
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Comparison of Relatively Unipotent Log de Rham Fundamental Groups
About this Title
Bruno Chiarellotto, Valentina Di Proietto and Atsushi Shiho
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 288, Number 1430
ISBNs: 978-1-4704-6706-7 (print); 978-1-4704-7572-7 (online)
DOI: https://doi.org/10.1090/memo/1430
Published electronically: August 7, 2023
Table of Contents
Chapters
- Introduction
- 1. Preliminaries
- 2. Relative Tannakian theory
- 3. Construction of Hadian, Andreatta–Iovita–Kim and Lazda
- 4. Relative minimal model of Navarro Aznar
- 5. Relative bar construction
- 6. Calculation of monodromy for stable log curves
Abstract
In this paper, we prove compatibilities of various definitions of relatively unipotent log de Rham fundamental groups for certain proper log smooth integral morphisms of fine log schemes of characteristic zero. Our proofs are purely algebraic. As an application, we give a purely algebraic calculation of the monodromy action on the unipotent log de Rham fundamental group of a stable log curve. As a corollary we give a purely algebraic proof to the transcendental part of Andreatta–Iovita–Kim’s article: obtaining in this way a complete algebraic criterion for good reduction for curves.- Ahmed Abbes, Michel Gros, and Takeshi Tsuji, The $p$-adic Simpson correspondence, Annals of Mathematics Studies, vol. 193, Princeton University Press, Princeton, NJ, 2016. MR 3444777, DOI 10.1515/9781400881239
- Fabrizio Andreatta, Adrian Iovita, and Minhyong Kim, A $p$-adic nonabelian criterion for good reduction of curves, Duke Math. J. 164 (2015), no. 13, 2597–2642. MR 3405595, DOI 10.1215/00127094-3146817
- Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
- Pierre Berthelot and Arthur Ogus, Notes on crystalline cohomology, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1978. MR 491705
- Spencer Bloch and Igor Kříž, Mixed Tate motives, Ann. of Math. (2) 140 (1994), no. 3, 557–605. MR 1307897, DOI 10.2307/2118618
- M. Caillotto, Algebraic connections on logarithmic schemes: Residues and local freeness, Preprint 06-15 maggio 2002, Math. Dep. of Padova Univ. available at http://www.math.unipd.it/\textasciitilde maurizio/Math.html.
- Bruno Chiarellotto and Marianna Fornasiero, Logarithmic de Rham, infinitesimal and Betti cohomologies, J. Math. Sci. Univ. Tokyo 13 (2006), no. 2, 205–257. MR 2277520
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI 10.1007/978-1-4613-9649-9_{3}
- P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- P. Deligne and J. S. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lecture Note in Math. 900, Springer, 1982, pp. 101–228.
- M. Demazure and A. Grothendieck, Schémas en groupes. (SGA 3, Tome I) Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962-1964, Documents mathématiques 7 (2011), Soc. Math. France.
- Alexandru Dimca, Fayçal Maaref, Claude Sabbah, and Morihiko Saito, Dwork cohomology and algebraic $\scr D$-modules, Math. Ann. 318 (2000), no. 1, 107–125. MR 1785578, DOI 10.1007/s002080000113
- V. Di Proietto, On $p$-adic differential equations for semistable vareties, PhD thesis, Università di Padova, 2009. Avalaible at http://empslocal.ex.ac.uk/people/staff/vd238/files/Thesis.pdf
- Valentina Di Proietto and Atsushi Shiho, On the homotopy exact sequence for log algebraic fundamental groups, Doc. Math. 23 (2018), 543–597. MR 3846050
- Hélène Esnault, Phùng Hô Hai, and Xiaotao Sun, On Nori’s fundamental group scheme, Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 377–398. MR 2402410, DOI 10.1007/978-3-7643-8608-5_{8}
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- R. Gérard and A. H. M. Levelt, Sur les connextions à singularités régulières dans le cas de plusieurs variables, Funkcial. Ekvac. 19 (1976), no. 2, 149–173 (French). MR 460327
- Alexander Grothendieck, Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Institut des Hautes Études Scientifiques, Paris, 1963. Troisième édition, corrigée; Séminaire de Géométrie Algébrique, 1960/61. MR 217087
- Phillip Griffiths and John Morgan, Rational homotopy theory and differential forms, 2nd ed., Progress in Mathematics, vol. 16, Springer, New York, 2013. MR 3136262, DOI 10.1007/978-1-4614-8468-4
- Majid Hadian, Motivic fundamental groups and integral points, Duke Math. J. 160 (2011), no. 3, 503–565. MR 2852368, DOI 10.1215/00127094-1444296
- Richard M. Hain, Iterated integrals and homotopy periods, Mem. Amer. Math. Soc. 47 (1984), no. 291, iv+98. MR 727818, DOI 10.1090/memo/0291
- Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, $K$-Theory 1 (1987), no. 3, 271–324. MR 908993, DOI 10.1007/BF00533825
- Yuichiro Hoshi and Chikara Nakayama, Categorical characterization of strict morphisms of fs log schemes, Math. J. Okayama Univ. 59 (2017), no. [2016 on cover], 1–19. MR 3643423
- Osamu Hyodo and Kazuya Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque 223 (1994), 221–268. Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293974
- Luc Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271–322. Cohomologies $p$-adiques et applications arithmétiques, II. MR 1922832
- Fumiharu Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000), no. 2, 215–232. MR 1754621, DOI 10.1142/S0129167X0000012X
- Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI 10.2307/2374941
- Kazuya Kato and Chikara Nakayama, Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over $\textbf {C}$, Kodai Math. J. 22 (1999), no. 2, 161–186. MR 1700591, DOI 10.2996/kmj/1138044041
- Kiran S. Kedlaya, Semistable reduction for overconvergent $F$-isocrystals. I. Unipotence and logarithmic extensions, Compos. Math. 143 (2007), no. 5, 1164–1212. MR 2360314, DOI 10.1112/S0010437X07002886
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI 10.7146/math.scand.a-12001
- John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16–23. MR 251111, DOI 10.1016/0021-8693(70)90130-4
- Christopher Lazda, Relative fundamental groups and rational points, Rend. Semin. Mat. Univ. Padova 134 (2015), 1–45. MR 3428414, DOI 10.4171/RSMUP/134-1
- J. S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field. MR 3729270, DOI 10.1017/9781316711736
- David R. Morrison, The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982) Ann. of Math. Stud., vol. 106, Princeton Univ. Press, Princeton, NJ, 1984, pp. 101–119. MR 756848
- Chikara Nakayama and Arthur Ogus, Relative rounding in toric and logarithmic geometry, Geom. Topol. 14 (2010), no. 4, 2189–2241. MR 2740645, DOI 10.2140/gt.2010.14.2189
- V. Navarro Aznar, Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), no. 1, 11–76 (French). MR 906579, DOI 10.1007/BF01389031
- V. Navarro Aznar, Sur la connexion de Gauss-Manin en homotopie rationnelle, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 99–148 (French, with English summary). MR 1209914
- Wiesława Nizioł, Toric singularities: log-blow-ups and global resolutions, J. Algebraic Geom. 15 (2006), no. 1, 1–29. MR 2177194, DOI 10.1090/S1056-3911-05-00409-1
- Takayuki Oda, A note on ramification of the Galois representation on the fundamental group of an algebraic curve. II, J. Number Theory 53 (1995), no. 2, 342–355. MR 1348768, DOI 10.1006/jnth.1995.1095
- Arthur Ogus, On the logarithmic Riemann-Hilbert correspondence, Doc. Math. Extra Vol. (2003), 655–724. Kazuya Kato’s fiftieth birthday. MR 2046612
- Arthur Ogus, Lectures on logarithmic algebraic geometry, Cambridge Studies in Advanced Mathematics, vol. 178, Cambridge University Press, Cambridge, 2018. MR 3838359, DOI 10.1017/9781316941614
- Atsushi Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), no. 4, 509–656. MR 1800845
- Atsushi Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), no. 1, 1–163. MR 1889223
- The Stacks project, https://stacks.math.columbia.edu/, 2020.
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- Tomohide Terasoma, DG-categories and simplicial bar complexes, Mosc. Math. J. 10 (2010), no. 1, 231–267, 272 (English, with English and Russian summaries). MR 2668834, DOI 10.17323/1609-4514-2010-10-1-231-267
- Jilong Tong, Unipotent groups over a discrete valuation ring (after Dolgachev-Weisfeiler), Autour des schémas en groupes. Vol. III, Panor. Synthèses, vol. 47, Soc. Math. France, Paris, 2015, pp. 173–225 (English, with English and French summaries). MR 3525845
- Takeshi Tsuji, Poincaré duality for logarithmic crystalline cohomology, Compositio Math. 118 (1999), no. 1, 11–41. MR 1705975, DOI 10.1023/A:1001020809306
- Takeshi Tsuji, Saturated morphisms of logarithmic schemes, Tunis. J. Math. 1 (2019), no. 2, 185–220. MR 3907739, DOI 10.2140/tunis.2019.1.185
- Jörg Wildeshaus, Realizations of polylogarithms, Lecture Notes in Mathematics, vol. 1650, Springer-Verlag, Berlin, 1997. MR 1482233, DOI 10.1007/BFb0093051