorbit spaces and associated Banach frames, Appl. Comput. Harmon. Anal. 27 (2009), no. 2, 195â214. MR 2543193, DOI 10.1016/j.acha.2009.02.004
- Stephan Dahlke, Gabriele Steidl, and Gerd Teschke, The continuous shearlet transform in arbitrary space dimensions, J. Fourier Anal. Appl. 16 (2010), no. 3, 340â364. MR 2643586, DOI 10.1007/s00041-009-9107-8
- Stephan Dahlke, Gabriele Steidl, and Gerd Teschke, Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings, J. Fourier Anal. Appl. 17 (2011), no. 6, 1232â1255. MR 2854837, DOI 10.1007/s00041-011-9181-6
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Monika Dörfler and JosĂ© Luis Romero, Frames adapted to a phase-space cover, Constr. Approx. 39 (2014), no. 3, 445â484. MR 3207668, DOI 10.1007/s00365-014-9236-4
- Hans G. Feichtinger, Banach spaces of distributions of Wienerâs type and interpolation, Functional analysis and approximation (Oberwolfach, 1980) Internat. Ser. Numer. Math., vol. 60, BirkhĂ€user Verlag, Basel-Boston, Mass., 1981, pp. 153â165. MR 650272
- H. G. Feichtinger, Banach convolution algebras of Wiener type, Functions, series, operators, Vol. I, II (Budapest, 1980) Colloq. Math. Soc. JĂĄnos Bolyai, vol. 35, North-Holland, Amsterdam, 1983, pp. 509â524. MR 751019
- Huy-Qui Bui, Representation theorems and atomic decomposition of Besov spaces, Math. Nachr. 132 (1987), 301â311. MR 910058, DOI 10.1002/mana.19871320120
- Hans G. Feichtinger and Peter Gröbner, Banach spaces of distributions defined by decomposition methods. I, Math. Nachr. 123 (1985), 97â120. MR 809337, DOI 10.1002/mana.19851230110
- H. G. Feichtinger and F. Voigtlaender, From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces, Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Björn Jawerth, Contemp. Math., vol. 693, Amer. Math. Soc., Providence, RI, 2017, pp. 185â216. MR 3682610
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- Massimo Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl. 289 (2004), no. 1, 180â199. MR 2020535, DOI 10.1016/j.jmaa.2003.09.041
- Massimo Fornasier, Banach frames for $\alpha$-modulation spaces, Appl. Comput. Harmon. Anal. 22 (2007), no. 2, 157â175. MR 2295293, DOI 10.1016/j.acha.2006.05.008
- Hartmut FĂŒhr and RenĂ© Koch, Embeddings of shearlet coorbit spaces into Sobolev spaces, Int. J. Wavelets Multiresolut. Inf. Process. 20 (2022), no. 3, Paper No. 2040003, 38. MR 4433149, DOI 10.1142/S0219691320400032
- Hartmut FĂŒhr and Felix Voigtlaender, Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal. 269 (2015), no. 1, 80â154. MR 3345605, DOI 10.1016/j.jfa.2015.03.019
- Loukas Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734, DOI 10.1007/978-1-4939-1194-3
- Loukas Grafakos, Modern Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2014. MR 3243741, DOI 10.1007/978-1-4939-1230-8
- Peter Grobner, Banachraeume glatter Funktionen und Zerlegungsmethoden, ProQuest LLC, Ann Arbor, MI, 1992 (German). Thesis (Dr.natw.)âTechnische Universitaet Wien (Austria). MR 2714948
- P. Grohs, Bandlimited shearlet-type frames with nice duals, J. Comput. Appl. Math. 243 (2013), 139â151. MR 3003378, DOI 10.1016/j.cam.2012.10.030
- Weichao Guo, Dashan Fan, Huoxiong Wu, and Guoping Zhao, Sharpness of complex interpolation on $\alpha$-modulation spaces, J. Fourier Anal. Appl. 22 (2016), no. 2, 427â461. MR 3471306, DOI 10.1007/s00041-015-9424-z
- Weichao Guo, Dashan Fan, and Guoping Zhao, Full characterization of the embedding relations between $\alpha$-modulation spaces, Sci. China Math. 61 (2018), no. 7, 1243â1272. MR 3817174, DOI 10.1007/s11425-016-9151-1
- Jinsheng Han and Baoxiang Wang, $\alpha$-modulation spaces (I) scaling, embedding and algebraic properties, J. Math. Soc. Japan 66 (2014), no. 4, 1315â1373. MR 3272601, DOI 10.2969/jmsj/06641315
- C. S. Herz, Lipschitz spaces and Bernsteinâs theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283â323. MR 438109, DOI 10.1512/iumj.1969.18.18024
- Raymond Johnson, Temperatures, Riesz potentials, and the Lipschitz spaces of Herz, Proc. London Math. Soc. (3) 27 (1973), 290â316. MR 374895, DOI 10.1112/plms/s3-27.2.290
- Tomoya Kato, The inclusion relations between $\alpha$-modulation spaces and $L^p$-Sobolev spaces or local Hardy spaces, J. Funct. Anal. 272 (2017), no. 4, 1340â1405. MR 3590241, DOI 10.1016/j.jfa.2016.12.002
- Demetrio Labate, Lucia Mantovani, and Pooran Negi, Shearlet smoothness spaces, J. Fourier Anal. Appl. 19 (2013), no. 3, 577â611. MR 3048591, DOI 10.1007/s00041-013-9261-x
- P. I. Lizorkin, Multipliers of Fourier integrals in the spaces $L_{p,\,\theta }$, Trudy Mat. Inst. Steklov. 89 (1967), 231â248 (Russian). MR 217519
- P. I. Lizorkin, Properties of functions in the spaces $\Lambda ^{r}_{p,\,\theta }$, Trudy Mat. Inst. Steklov. 131 (1974), 158â181, 247 (Russian). MR 361756
- Morten Nielsen, Orthonormal bases for $\alpha$-modulation spaces, Collect. Math. 61 (2010), no. 2, 173â190. MR 2666229, DOI 10.1007/BF03191240
- Jaak Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Duke University, Mathematics Department, Durham, NC, 1976. MR 461123
- Frigyes Riesz and BĂ©la Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990. Translated from the second French edition by Leo F. Boron; Reprint of the 1955 original. MR 1068530
- JosĂ© Luis Romero, Characterization of coorbit spaces with phase-space covers, J. Funct. Anal. 262 (2012), no. 1, 59â93. MR 2852256, DOI 10.1016/j.jfa.2011.09.005
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- M. Speckbacher, D. Bayer, S. Dahlke, and P. Balazs, The $\alpha$-modulation transform: admissibility, coorbit theory and frames of compactly supported functions, Monatsh. Math. 184 (2017), no. 1, 133â169. MR 3683948, DOI 10.1007/s00605-017-1085-3
- Mitsuru Sugimoto and Naohito Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), no. 1, 79â106. MR 2329683, DOI 10.1016/j.jfa.2007.03.015
- Terence Tao, Structure and randomness, American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. MR 2459552, DOI 10.1090/mbk/059
- Joachim Toft and Patrik Wahlberg, Embeddings of $\alpha$-modulation spaces, Pliska Stud. Math. Bulgar. 21 (2012), 25â46. MR 3114337
- Hans Triebel, Fourier analysis and function spaces (selected topics), B. G. Teubner Verlagsgesellschaft, Leipzig, 1977. With German and Russian summaries; Translated from the German. MR 493311
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, BirkhÀuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1
- Hans Triebel, Theory of function spaces. II, Monographs in Mathematics, vol. 84, BirkhÀuser Verlag, Basel, 1992. MR 1163193, DOI 10.1007/978-3-0346-0419-2
- F. Voigtlaender, Embedding theorems for decomposition spaces with applications to wavelet coorbit spaces, Ph.D. thesis, RWTH Aachen University, 2015, http://publications.rwth-aachen.de/record/564979.
- F. Voigtlaender, Embeddings of Decomposition Spaces into Sobolev and BV Spaces, arXiv preprints (2016), arXiv:1601.02201.
- Felix Voigtlaender, Structured, compactly supported Banach frame decompositions of decomposition spaces, Dissertationes Math. 575 (2022), 1â179. MR 4398336, DOI 10.4064/dm804-5-2021
- F. Voigtlaender and A. Pein, Analysis vs. synthesis sparsity for $\alpha$-shearlets, arXiv preprints (2017), arXiv:1702.03559.
- Thomas H. Wolff, Lectures on harmonic analysis, University Lecture Series, vol. 29, American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and a preface by Izabella Ćaba; Edited by Ćaba and Carol Shubin. MR 2003254, DOI 10.1090/ulect/029
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 222234
- Guoping Zhao, Jiecheng Chen, Dashan Fan, and Weichao Guo, Sharp estimates of unimodular multipliers on frequency decomposition spaces, Nonlinear Anal. 142 (2016), 26â47. MR 3508056, DOI 10.1016/j.na.2016.04.003