
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Proper Equivariant Stable Homotopy Theory
About this Title
Dieter Degrijse, Markus Hausmann, Wolfgang Lück, Irakli Patchkoria and Stefan Schwede
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 288, Number 1432
ISBNs: 978-1-4704-6704-3 (print); 978-1-4704-7574-1 (online)
DOI: https://doi.org/10.1090/memo/1432
Published electronically: August 11, 2023
Keywords: Lie group,
equivariant homotopy theory; proper action
Table of Contents
Chapters
- Introduction
- 1. Equivariant spectra
- 2. Equivariant homotopy groups
- 3. Proper equivariant cohomology theories
Abstract
This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective ‘proper’ alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective ‘genuine’ indicates that the theory comes with appropriate transfers and Wirthmüller isomorphisms, and the resulting equivariant cohomology theories support the analog of an $R O(G)$-grading.
Our model for genuine proper $G$-equivariant stable homotopy theory is the category of orthogonal $G$-spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of $G$. This class of $\pi _*$-isomorphisms is part of a symmetric monoidal stable model structure, and the associated tensor triangulated homotopy category is compactly generated. Consequently, every orthogonal $G$-spectrum represents an equivariant cohomology theory on the category of $G$-spaces. These represented cohomology theories are designed to only depend on the ‘proper $G$-homotopy type’, tested by fixed points under all compact subgroups.
An important special case of our theory are infinite discrete groups. For these, our genuine equivariant theory is related to finiteness properties in the sense of geometric group theory; for example, the $G$-sphere spectrum is a compact object in our triangulated equivariant homotopy category if the universal space for proper $G$-actions has a finite $G$-CW-model. For discrete groups, the represented equivariant cohomology theories on finite proper $G$-CW-complexes admit a more explicit description in terms of parameterized equivariant homotopy theory, suitably stabilized by $G$-vector bundles. Via this description, we can identify the previously defined $G$-cohomology theories of equivariant stable cohomotopy and equivariant K-theory as cohomology theories represented by specific orthogonal $G$-spectra.
- Herbert Abels, Parallelizability of proper actions, global $K$-slices and maximal compact subgroups, Math. Ann. 212 (1974/75), 1–19. MR 375264, DOI 10.1007/BF01343976
- Paul Baum and Alain Connes, Geometric $K$-theory for Lie groups and foliations, Enseign. Math. (2) 46 (2000), no. 1-2, 3–42. MR 1769535
- Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and $K$-theory of group $C^\ast$-algebras, $C^\ast$-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, DOI 10.1090/conm/167/1292018
- Noé Bárcenas, Dieter Degrijse, and Irakli Patchkoria, Stable finiteness properties of infinite discrete groups, J. Topol. 10 (2017), no. 4, 1169–1196. MR 3743073, DOI 10.1112/topo.12035
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Apostolos Beligiannis and Idun Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207. MR 2327478, DOI 10.1090/memo/0883
- Armand Borel, Sous-groupes compacts maximaux des groupes de Lie, Séminaire Bourbaki, Vol. 1, Soc. Math. France, Paris, 1995, pp. Exp. No. 33, 271–279 (French). MR 1605197
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- M Brun, B I Dundas, M Stolz, Equivariant structure on smash powers. arXiv:1604.05939
- J. W. Cannon and W. J. Floyd, What is $\ldots$ Thompson’s group?, Notices Amer. Math. Soc. 58 (2011), no. 8, 1112–1113. MR 2856142
- J. Daniel Christensen and Mark Hovey, Quillen model structures for relative homological algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 261–293. MR 1912401, DOI 10.1017/S0305004102006126
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Springer-Verlag, Berlin-Göttingen-Heidelberg; Academic Press, Inc., Publishers, New York, 1964. MR 176478
- James F. Davis and Wolfgang Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), no. 3, 201–252. MR 1659969, DOI 10.1023/A:1007784106877
- Brian Day, On closed categories of functors, Reports of the Midwest Category Seminar, IV, Lecture Notes in Math., Vol. 137, Springer, Berlin-New York, 1970, pp. 1–38. MR 272852
- M. J. Dunwoody, Accessibility and groups of cohomological dimension one, Proc. London Math. Soc. (3) 38 (1979), no. 2, 193–215. MR 531159, DOI 10.1112/plms/s3-38.2.193
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs, vol. 113, American Mathematical Society, Providence, RI, 2004. MR 2102294, DOI 10.1090/surv/113
- Siegfried Echterhoff, Wolfgang Lück, N. Christopher Phillips, and Samuel Walters, The structure of crossed products of irrational rotation algebras by finite subgroups of $\textrm {SL}_2(\Bbb Z)$, J. Reine Angew. Math. 639 (2010), 173–221. MR 2608195, DOI 10.1515/CRELLE.2010.015
- A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275–284. MR 690052, DOI 10.1090/S0002-9947-1983-0690052-0
- F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic $K$-theory, J. Amer. Math. Soc. 6 (1993), no. 2, 249–297. MR 1179537, DOI 10.1090/S0894-0347-1993-1179537-0
- Halvard Fausk, Equivariant homotopy theory for pro-spectra, Geom. Topol. 12 (2008), no. 1, 103–176. MR 2377247, DOI 10.2140/gt.2008.12.103
- J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 1230773, DOI 10.1090/memo/0543
- J. P. C. Greenlees and J. P. May, Localization and completion theorems for $M\textrm {U}$-module spectra, Ann. of Math. (2) 146 (1997), no. 3, 509–544. MR 1491447, DOI 10.2307/2952455
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- Sören Illman, The equivariant triangulation theorem for actions of compact Lie groups, Math. Ann. 262 (1983), no. 4, 487–501. MR 696520, DOI 10.1007/BF01456063
- Sören Illman, Existence and uniqueness of equivariant triangulations of smooth proper $G$-manifolds with some applications to equivariant Whitehead torsion, J. Reine Angew. Math. 524 (2000), 129–183. MR 1770606, DOI 10.1515/crll.2000.054
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
- Michael Joachim, Higher coherences for equivariant $K$-theory, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 87–114. MR 2122155, DOI 10.1017/CBO9780511529955.006
- G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]. MR 2177301
- Henning Krause, A Brown representability theorem via coherent functors, Topology 41 (2002), no. 4, 853–861. MR 1905842, DOI 10.1016/S0040-9383(01)00010-6
- Martin Langer and Wolfgang Lück, On the group cohomology of the semi-direct product $\Bbb Z^n\rtimes _\rho \Bbb Z/m$ and a conjecture of Adem-Ge-Pan-Petrosyan, J. Pure Appl. Algebra 216 (2012), no. 6, 1318–1339. MR 2890505, DOI 10.1016/j.jpaa.2011.12.004
- Lemoine Gaunce Jr Lewis, THE STABLE CATEGORY AND GENERALIZED THOM SPECTRA, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–The University of Chicago. MR 2611772
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Wolfgang Lück, Transformation groups and algebraic $K$-theory, Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica Gottingensis. MR 1027600, DOI 10.1007/BFb0083681
- Wolfgang Lück, Equivariant cohomological Chern characters, Internat. J. Algebra Comput. 15 (2005), no. 5-6, 1025–1052. MR 2197819, DOI 10.1142/S0218196705002773
- Wolfgang Lück, The Burnside ring and equivariant stable cohomotopy for infinite groups, Pure Appl. Math. Q. 1 (2005), no. 3, Special Issue: In memory of Armand Borel., 479–541. MR 2201326, DOI 10.4310/PAMQ.2005.v1.n3.a4
- Wolfgang Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., vol. 248, Birkhäuser, Basel, 2005, pp. 269–322. MR 2195456, DOI 10.1007/3-7643-7447-0_{7}
- Wolfgang Lück, Rational computations of the topological $K$-theory of classifying spaces of discrete groups, J. Reine Angew. Math. 611 (2007), 163–187. MR 2361088, DOI 10.1515/CRELLE.2007.078
- Wolfgang Lück, The Segal conjecture for infinite discrete groups, Algebr. Geom. Topol. 20 (2020), no. 2, 965–986. MR 4092316, DOI 10.2140/agt.2020.20.965
- Wolfgang Lück and Bob Oliver, The completion theorem in $K$-theory for proper actions of a discrete group, Topology 40 (2001), no. 3, 585–616. MR 1838997, DOI 10.1016/S0040-9383(99)00077-4
- Wolfgang Lück and Holger Reich, The Baum-Connes and the Farrell-Jones conjectures in $K$- and $L$-theory, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 703–842. MR 2181833, DOI 10.1007/978-3-540-27855-9_{1}5
- Wolfgang Lück and Bernardo Uribe, Equivariant principal bundles and their classifying spaces, Algebr. Geom. Topol. 14 (2014), no. 4, 1925–1995. MR 3331607, DOI 10.2140/agt.2014.14.1925
- A. Malcev, On the theory of the Lie groups in the large, Rec. Math. [Mat. Sbornik] N.S. 16(58) (1945), 163–190 (English, with Russian summary). MR 13165
- Georges Maltsiniotis, Le théorème de Quillen, d’adjonction des foncteurs dérivés, revisité, C. R. Math. Acad. Sci. Paris 344 (2007), no. 9, 549–552 (French, with English and French summaries). MR 2323740, DOI 10.1016/j.crma.2007.03.011
- M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512. MR 1806878, DOI 10.1112/S0024611501012692
- M. A. Mandell and J. P. May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 1922205, DOI 10.1090/memo/0755
- Conchita Martinez-Pérez and Brita E. A. Nucinkis, Cohomological dimension of Mackey functors for infinite groups, J. London Math. Soc. (2) 74 (2006), no. 2, 379–396. MR 2269585, DOI 10.1112/S0024610706023143
- John McCleary, A user’s guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722
- M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273–298. MR 251719, DOI 10.1090/S0002-9947-1969-0251719-4
- Deane Montgomery and Leo Zippin, A theorem on Lie groups, Bull. Amer. Math. Soc. 48 (1942), 448–452. MR 6545, DOI 10.1090/S0002-9904-1942-07699-3
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731, DOI 10.4310/ACTA.2018.v221.n2.a1
- N. Christopher Phillips, Equivariant $K$-theory for proper actions, Pitman Research Notes in Mathematics Series, vol. 178, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 991566
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 223432
- Stefan Schwede, The $p$-order of topological triangulated categories, J. Topol. 6 (2013), no. 4, 868–914. MR 3145143, DOI 10.1112/jtopol/jtt018
- Stefan Schwede, Equivariant properties of symmetric products, J. Amer. Math. Soc. 30 (2017), no. 3, 673–711. MR 3630085, DOI 10.1090/jams/879
- Stefan Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018. MR 3838307, DOI 10.1017/9781108349161
- Stefan Schwede, Orbispaces, orthogonal spaces, and the universal compact Lie group, Math. Z. 294 (2020), no. 1-2, 71–107. MR 4050064, DOI 10.1007/s00209-019-02265-1
- Stefan Schwede and Brooke E. Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), no. 2, 491–511. MR 1734325, DOI 10.1112/S002461150001220X
- Stefan Schwede and Brooke Shipley, A uniqueness theorem for stable homotopy theory, Math. Z. 239 (2002), no. 4, 803–828. MR 1902062, DOI 10.1007/s002090100347
- Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. MR 1928647, DOI 10.1016/S0040-9383(02)00006-X
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452
- G. B. Segal, Equivariant stable homotopy theory, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 59–63. MR 423340
- G. Segal, Some results in equivariant homotopy theory. Preprint, 1978.
- Graeme Segal, $K$-homology theory and algebraic $K$-theory, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin-New York, 1977, pp. 113–127. MR 515311
- Kazuhisa Shimakawa, Infinite loop $G$-spaces associated to monoidal $G$-graded categories, Publ. Res. Inst. Math. Sci. 25 (1989), no. 2, 239–262. MR 1003787, DOI 10.2977/prims/1195173610
- M Stolz, Equivariant structure on smash powers of commutative ring spectra. PhD thesis, University of Bergen, 2011.
- N P Strickland, The category of CGWH spaces. Preprint, available from the author’s homepage.
- Tammo tom Dieck, Bordism of $G$-manifolds and integrality theorems, Topology 9 (1970), 345–358. MR 266241, DOI 10.1016/0040-9383(70)90058-3
- Tammo tom Dieck, Orbittypen und äquivariante Homologie. I, Arch. Math. (Basel) 23 (1972), 307–317 (German). MR 310919, DOI 10.1007/BF01304886
- Tammo tom Dieck, Orbittypen und äquivariante Homologie. II, Arch. Math. (Basel) 26 (1975), no. 6, 650–662. MR 436177, DOI 10.1007/BF01229795
- Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. MR 889050, DOI 10.1515/9783110858372.312
- Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045, DOI 10.4171/048
- Alain Valette, Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002. From notes taken by Indira Chatterji; With an appendix by Guido Mislin. MR 1907596, DOI 10.1007/978-3-0348-8187-6
- Klaus Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373–390. MR 343260, DOI 10.1007/BF01170239