
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Slice Spectral Sequence of a $C_4$-Equivariant Height-4 Lubin–Tate Theory
About this Title
Michael A. Hill, XiaoLin Danny Shi, Guozhen Wang and Zhouli Xu
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 288, Number 1429
ISBNs: 978-1-4704-7468-3 (print); 978-1-4704-7571-0 (online)
DOI: https://doi.org/10.1090/memo/1429
Published electronically: August 2, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. The slice spectral sequence of $BP^{(\!(C_{4})\!)}\langle 1 \rangle$
- 4. The slice filtration of $BP^{(\!(C_{4})\!)}\langle 2 \rangle$
- 5. The $C_2$-slice spectral sequence of $i_{C_2}^* BP^{(\!(C_{4})\!)}\langle 2 \rangle$
- 6. Induced differentials from $BP^{(\!(C_{4})\!)}\!\langle 1 \rangle$
- 7. Higher differentials I: $d_{13}$ and $d_{15}$-differentials
- 8. Higher Differentials II: the Norm
- 9. Higher Differentials III: The Vanishing Theorem
- 10. Higher differentials IV: Everything until the $E_{29}$-page
- 11. Higher differentials V: $d_{29}$-differentials and $d_{31}$-differentials
- 12. Higher differentials VI: $d_{35}$ to $d_{61}$-differentials
- 13. Summary of Differentials
Abstract
We completely compute the slice spectral sequence of the $C_4$-spectrum $BP^{(\!(C_4)\!)}\langle 2 \rangle$. This spectrum provides a model for a height-4 Lubin–Tate theory with a $C_4$-action induced from the Goerss–Hopkins–Miller theorem. In particular, our computation shows that $E_4^{hC_{12}}$ is 384-periodic.- Shôrô Araki, Orientations in $\tau$-cohomology theories, Japan. J. Math. (N.S.) 5 (1979), no. 2, 403–430. MR 614829, DOI 10.4099/math1924.5.403
- M. F. Atiyah, $K$-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367–386. MR 206940, DOI 10.1093/qmath/17.1.367
- Tilman Bauer, Computation of the homotopy of the spectrum tmf, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 11–40. MR 2508200, DOI 10.2140/gtm.2008.13.11
- Tobias Barthel and Agnès Beaudry, Chromatic structures in stable homotopy theory, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, [2020] ©2020, pp. 163–220. MR 4197985
- Mark Behrens, The homotopy groups of $S_{E(2)}$ at $p\geq 5$ revisited, Adv. Math. 230 (2012), no. 2, 458–492. MR 2914955, DOI 10.1016/j.aim.2012.02.023
- Andrew J. Blumberg and Michael A. Hill, Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math. 285 (2015), 658–708. MR 3406512, DOI 10.1016/j.aim.2015.07.013
- Agnès Beaudry, Michael A. Hill, XiaoLin Danny Shi, and Mingcong Zeng, Models of Lubin-Tate spectra via real bordism theory, Adv. Math. 392 (2021), Paper No. 108020, 58. MR 4313964, DOI 10.1016/j.aim.2021.108020
- Mark Behrens and Tyler Lawson, Topological automorphic forms, Mem. Amer. Math. Soc. 204 (2010), no. 958, xxiv+141. MR 2640996, DOI 10.1090/S0065-9266-09-00573-0
- Mark Behrens and Kyle Ormsby, On the homotopy of $Q(3)$ and $Q(5)$ at the prime 2, Algebr. Geom. Topol. 16 (2016), no. 5, 2459–2534. MR 3572338, DOI 10.2140/agt.2016.16.2459
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- Morten Brun, Witt vectors and Tambara functors, Adv. Math. 193 (2005), no. 2, 233–256. MR 2136887, DOI 10.1016/j.aim.2004.05.002
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- Daniel Dugger, An Atiyah-Hirzebruch spectral sequence for $KR$-theory, $K$-Theory 35 (2005), no. 3-4, 213–256 (2006). MR 2240234, DOI 10.1007/s10977-005-1552-9
- Michikazu Fujii, Cobordism theory with reality, Math. J. Okayama Univ. 18 (1975/76), no. 2, 171–188. MR 420597
- P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151–200. MR 2125040, DOI 10.1017/CBO9780511529955.009
- P. Goerss, H.-W. Henn, M. Mahowald, and C. Rezk, A resolution of the $K(2)$-local sphere at the prime 3, Ann. of Math. (2) 162 (2005), no. 2, 777–822. MR 2183282, DOI 10.4007/annals.2005.162.777
- Hans-Werner Henn, On finite resolutions of $K(n)$-local spheres, Elliptic cohomology, London Math. Soc. Lecture Note Ser., vol. 342, Cambridge Univ. Press, Cambridge, 2007, pp. 122–169. MR 2330511, DOI 10.1017/CBO9780511721489.008
- Thomas Hewett, Finite subgroups of division algebras over local fields, J. Algebra 173 (1995), no. 3, 518–548. MR 1327867, DOI 10.1006/jabr.1995.1101
- Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel, The Arf-Kervaire invariant problem in algebraic topology: introduction, Current developments in mathematics, 2009, Int. Press, Somerville, MA, 2010, pp. 23–57. MR 2757358
- Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel, The Arf-Kervaire problem in algebraic topology: sketch of the proof, Current developments in mathematics, 2010, Int. Press, Somerville, MA, 2011, pp. 1–43. MR 2906370
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel, The slice spectral sequence for the $C_4$ analog of real $K$-theory, Forum Math. 29 (2017), no. 2, 383–447. MR 3619120, DOI 10.1515/forum-2016-0017
- Michael A. Hill, On the fate of $\eta ^3$ in higher analogues of real bordism, arXiv:1507.08083, 2015.
- Michael A. Hill, On the André-Quillen homology of Tambara functors, J. Algebra 489 (2017), 115–137. MR 3686975, DOI 10.1016/j.jalgebra.2017.06.029
- Po Hu and Igor Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology 40 (2001), no. 2, 317–399. MR 1808224, DOI 10.1016/S0040-9383(99)00065-8
- Michael J. Hopkins and Mark Mahowald, From elliptic curves to homotopy theory, Topological modular forms, Math. Surveys Monogr., vol. 201, Amer. Math. Soc., Providence, RI, 2014, pp. 261–285. MR 3328536, DOI 10.1090/surv/201/15
- Michael A. Hill and Lennart Meier, The $C_2$-spectrum $\textrm {Tmf}_1(3)$ and its invertible modules, Algebr. Geom. Topol. 17 (2017), no. 4, 1953–2011. MR 3685599, DOI 10.2140/agt.2017.17.1953
- Jeremy Hahn and XiaoLin Danny Shi, Real orientations of Lubin-Tate spectra, Invent. Math. 221 (2020), no. 3, 731–776. MR 4132956, DOI 10.1007/s00222-020-00960-z
- Peter S. Landweber, Conjugations on complex manifolds and equivariant homotopy of $MU$, Bull. Amer. Math. Soc. 74 (1968), 271–274. MR 222890, DOI 10.1090/S0002-9904-1968-11917-2
- Guchuan Li, XiaoLin Danny Shi, Guozhen Wang, and Zhouli Xu, Hurewicz images of real bordism theory and real Johnson-Wilson theories, Adv. Math. 342 (2019), 67–115. MR 3877362, DOI 10.1016/j.aim.2018.11.002
- Jonathan Lubin and John Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59. MR 238854
- Haynes Miller, Kervaire invariant one [after M. A. Hill, M. J. Hopkins, and D. C. Ravenel], Astérisque 348 (2012), Exp. No. 1029, vii, 65–98. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042. MR 3050712
- Mark Mahowald and Charles Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch., 853–872. MR 2508904, DOI 10.4310/PAMQ.2009.v5.n2.a9
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 458423, DOI 10.2307/1971064
- Lee Stewart Nave, The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–University of Washington. MR 2699376
- Lee S. Nave, The Smith-Toda complex $V((p+1)/2)$ does not exist, Ann. of Math. (2) 171 (2010), no. 1, 491–509. MR 2630045, DOI 10.4007/annals.2010.171.491
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553
- Charles Rezk, Notes on the Hopkins-Miller theorem, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 313–366. MR 1642902, DOI 10.1090/conm/220/03107
- Katsumi Shimomura and Xiangjun Wang, The Adams-Novikov $E_2$-term for $\pi _*(L_2S^0)$ at the prime 2, Math. Z. 241 (2002), no. 2, 271–311. MR 1935487, DOI 10.1007/s002090200415
- Katsumi Shimomura and Xiangjun Wang, The homotopy groups $\pi _*(L_2S^0)$ at the prime 3, Topology 41 (2002), no. 6, 1183–1198. MR 1923218, DOI 10.1016/S0040-9383(01)00033-7
- Katsumi Shimomura and Atsuko Yabe, The homotopy groups $\pi _*(L_2S^0)$, Topology 34 (1995), no. 2, 261–289. MR 1318877, DOI 10.1016/0040-9383(94)00032-G
- Mingcong Zeng, Equivariant Eilenberg–Mac Lane spectra in cyclic $p$-groups, arXiv:1710.01769, 2017.