
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Automorphism Orbits and Element Orders in Finite Groups: Almost-Solubility and the Monster
About this Title
Alexander Bors, Michael Giudici and Cheryl E. Praeger
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 287, Number 1427
ISBNs: 978-1-4704-6544-5 (print); 978-1-4704-7543-7 (online)
DOI: https://doi.org/10.1090/memo/1427
Published electronically: June 28, 2023
Keywords: Finite groups,
Automorphism orbits,
Element orders,
Simple groups,
Monster simple group
Table of Contents
Chapters
- 1. Introduction
- 2. Notation
- 3. Proof of Theorem 1.1.3
- 4. Proof of Theorem 1.1.2(1)
- 5. Proof of Theorem 1.1.2(2)
Abstract
For a finite group $G$, we denote by $\omega (G)$ the number of $Aut(G)$-orbits on $G$, and by $o(G)$ the number of distinct element orders in $G$. In this paper, we are primarily concerned with the two quantities $\mathfrak {d}(G)≔\omega (G)-o(G)$ and $\mathfrak {q}(G)≔\omega (G)/o(G)$, each of which may be viewed as a measure for how far $G$ is from being an AT-group in the sense of Zhang (that is, a group with $\omega (G)=o(G)$). We show that the index $|G:Rad(G)|$ of the soluble radical $Rad(G)$ of $G$ can be bounded from above both by a function in $\mathfrak {d}(G)$ and by a function in $\mathfrak {q}(G)$ and $o(Rad(G))$. We also obtain a curious quantitative characterisation of the Fischer-Griess Monster group $M$.- R. Abbott, J. Bray, S. Linton, S. Nickerson, S. Norton, R. Parker, I. Suleiman, J. Tripp, P. Walsh, and R. Wilson, ATLAS of Finite Group Representations – Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/, online resource.
- Raimundo Bastos and Alex Carrazedo Dantas, On finite groups with few automorphism orbits, Comm. Algebra 44 (2016), no. 7, 2953–2958. MR 3507162, DOI 10.1080/00927872.2015.1065856
- A. A. Buturlakin and M. A. Grechkoseeva, The cyclic structure of maximal tori in finite classical groups, Algebra Logika 46 (2007), no. 2, 129–156 (Russian, with Russian summary); English transl., Algebra Logic 46 (2007), no. 2, 73–89. MR 2356522, DOI 10.1007/s10469-007-0009-z
- Alexander Bors, Finite groups with a large automorphism orbit, J. Algebra 521 (2019), 331–364. MR 3892883, DOI 10.1016/j.jalgebra.2018.12.003
- A. Bors, OrbOrd, GitHub repository, https://github.com/AlexanderBors/OrbOrd/tree/main.
- Rolf Brandl and Wu Jie Shi, A characterization of finite simple groups with abelian Sylow $2$-subgroups, Ricerche Mat. 42 (1993), no. 1, 193–198. MR 1283814
- Timothy C. Burness, Fixed point ratios in actions in finite classical groups. II, J. Algebra 309 (2007), no. 1, 80–138. MR 2301234, DOI 10.1016/j.jalgebra.2006.05.025
- A. A. Buturlakin, Spectra of the finite simple groups $E_6(q)$ and $^2E_6(q)$, Algebra Logika 52 (2013), no. 3, 284–304, 394, 397 (Russian, with English and Russian summaries); English transl., Algebra Logic 52 (2013), no. 3, 188–202. MR 3137126, DOI 10.1007/s10469-013-9234-9
- A. A. Buturlakin, Spectra of finite simple groups $E_7(q)$, Sib. Math. J. 57 (2016), no. 5, 769–777.
- N. L. Biggs and A. T. White, Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series, vol. 33, Cambridge University Press, Cambridge-New York, 1979. MR 540889
- R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. (3) 42 (1981), no. 1, 1–41. MR 602121, DOI 10.1112/plms/s3-42.1.1
- Gregory Cherlin and Ulrich Felgner, Homogeneous finite groups, J. London Math. Soc. (2) 62 (2000), no. 3, 784–794. MR 1794284, DOI 10.1112/S0024610700001484
- Cai Heng Li, Ákos Seress, and Shu Jiao Song, $s$-arc-transitive graphs and normal subgroups, J. Algebra 421 (2015), 331–348. MR 3272385, DOI 10.1016/j.jalgebra.2014.08.032
- Peter J. Cameron and Cheryl E. Praeger, Block-transitive $t$-designs. I. Point-imprimitive designs, Discrete Math. 118 (1993), no. 1-3, 33–43. MR 1230052, DOI 10.1016/0012-365X(93)90051-T
- P. J. Cameron and C. E. Praeger, Block-transitive $t$-designs. II. Large $t$, Finite geometry and combinatorics (F. De Clerck et al., ed.), London Mathematical Society Lecture Note Series, vol. 191, Cambridge University Press, Cambridge, 1993.
- S. Das, A brief note on estimates of binomial coefficients, http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf, online note.
- Alice Devillers and Jean Doyen, Homogeneous and ultrahomogeneous linear spaces, J. Combin. Theory Ser. A 84 (1998), no. 2, 236–241. MR 1652853, DOI 10.1006/jcta.1998.2887
- J. Dénes, P. Erdős, and P. Turán, On some statistical properties of the alternating group of degree $n$, Enseign. Math. (2) 15 (1969), 89–99. MR 246945
- D. I. Deriziotis and A. P. Fakiolas, The maximal tori in the finite Chevalley groups of type $E_6,$ $E_7$ and $E_8$, Comm. Algebra 19 (1991), no. 3, 889–903. MR 1102992, DOI 10.1080/00927879108824176
- Alex Carrazedo Dantas, Martino Garonzi, and Raimundo Bastos, Finite groups with six or seven automorphism orbits, J. Group Theory 20 (2017), no. 5, 945–954. MR 3692057, DOI 10.1515/jgth-2017-0001
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- Huiwen Deng and Wujie Shi, The characterization of Ree groups $^2F_4(q)$ by their element orders, J. Algebra 217 (1999), no. 1, 180–187. MR 1700483, DOI 10.1006/jabr.1998.7808
- Pierre Dusart, The $k$th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k\geq 2$, Math. Comp. 68 (1999), no. 225, 411–415. MR 1620223, DOI 10.1090/S0025-5718-99-01037-6
- P. Erdös, On an elementary proof of some asymptotic formulas in the theory of partitions, Ann. of Math. (2) 43 (1942), 437–450. MR 6749, DOI 10.2307/1968802
- John A. Ernest, Central intertwining numbers for representations of finite groups, Trans. Amer. Math. Soc. 99 (1961), 499–508. MR 125162, DOI 10.1090/S0002-9947-1961-0125162-5
- P. Erdős and P. Turán, On some problems of a statistical group-theory. IV, Acta Math. Acad. Sci. Hungar. 19 (1968), 413–435. MR 232833, DOI 10.1007/BF01894517
- Jason Fulman and Robert Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3023–3070. MR 2888238, DOI 10.1090/S0002-9947-2012-05427-4
- Roland Fraïssé, Sur certaines relations qui généralisent l’ordre des nombres rationnels, C. R. Acad. Sci. Paris 237 (1953), 540–542 (French). MR 57220
- P. C. Gager, Maximal tori in finite groups of Lie type, Ph.D. thesis, University of Warwick, 1973, available online under http://wrap.warwick.ac.uk/66550/.
- A. Gardiner, Homogeneous graphs, J. Combinatorial Theory Ser. B 20 (1976), no. 1, 94–102. MR 419293, DOI 10.1016/0095-8956(76)90072-1
- The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.2, http://www.gap-system.org, 2019.
- The GAP Group, GAP – Reference Manual, Release 4.10.2, https://www.gap-system.org/Manuals/doc/ref/chap0.html, 2019.
- Mariya A. Grechkoseeva and Mariya A. Zvezdina, On spectra of automorphic extensions of finite simple groups $F_4(q)$ and $^3\!D_4(q)$, J. Algebra Appl. 15 (2016), no. 9, 1650168, 13. MR 3539592, DOI 10.1142/S0219498816501681
- Brian Hartley, A general Brauer-Fowler theorem and centralizers in locally finite groups, Pacific J. Math. 152 (1992), no. 1, 101–117. MR 1139975
- B. Hartley and M. Kuzucuoǧlu, Centralizers of elements in locally finite simple groups, Proc. London Math. Soc. (3) 62 (1991), no. 2, 301–324. MR 1085643, DOI 10.1112/plms/s3-62.2.301
- G. H. Hardy and S. Ramanujan, Asymptotic Formulaae in Combinatory Analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115. MR 1575586, DOI 10.1112/plms/s2-17.1.75
- Michael Huber, Flag-transitive Steiner designs, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2009. MR 2489602, DOI 10.1007/978-3-0346-0002-6
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, MA, 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Stefan Kohl, Counting the orbits on finite simple groups under the action of the automorphism group—Suzuki groups vs. linear groups, Comm. Algebra 30 (2002), no. 7, 3515–3532. MR 1915010, DOI 10.1081/AGB-120004501
- S. Kohl, A bound on the order of the outer automorphism group of a finite simple group of given order, http://www.gap-system.org/DevelopersPages/StefanKohl/preprints/outbound.pdf, 2003, online note.
- Stefan Kohl, Classifying finite simple groups with respect to the number of orbits under the action of the automorphism group, Comm. Algebra 32 (2004), no. 12, 4785–4794. MR 2111596, DOI 10.1081/AGB-200039279
- Cai Heng Li, On isomorphisms of finite Cayley graphs—a survey, Discrete Math. 256 (2002), no. 1-2, 301–334. MR 1927074, DOI 10.1016/S0012-365X(01)00438-1
- Thomas J. Laffey and Desmond MacHale, Automorphism orbits of finite groups, J. Austral. Math. Soc. Ser. A 40 (1986), no. 2, 253–260. MR 817843
- Cai Heng Li and Cheryl E. Praeger, Finite groups in which any two elements of the same order are either fused or inverse-fused, Comm. Algebra 25 (1997), no. 10, 3081–3118. MR 1465104, DOI 10.1080/00927879708826042
- F. Lübeck, Data for Finite Groups of Lie Type and Related Algebraic Groups, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html, online database.
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bull. Austral. Math. Soc. 23 (1981), no. 1, 23–48. MR 615131, DOI 10.1017/S0004972700006882
- Attila Maróti, On elementary lower bounds for the partition function, Integers 3 (2003), A10, 9. MR 2006609
- Helmut Mäurer and Markus Stroppel, Groups that are almost homogeneous, Geom. Dedicata 68 (1997), no. 2, 229–243. MR 1484565, DOI 10.1023/A:1005090519480
- Gunter Malle and Donna Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 133, Cambridge University Press, Cambridge, 2011. MR 2850737, DOI 10.1017/CBO9780511994777
- J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de $N$, Canad. Math. Bull. 26 (1983), no. 4, 485–492 (French, with English summary). MR 716590, DOI 10.4153/CMB-1983-078-5
- The On-Line Encyclopedia of Integer Sequences, A000009, https://oeis.org/A000009.
- Herbert Robbins, A remark on Stirling’s formula, Amer. Math. Monthly 62 (1955), 26–29. MR 69328, DOI 10.2307/2308012
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- John S. Rose, Automorphism groups of groups with trivial centre, Proc. London Math. Soc. (3) 31 (1975), no. 2, 167–193. MR 419601, DOI 10.1112/plms/s3-31.2.167
- Simon Guest, Joy Morris, Cheryl E. Praeger, and Pablo Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc. 367 (2015), no. 11, 7665–7694. MR 3391897, DOI 10.1090/S0002-9947-2015-06293-X
- Wu Jie Shi, A characterization of Suzuki’s simple groups, Proc. Amer. Math. Soc. 114 (1992), no. 3, 589–591. MR 1074758, DOI 10.1090/S0002-9939-1992-1074758-0
- M. A. Shahabi and H. Mohtadifar, The characters of finite projective symplectic group $\textrm {PSp}(4,q)$, Groups St. Andrews 2001 in Oxford. Vol. II, London Math. Soc. Lecture Note Ser., vol. 305, Cambridge Univ. Press, Cambridge, 2003, pp. 496–527. MR 2051552, DOI 10.1017/CBO9780511542787.018
- Markus Stroppel, Locally compact groups with few orbits under automorphisms, Proceedings of the 16th Summer Conference on General Topology and its Applications (New York), 2001/02, pp. 819–842. MR 2032853
- Donna M. Testerman, $A_1$-type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups, J. Algebra 177 (1995), no. 1, 34–76. MR 1356359, DOI 10.1006/jabr.1995.1285
- Koen Thas, Finite flag-transitive projective planes: a survey and some remarks, Discrete Math. 266 (2003), no. 1-3, 417–429. The 18th British Combinatorial Conference (Brighton, 2001). MR 1991732, DOI 10.1016/S0012-365X(02)00823-3
- A. V. Vasil’ev and A. M. Staroletov, Recognizability of groups $G_2(q)$ by spectrum, Algebra Logic 52 (2013), no. 1, 1–14.
- G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Math. Soc. 3 (1963), 1–62. MR 150210
- Richard Weiss, The nonexistence of $8$-transitive graphs, Combinatorica 1 (1981), no. 3, 309–311. MR 637836, DOI 10.1007/BF02579337
- Mark Wildon, Counting partitions on the abacus, Ramanujan J. 17 (2008), no. 3, 355–367. MR 2456839, DOI 10.1007/s11139-006-9013-5
- Ji Ping Zhang, On finite groups all of whose elements of the same order are conjugate in their automorphism groups, J. Algebra 153 (1992), no. 1, 22–36. MR 1195404, DOI 10.1016/0021-8693(92)90146-D