
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Euclidean Structures and Operator Theory in Banach Spaces
About this Title
Nigel J. Kalton, Emiel Lorist and Lutz Weis
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 288, Number 1433
ISBNs: 978-1-4704-6703-6 (print); 978-1-4704-7575-8 (online)
DOI: https://doi.org/10.1090/memo/1433
Published electronically: August 7, 2023
Keywords: Euclidean structure,
R-boundedness,
factorization,
sectorial operator,
$H^\infty$-calculus,
LittlewoodâPaley theory,
BIP,
operator ideal
Table of Contents
Chapters
- Introduction
- 1. Euclidean structures and $\alpha$-bounded operator families
- 2. Factorization of $\alpha$-bounded operator families
- 3. Vector-valued function spaces and interpolation
- 4. Sectorial operators and $H^\infty$-calculus
- 5. Sectorial operators and generalized square functions
- 6. Some counterexamples
Abstract
We present a general method to extend results on Hilbert space operators to the Banach space setting by representing certain sets of Banach space operators $\Gamma$ on a Hilbert space. Our assumption on $\Gamma$ is expressed in terms of $\alpha$-boundedness for a Euclidean structure $\alpha$ on the underlying Banach space $X$. This notion is originally motivated by $\mathcal {R}$- or $\gamma$-boundedness of sets of operators, but for example any operator ideal from the Euclidean space $\ell ^2_n$ to $X$ defines such a structure. Therefore, our method is quite flexible. Conversely we show that $\Gamma$ has to be $\alpha$-bounded for some Euclidean structure $\alpha$ to be representable on a Hilbert space.
By choosing the Euclidean structure $\alpha$ accordingly, we get a unified and more general approach to the KwapieĆâMaurey factorization theorem and the factorization theory of Maurey, NikiĆĄin and Rubio de Francia. This leads to an improved version of the Banach function space-valued extension theorem of Rubio de Francia and a quantitative proof of the boundedness of the lattice HardyâLittlewood maximal operator. Furthermore, we use these Euclidean structures to build vector-valued function spaces. These enjoy the nice property that any bounded operator on $L^2$ extends to a bounded operator on these vector-valued function spaces, which is in stark contrast to the extension problem for Bochner spaces. With these spaces we define an interpolation method, which has formulations modelled after both the real and the complex interpolation method.
Using our representation theorem, we prove a transference principle for sectorial operators on a Banach space, enabling us to extend Hilbert space results for sectorial operators to the Banach space setting. We for example extend and refine the known theory based on $\mathcal {R}$-boundedness for the joint and operator-valued $H^\infty$-calculus. Moreover, we extend the classical characterization of the boundedness of the $H^\infty$-calculus on Hilbert spaces in terms of $BIP$, square functions and dilations to the Banach space setting. Furthermore we establish, via the $H^\infty$-calculus, a version of LittlewoodâPaley theory and associated spaces of fractional smoothness for a rather large class of sectorial operators. Our abstract setup allows us to reduce assumptions on the geometry of $X$, such as (co)type and UMD. We conclude with some sophisticated counterexamples for sectorial operators, with as a highlight the construction of a sectorial operator of angle $0$ on a closed subspace of $L^p$ for $1<p<\infty$ with a bounded $H^\infty$-calculus with optimal angle $\omega _{H^\infty }(A) >0$.
- CĂ©dric Arhancet, Stephan Fackler, and Christian Le Merdy, Isometric dilations and $H^\infty$ calculus for bounded analytic semigroups and Ritt operators, Trans. Amer. Math. Soc. 369 (2017), no. 10, 6899â6933. MR 3683097, DOI 10.1090/tran/6849
- David Albrecht, Edwin Franks, and Alan McIntosh, Holomorphic functional calculi and sums of commuting operators, Bull. Austral. Math. Soc. 58 (1998), no. 2, 291â305. MR 1642059, DOI 10.1017/S0004972700032251
- Fernando Albiac and Nigel J. Kalton, Topics in Banach space theory, 2nd ed., Graduate Texts in Mathematics, vol. 233, Springer, [Cham], 2016. With a foreword by Gilles Godefory. MR 3526021, DOI 10.1007/978-3-319-31557-7
- Loris Arnold and Christian Le Merdy, New counterexamples on Ritt operators, sectorial operators and $R$-boundedness, Bull. Aust. Math. Soc. 100 (2019), no. 3, 498â506. MR 4028199, DOI 10.1017/s0004972719000431
- D.W. Albrecht, Functional calculi of commuting unbounded operators, Ph.D. thesis, Monash University Clayton, 1994.
- Alex Amenta, Emiel Lorist, and Mark Veraar, Rescaled extrapolation for vector-valued functions, Publ. Mat. 63 (2019), no. 1, 155â182. MR 3908790, DOI 10.5565/PUBLMAT6311905
- Pascal Auscher, Alan McIntosh, and Andrea Nahmod, Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J. 46 (1997), no. 2, 375â403. MR 1481596, DOI 10.1512/iumj.1997.46.1180
- Pascal Auscher, On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\Bbb R^n$ and related estimates, Mem. Amer. Math. Soc. 186 (2007), no. 871, xviii+75. MR 2292385, DOI 10.1090/memo/0871
- J.-B. Baillon and Ph. ClĂ©ment, Examples of unbounded imaginary powers of operators, J. Funct. Anal. 100 (1991), no. 2, 419â434. MR 1125234, DOI 10.1016/0022-1236(91)90119-P
- K. Boyadzhiev and R. deLaubenfels, Semigroups and resolvents of bounded variation, imaginary powers and $H^\infty$ functional calculus, Semigroup Forum 45 (1992), no. 3, 372â384. MR 1179859, DOI 10.1007/BF03025777
- Sönke Blunck and Peer Christian Kunstmann, CalderĂłn-Zygmund theory for non-integral operators and the $H^\infty$ functional calculus, Rev. Mat. Iberoamericana 19 (2003), no. 3, 919â942. MR 2053568, DOI 10.4171/RMI/374
- David P. Blecher and Christian Le Merdy, Operator algebras and their modulesâan operator space approach, London Mathematical Society Monographs. New Series, vol. 30, The Clarendon Press, Oxford University Press, Oxford, 2004. Oxford Science Publications. MR 2111973, DOI 10.1093/acprof:oso/9780198526599.001.0001
- J. Bourgain, Extension of a result of Benedek, CalderĂłn and Panzone, Ark. Mat. 22 (1984), no. 1, 91â95. MR 735880, DOI 10.1007/BF02384373
- David P. Blecher, Zhong-Jin Ruan, and Allan M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), no. 1, 188â201. MR 1040962, DOI 10.1016/0022-1236(90)90010-I
- A.-P. CalderĂłn, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113â190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Andrea Carbonaro, Functional calculus for some perturbations of the Ornstein-Uhlenbeck operator, Math. Z. 262 (2009), no. 2, 313â347. MR 2504880, DOI 10.1007/s00209-008-0375-9
- Andrea Carbonaro and Oliver DragiÄeviÄ, Functional calculus for generators of symmetric contraction semigroups, Duke Math. J. 166 (2017), no. 5, 937â974. MR 3626567, DOI 10.1215/00127094-3774526
- Andrea Carbonaro and Oliver DragiÄeviÄ, Bounded holomorphic functional calculus for nonsymmetric Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 4, 1497â1533. MR 4050204
- Andrea Carbonaro and Oliver DragiÄeviÄ, Bilinear embedding for divergence-form operators with complex coefficients on irregular domains, Calc. Var. Partial Differential Equations 59 (2020), no. 3, Paper No. 104, 36. MR 4102352, DOI 10.1007/s00526-020-01751-3
- Andrea Carbonaro and Oliver DragiÄeviÄ, Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 10, 3175â3221. MR 4153106, DOI 10.4171/jems/984
- Michael Cowling, Ian Doust, Alan McIntosh, and Atsushi Yagi, Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc. Ser. A 60 (1996), no. 1, 51â89. MR 1364554
- Thierry Coulhon and Damien Lamberton, RĂ©gularitĂ© $L^p$ pour les Ă©quations dâĂ©volution, SĂ©minaire dâAnalyse Fonctionelle 1984/1985, Publ. Math. Univ. Paris VII, vol. 26, Univ. Paris VII, Paris, 1986, pp. 155â165 (French). MR 941819
- David V. Cruz-Uribe, José Maria Martell, and Carlos Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215, BirkhÀuser/Springer Basel AG, Basel, 2011. MR 2797562, DOI 10.1007/978-3-0348-0072-3
- David Cruz-Uribe, JosĂ© MarĂa Martell, and Carlos PĂ©rez, Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), no. 1, 408â441. MR 2854179, DOI 10.1016/j.aim.2011.08.013
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- Philippe ClĂ©ment and Jan PrĂŒss, An operator-valued transference principle and maximal regularity on vector-valued $L_p$-spaces, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67â87. MR 1816437
- P. ClĂ©ment, B. de Pagter, F. A. Sukochev, and H. Witvliet, Schauder decomposition and multiplier theorems, Studia Math. 138 (2000), no. 2, 135â163. MR 1749077
- Sonja Cox and Mark Veraar, Vector-valued decoupling and the Burkholder-Davis-Gundy inequality, Illinois J. Math. 55 (2011), no. 1, 343â375 (2012). MR 3006692
- Robert Denk, Matthias Hieber, and Jan PrĂŒss, $\scr R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), no. 788, viii+114. MR 2006641, DOI 10.1090/memo/0788
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Luc Deleaval and Christoph Kriegler, Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator, Rev. Mat. Iberoam. 35 (2019), no. 1, 101â123. MR 3914541, DOI 10.4171/rmi/1050
- Luc Deleaval, Mikko Kemppainen, and Christoph Kriegler, Hörmander functional calculus on UMD lattice valued $L^p$ spaces under generalized Gaussian estimates, J. Anal. Math. 145 (2021), no. 1, 177â234. MR 4361904, DOI 10.1007/s11854-021-0177-0
- H. G. Dales, N. J. Laustsen, T. Oikhberg, and V. G. Troitsky, Multi-norms and Banach lattices, Dissertationes Math. 524 (2017), 115. MR 3681583, DOI 10.4064/dm755-11-2016
- Xuan Thinh Duong and Alan MacIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), no. 2, 233â265. MR 1715407, DOI 10.4171/RMI/255
- Giovanni Dore, $H^\infty$ functional calculus in real interpolation spaces, Studia Math. 137 (1999), no. 2, 161â167. MR 1734394, DOI 10.4064/sm-137-2-161-167
- Giovanni Dore, $H^\infty$ functional calculus in real interpolation spaces. II, Studia Math. 145 (2001), no. 1, 75â83. MR 1828994, DOI 10.4064/sm145-1-5
- H. G. Dales and M. E. Polyakov, Multi-normed spaces, Dissertationes Math. 488 (2012), 165. MR 3024929, DOI 10.4064/dm488-0-1
- Xuan T. Duong and Derek W. Robinson, Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct. Anal. 142 (1996), no. 1, 89â128. MR 1419418, DOI 10.1006/jfan.1996.0145
- Giovanni Dore and Alberto Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), no. 2, 189â201. MR 910825, DOI 10.1007/BF01163654
- Moritz Egert, $L^p$-estimates for the square root of elliptic systems with mixed boundary conditions, J. Differential Equations 265 (2018), no. 4, 1279â1323. MR 3797618, DOI 10.1016/j.jde.2018.04.002
- Moritz Egert, On $p$-elliptic divergence form operators and holomorphic semigroups, J. Evol. Equ. 20 (2020), no. 3, 705â724. MR 4142236, DOI 10.1007/s00028-019-00537-1
- A. F. M. ter Elst, R. Haller-Dintelmann, J. Rehberg, and P. Tolksdorf, On the $\textrm {L}^p$-theory for second-order elliptic operators in divergence form with complex coefficients, J. Evol. Equ. 21 (2021), no. 4, 3963â4003. MR 4350567, DOI 10.1007/s00028-021-00711-4
- M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97â105 (English, with Ukrainian summary). MR 3467, DOI 10.4064/sm-9-1-97-105
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Stephan Fackler, An explicit counterexample for the $L^p$-maximal regularity problem, C. R. Math. Acad. Sci. Paris 351 (2013), no. 1-2, 53â56 (English, with English and French summaries). MR 3019762, DOI 10.1016/j.crma.2013.01.013
- Stephan Fackler, The Kalton-Lancien theorem revisited: maximal regularity does not extrapolate, J. Funct. Anal. 266 (2014), no. 1, 121â138. MR 3121724, DOI 10.1016/j.jfa.2013.09.006
- Stephan Fackler, On the structure of semigroups on $L_p$ with a bounded $H^\infty$-calculus, Bull. Lond. Math. Soc. 46 (2014), no. 5, 1063â1076. MR 3262207, DOI 10.1112/blms/bdu062
- Stephan Fackler, Regularity properties of sectorial operators: counterexamples and open problems, Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, Oper. Theory Adv. Appl., vol. 250, BirkhĂ€user/Springer, Cham, 2015, pp. 171â197. MR 3468216, DOI 10.1007/978-3-319-18494-4_{1}2
- Stephan Fackler, Maximal regularity: positive counterexamples on UMD-Banach lattices and exact intervals for the negative solution of the extrapolation problem, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2015â2028. MR 3460163, DOI 10.1090/proc/13012
- Edwin Franks and Alan McIntosh, Discrete quadratic estimates and holomorphic functional calculi in Banach spaces, Bull. Austral. Math. Soc. 58 (1998), no. 2, 271â290. MR 1642055, DOI 10.1017/S000497270003224X
- T. Figiel and Nicole Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), no. 2, 155â171. MR 571251, DOI 10.1007/BF02760556
- Andreas M. Fröhlich and Lutz Weis, $H^\infty$ calculus and dilations, Bull. Soc. Math. France 134 (2006), no. 4, 487â508 (English, with English and French summaries). MR 2364942, DOI 10.24033/bsmf.2520
- D. J. H. Garling, Random martingale transform inequalities, Probability in Banach spaces 6 (Sandbjerg, 1986) Progr. Probab., vol. 20, BirkhĂ€user Boston, Boston, MA, 1990, pp. 101â119. MR 1056706
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- JosĂ© GarcĂa-Cuerva, Giancarlo Mauceri, Stefano Meda, Peter Sjögren, and JosĂ© Luis Torrea, Functional calculus for the Ornstein-Uhlenbeck operator, J. Funct. Anal. 183 (2001), no. 2, 413â450. MR 1844213, DOI 10.1006/jfan.2001.3757
- Stefan Geiss, A counterexample concerning the relation between decoupling constants and UMD-constants, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1355â1375. MR 1458301, DOI 10.1090/S0002-9947-99-02093-0
- J. GarcĂa-Cuerva, J. L. Torrea, and K. S. Kazarian, On the Fourier type of Banach lattices, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) Lecture Notes in Pure and Appl. Math., vol. 175, Dekker, New York, 1996, pp. 169â179. MR 1358154
- Apostolos A. Giannopoulos and Vitali D. Milman, Euclidean structure in finite dimensional normed spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 707â779. MR 1863705, DOI 10.1016/S1874-5849(01)80019-X
- J. GarcĂa-Cuerva, R. MacĂas, and J. L. Torrea, The Hardy-Littlewood property of Banach lattices, Israel J. Math. 83 (1993), no. 1-2, 177â201. MR 1239721, DOI 10.1007/BF02764641
- JosĂ© GarcĂa-Cuerva and JosĂ© L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de MatemĂĄtica [Mathematical Notes], 104. MR 807149
- Loukas Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734, DOI 10.1007/978-1-4939-1194-3
- Markus Haase, Spectral properties of operator logarithms, Math. Z. 245 (2003), no. 4, 761â779. MR 2020710, DOI 10.1007/s00209-003-0569-0
- Markus Haase, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, vol. 169, BirkhÀuser Verlag, Basel, 2006. MR 2244037, DOI 10.1007/3-7643-7698-8
- Markus Haase, Operator-valued $H^\infty$-calculus in inter- and extrapolation spaces, Integral Equations Operator Theory 56 (2006), no. 2, 197â228. MR 2264516, DOI 10.1007/s00020-006-1418-4
- Sean Harris, Optimal angle of the holomorphic functional calculus for the Ornstein-Uhlenbeck operator, Indag. Math. (N.S.) 30 (2019), no. 5, 854â861. MR 3996768, DOI 10.1016/j.indag.2019.05.006
- Timo S. HĂ€nninen and Tuomas P. Hytönen, The $A_2$ theorem and the local oscillation decomposition for Banach space valued functions, J. Operator Theory 72 (2014), no. 1, 193â218. MR 3246987, DOI 10.7900/jot.2012nov21.1972
- M. Hoffmann, N. Kalton, and T. Kucherenko, $R$-bounded approximating sequences and applications to semigroups, J. Math. Anal. Appl. 294 (2004), no. 2, 373â386. MR 2061331, DOI 10.1016/j.jmaa.2003.10.048
- Timo S. HĂ€nninen and Emiel Lorist, Sparse domination for the lattice Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 147 (2019), no. 1, 271â284. MR 3876748, DOI 10.1090/proc/14236
- Tuomas Hytönen, Sean Li, and Assaf Naor, Quantitative affine approximation for UMD targets, Discrete Anal. , posted on (2016), Paper No. 6, 37. MR 3533305, DOI 10.19086/da.614
- Tuomas Hytönen, Jan van Neerven, Mark Veraar, and Lutz Weis, Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 63, Springer, Cham, 2016. MR 3617205
- Tuomas Hytönen, Jan van Neerven, Mark Veraar, and Lutz Weis, Analysis in Banach spaces. Vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 67, Springer, Cham, 2017. Probabilistic methods and operator theory. MR 3752640, DOI 10.1007/978-3-319-69808-3
- Tuomas Hytönen and Mark Veraar, $R$-boundedness of smooth operator-valued functions, Integral Equations Operator Theory 63 (2009), no. 3, 373â402. MR 2491037, DOI 10.1007/s00020-009-1663-4
- Tuomas P. Hytönen, A quantitative Coulhon-Lamberton theorem, Operator semigroups meet complex analysis, harmonic analysis and mathematical physics, Oper. Theory Adv. Appl., vol. 250, BirkhĂ€user/Springer, Cham, 2015, pp. 273â279. MR 3468221, DOI 10.1007/978-3-319-18494-4_{1}7
- G. J. O. Jameson, Summing and nuclear norms in Banach space theory, London Mathematical Society Student Texts, vol. 8, Cambridge University Press, Cambridge, 1987. MR 902804, DOI 10.1017/CBO9780511569166
- W. B. Johnson and L. Jones, Every $L_{p}$ operator is an $L_{2}$ operator, Proc. Amer. Math. Soc. 72 (1978), no. 2, 309â312. MR 507330, DOI 10.1090/S0002-9939-1978-0507330-1
- N. J. Kalton, A remark on sectorial operators with an $H^\infty$-calculus, Trends in Banach spaces and operator theory (Memphis, TN, 2001) Contemp. Math., vol. 321, Amer. Math. Soc., Providence, RI, 2003, pp. 91â99. MR 1978810, DOI 10.1090/conm/321/05637
- Nigel J. Kalton, A remark on the $H^\infty$-calculus, CMA/AMSI Research Symposium âAsymptotic Geometric Analysis, Harmonic Analysis, and Related Topicsâ, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 42, Austral. Nat. Univ., Canberra, 2007, pp. 81â90. MR 2328513
- N. J. Kalton and T. Kucherenko, Rademacher bounded families of operators on $L_1$, Proc. Amer. Math. Soc. 136 (2008), no. 1, 263â272. MR 2350412, DOI 10.1090/S0002-9939-07-09046-6
- N. J. Kalton and T. Kucherenko, Operators with an absolute functional calculus, Math. Ann. 346 (2010), no. 2, 259â306. MR 2563689, DOI 10.1007/s00208-009-0399-4
- Nigel Kalton, Peer Kunstmann, and Lutz Weis, Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators, Math. Ann. 336 (2006), no. 4, 747â801. MR 2255174, DOI 10.1007/s00208-005-0742-3
- N. J. Kalton and G. Lancien, A solution to the problem of $L^p$-maximal regularity, Math. Z. 235 (2000), no. 3, 559â568. MR 1800212, DOI 10.1007/PL00004816
- N. J. Kalton and G. Lancien, $L^p$-maximal regularity on Banach spaces with a Schauder basis, Arch. Math. (Basel) 78 (2002), no. 5, 397â408. MR 1903675, DOI 10.1007/s00013-002-8264-7
- Christoph Kriegler and Christian Le Merdy, Tensor extension properties of $C(K)$-representations and applications to unconditionality, J. Aust. Math. Soc. 88 (2010), no. 2, 205â230. MR 2629931, DOI 10.1017/S1446788709000433
- Peer Kunstmann and Alexander Ullmann, $\scr {R}_s$-sectorial operators and generalized Triebel-Lizorkin spaces, J. Fourier Anal. Appl. 20 (2014), no. 1, 135â185. MR 3180892, DOI 10.1007/s00041-013-9307-0
- Peer Christian Kunstmann, A new interpolation approach to spaces of Triebel-Lizorkin type, Illinois J. Math. 59 (2015), no. 1, 1â19. MR 3459625
- Stanislaw KwapieĆ, Mark Veraar, and Lutz Weis, $R$-boundedness versus $\gamma$-boundedness, Ark. Mat. 54 (2016), no. 1, 125â145. MR 3475820, DOI 10.1007/s11512-015-0223-1
- N. J. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators, Math. Ann. 321 (2001), no. 2, 319â345. MR 1866491, DOI 10.1007/s002080100231
- Peer C. Kunstmann and Lutz Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65â311. MR 2108959, DOI 10.1007/978-3-540-44653-8_{2}
- T. Kucherenko and L. Weis, Real interpolation of domains of sectorial operators on $L_p$-spaces, J. Math. Anal. Appl. 310 (2005), no. 1, 278â285. MR 2160689, DOI 10.1016/j.jmaa.2005.02.009
- Peer Kunstmann and Lutz Weis, Erratum to: Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators [MR2255174], Math. Ann. 357 (2013), no. 2, 801â804. MR 3096526, DOI 10.1007/s00208-011-0768-7
- N.J. Kalton and L. Weis, The $H^\infty$-functional calculus and square function estimates., Selecta. Volume 1., Basel: BirkhĂ€user/Springer, 2016, pp. 716â764 (English).
- Christoph Kriegler and Lutz Weis, Paley-Littlewood decomposition for sectorial operators and interpolation spaces, Math. Nachr. 289 (2016), no. 11-12, 1488â1525. MR 3541821, DOI 10.1002/mana.201400223
- Peer Christian Kunstmann and Lutz Weis, New criteria for the $H^\infty$-calculus and the Stokes operator on bounded Lipschitz domains, J. Evol. Equ. 17 (2017), no. 1, 387â409. MR 3630327, DOI 10.1007/s00028-016-0360-4
- S. KwapieĆ, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583â595. MR 341039, DOI 10.4064/sm-44-6-583-595
- Gilles Lancien, Counterexamples concerning sectorial operators, Arch. Math. (Basel) 71 (1998), no. 5, 388â398. MR 1649332, DOI 10.1007/s000130050282
- Florence Lancien and Christian Le Merdy, Square functions and $H^\infty$ calculus on subspaces of $L^p$ and on Hardy spaces, Math. Z. 251 (2005), no. 1, 101â115. MR 2176466, DOI 10.1007/s00209-005-0790-0
- N. Lindemulder and E. Lorist, A discrete framework for the interpolation of Banach spaces, preprint, arXiv:2105.08373, 2023.
- Florence Lancien, Gilles Lancien, and Christian Le Merdy, A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. (3) 77 (1998), no. 2, 387â414. MR 1635157, DOI 10.1112/S0024611598000501
- Christian Le Merdy, On dilation theory for $c_0$-semigroups on Hilbert space, Indiana Univ. Math. J. 45 (1996), no. 4, 945â959. MR 1444474, DOI 10.1512/iumj.1996.45.1191
- Christian Le Merdy, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum 56 (1998), no. 2, 205â224. MR 1490293, DOI 10.1007/PL00005942
- Christian Le Merdy, On square functions associated to sectorial operators, Bull. Soc. Math. France 132 (2004), no. 1, 137â156 (English, with English and French summaries). MR 2075919, DOI 10.24033/bsmf.2462
- Christian Le Merdy, $\gamma$-Bounded representations of amenable groups, Adv. Math. 224 (2010), no. 4, 1641â1671. MR 2646307, DOI 10.1016/j.aim.2010.01.019
- Christian Le Merdy, A sharp equivalence between $H^\infty$ functional calculus and square function estimates, J. Evol. Equ. 12 (2012), no. 4, 789â800. MR 3000455, DOI 10.1007/s00028-012-0154-2
- Emiel Lorist and Zoe Nieraeth, Vector-valued extensions of operators through multilinear limited range extrapolation, J. Fourier Anal. Appl. 25 (2019), no. 5, 2608â2634. MR 4014810, DOI 10.1007/s00041-019-09675-z
- Emiel Lorist and Zoe Nieraeth, Sparse domination implies vector-valued sparse domination, Math. Z. 301 (2022), no. 1, 1107â1141. MR 4405643, DOI 10.1007/s00209-021-02943-z
- Anselm Lambert, Matthias Neufang, and Volker Runde, Operator space structure and amenability for FigĂ -Talamanca-Herz algebras, J. Funct. Anal. 211 (2004), no. 1, 245â269. MR 2054624, DOI 10.1016/j.jfa.2003.08.009
- E. Lorist, Maximal functions, factorization, and the $\mathcal {R}$-boundedness of integral operators, Masterâs thesis, Delft University of Technology, Delft, the Netherlands, 2016.
- Emiel Lorist, The $\ell ^s$-boundedness of a family of integral operators on UMD Banach function spaces, Positivity and noncommutative analysis, Trends Math., BirkhĂ€user/Springer, Cham, [2019] ©2019, pp. 365â379. MR 4042283, DOI 10.1007/978-3-030-10850-2_{2}0
- G.Ya. Lozanovskii, On some Banach lattices, Siberian Mathematical Journal 10 (1969), no. 3, 419â431.
- J.-L. Lions and J. Peetre, Sur une classe dâespaces dâinterpolation, Inst. Hautes Ătudes Sci. Publ. Math. 19 (1964), 5â68 (French). MR 165343
- V. Linde and A. PiÄ, Mappings of Gaussian measures of cylindrical sets in Banach spaces, Teor. Verojatnost. i Primenen. 19 (1974), 472â487 (Russian, with German summary). MR 0356201
- Christian Le Merdy and Arnaud Simard, A factorization property of $R$-bounded sets of operators on $L^p$-spaces, Math. Nachr. 243 (2002), 146â155. MR 1923837, DOI 10.1002/1522-2616(200209)243:1<146::AID-MANA146>3.0.CO;2-O
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- J. Lindenstrauss and M. Zippin, Banach spaces with a unique unconditional basis, J. Functional Analysis 3 (1969), 115â125. MR 0236668, DOI 10.1016/0022-1236(69)90054-8
- José L. Marcolino Nhani, La structure des sous-espaces de treillis, Dissertationes Math. (Rozprawy Mat.) 397 (2001), 50 (French, with English summary). MR 1841020, DOI 10.4064/dm397-0-1
- B. Maurey, ThĂ©orĂšmes de factorisation pour les opĂ©rateurs linĂ©aires Ă valeurs dans un espace $L^{p}(U,$ $\mu ),$ $0<\textit {p}\leq +\infty$, SĂ©minaire Maurey-Schwartz (annĂ©e 1972â1973), Espaces $L^{p}$ et applications radonifiantes, Centre de Math., Ăcole Polytech., Paris, 1973, pp. Exp. No. 15, 8. MR 0435924
- Bernard Maurey, Un thĂ©orĂšme de prolongement, C. R. Acad. Sci. Paris SĂ©r. A 279 (1974), 329â332 (French). MR 355539
- Alan McIntosh, Operators which have an $H_\infty$ functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 210â231. MR 912940
- Sylvie Monniaux, A perturbation result for bounded imaginary powers, Arch. Math. (Basel) 68 (1997), no. 5, 407â417. MR 1441639, DOI 10.1007/s000130050073
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- E. M. NikiĆĄin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no. 6(156), 129â191 (Russian). MR 0296584
- T. Oikhberg, Injectivity and projectivity in $p$-multinormed spaces, Positivity 22 (2018), no. 4, 1023â1037. MR 3843454, DOI 10.1007/s11117-018-0557-6
- A. OsÄkowski and Ivan Yaroslavtsev, The Hilbert transform and orthogonal martingales in Banach spaces, Int. Math. Res. Not. IMRN 15 (2021), 11670â11730. MR 4294130, DOI 10.1093/imrn/rnz187
- Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
- Jaak Peetre, Sur la transformation de Fourier des fonctions Ă valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15â26 (French). MR 256153
- Stefanie Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1237â1249. MR 2367098, DOI 10.1090/S0002-9939-07-08934-4
- Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655
- Gilles Pisier, Some results on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), no. 1, 3â19. MR 501916
- Gilles Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. of Math. (2) 115 (1982), no. 2, 375â392. MR 647811, DOI 10.2307/1971396
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- Gilles Pisier, Operator spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1425â1458. MR 1999200, DOI 10.1016/S1874-5849(03)80040-2
- Gilles Pisier, Martingales in Banach spaces, Cambridge Studies in Advanced Mathematics, vol. 155, Cambridge University Press, Cambridge, 2016. MR 3617459
- B. de Pagter and W. J. Ricker, $C(K)$-representations and $R$-boundedness, J. Lond. Math. Soc. (2) 76 (2007), no. 2, 498â512. MR 2363429, DOI 10.1112/jlms/jdm072
- Jan PrĂŒss and Hermann Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), no. 3, 429â452. MR 1038710, DOI 10.1007/BF02570748
- JosĂ© L. Rubio de Francia, Weighted norm inequalities and vector valued inequalities, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 86â101. MR 654181
- JosĂ© L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Probability and Banach spaces (Zaragoza, 1985) Lecture Notes in Math., vol. 1221, Springer, Berlin, 1986, pp. 195â222. MR 875011, DOI 10.1007/BFb0099115
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Kristian Seip, On the connection between exponential bases and certain related sequences in $L^2(-\pi ,\pi )$, J. Funct. Anal. 130 (1995), no. 1, 131â160. MR 1331980, DOI 10.1006/jfan.1995.1066
- Arnaud Simard, Factorization of sectorial operators with bounded $H^\infty$-functional calculus, Houston J. Math. 25 (1999), no. 2, 351â370. MR 1697632
- Ivan Singer, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, Springer-Verlag, New York-Berlin, 1970. MR 0298399
- BĂ©la de Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 152â157. MR 22309
- JesĂșs SuĂĄrez and Lutz Weis, Interpolation of Banach spaces by the $\gamma$-method, Methods in Banach space theory, London Math. Soc. Lecture Note Ser., vol. 337, Cambridge Univ. Press, Cambridge, 2006, pp. 293â306. MR 2326391, DOI 10.1017/CBO9780511721366.015
- JesĂșs SuĂĄrez and Lutz Weis, Addendum to âInterpolation of Banach spaces by the $\gamma$-methodâ [MR2326391], Extracta Math. 24 (2009), no. 3, 265â269. MR 2677162
- E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 3rd ed., Chelsea Publishing Co., New York, 1986. MR 942661
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
- Alberto Venni, A counterexample concerning imaginary powers of linear operators, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., vol. 1540, Springer, Berlin, 1993, pp. 381â387. MR 1225830, DOI 10.1007/BFb0085493
- Mark C. Veraar, Randomized UMD Banach spaces and decoupling inequalities for stochastic integrals, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1477â1486. MR 2276657, DOI 10.1090/S0002-9939-06-08619-9
- Lutz Weis, A new approach to maximal $L_p$-regularity, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 195â214. MR 1818002
- Lutz Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann. 319 (2001), no. 4, 735â758. MR 1825406, DOI 10.1007/PL00004457
- Janine Wittwer, A sharp estimate on the norm of the martingale transform, Math. Res. Lett. 7 (2000), no. 1, 1â12. MR 1748283, DOI 10.4310/MRL.2000.v7.n1.a1
- Ivan S. Yaroslavtsev, Local characteristics and tangency of vector-valued martingales, Probab. Surv. 17 (2020), 545â676. MR 4156829, DOI 10.1214/19-PS337