
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type
About this Title
David A. Craven
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 288, Number 1434
ISBNs: 978-1-4704-6702-9 (print); 978-1-4704-7576-5 (online)
DOI: https://doi.org/10.1090/memo/1434
Published electronically: August 2, 2023
Keywords: Maximal subgroups,
exceptional groups,
finite simple groups
Table of Contents
Chapters
- 1. Introduction
- 2. Notation and preliminaries
- 3. Subgroup structure of exceptional algebraic groups
- 4. Techniques for proving the results
- 5. Modules for groups of Lie type
- 6. Rank 4 groups for $E_8$
- 7. Rank 3 groups for $E_8$
- 8. Rank 2 groups for $E_8$
- 9. Subgroups of $E_7$
- 10. Subgroups of $E_6$
- 11. Subgroups of $F_4$
- 12. Difficult cases
- 13. The trilinear form for $E_6$
Abstract
We study embeddings of groups of Lie type $H$ in characteristic $p$ into exceptional algebraic groups $\mathbf {G}$ of the same characteristic. We exclude the case where $H$ is of type $\mathrm {PSL}_2$. A subgroup of $\mathbf {G}$ is Lie primitive if it is not contained in any proper, positive-dimensional subgroup of $\mathbf {G}$.
With a few possible exceptions, we prove that there are no Lie primitive subgroups $H$ in $\mathbf {G}$, with the conditions on $H$ and $\mathbf {G}$ given above. The exceptions are for $H$ one of $\mathrm {PSL}_3(3)$, $\mathrm {PSU}_3(3)$, $\mathrm {PSL}_3(4)$, $\mathrm {PSU}_3(4)$, $\mathrm {PSU}_3(8)$, $\mathrm {PSU}_4(2)$, $\mathrm {PSp}_4(2)β$ and ${}^2\!B_2(8)$, and $\mathbf {G}$ of type $E_8$. No examples are known of such Lie primitive embeddings.
We prove a slightly stronger result, including stability under automorphisms of $\mathbf {G}$. This has the consequence that, with the same exceptions, any almost simple group with socle $H$, that is maximal inside an almost simple exceptional group of Lie type $F_4$, $E_6$, ${}^2\!E_6$, $E_7$ and $E_8$, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup inside the algebraic group.
The proof uses a combination of representation-theoretic, algebraic group-theoretic, and computational means.
- Michael Aschbacher, The maximal subgroups of ${E}_6$, preprint, 170pp.
- Michael Aschbacher, The $27$-dimensional module for $E_6$. I, Invent. Math. 89 (1987), no.Β 1, 159β195. MR 892190, DOI 10.1007/BF01404676
- Michael Aschbacher, The $27$-dimensional module for $E_6$. II, J. London Math. Soc. (2) 37 (1988), no.Β 2, 275β293. MR 928524, DOI 10.1112/jlms/s2-37.2.275
- Michael Aschbacher, The $27$-dimensional module for $E_6$. III, Trans. Amer. Math. Soc. 321 (1990), no.Β 1, 45β84. MR 986684, DOI 10.1090/S0002-9947-1990-0986684-6
- Michael Aschbacher, The $27$-dimensional module for $E_6$. IV, J. Algebra 131 (1990), no.Β 1, 23β39. MR 1054997, DOI 10.1016/0021-8693(90)90164-J
- M. Aschbacher, Finite group theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008, DOI 10.1017/CBO9781139175319
- A. V. Borovik, The structure of finite subgroups of simple algebraic groups, Algebra i Logika 28 (1989), no.Β 3, 249β279, 366 (Russian); English transl., Algebra and Logic 28 (1989), no.Β 3, 163β182 (1990). MR 1066315, DOI 10.1007/BF01978721
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4β6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- Timothy C. Burness and Donna M. Testerman, $A_1$-type subgroups containing regular unipotent elements, Forum Math. Sigma 7 (2019), Paper No. e12, 61. MR 3942158, DOI 10.1017/fms.2019.12
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Arjeh M. Cohen, Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. (3) 64 (1992), no.Β 1, 21β48. MR 1132853, DOI 10.1112/plms/s3-64.1.21
- Bruce N. Cooperstein, Maximal subgroups of $G_{2}(2^{n})$, J. Algebra 70 (1981), no.Β 1, 23β36. MR 618376, DOI 10.1016/0021-8693(81)90241-6
- David A. Craven, Alternating subgroups of exceptional groups of Lie type, Proc. Lond. Math. Soc. (3) 115 (2017), no.Β 3, 449β501. MR 3694291, DOI 10.1112/plms.12043
- David A. Craven, Maximal $\rm PSL_2$ subgroups of exceptional groups of Lie type, Mem. Amer. Math. Soc. 276 (2022), no.Β 1355, v+155. MR 4386346, DOI 10.1090/memo/1355
- David A. Craven, David I. Stewart, and Adam R. Thomas, A new maximal subgroup of $E_8$ in characteristic $3$, Proc. Amer. Math. Soc. 150 (2022), no.Β 4, 1435β1448. MR 4375734, DOI 10.1090/proc/15759
- Arjeh M. Cohen and David B. Wales, Finite subgroups of $F_4(\textbf {C})$ and $E_6(\textbf {C})$, Proc. London Math. Soc. (3) 74 (1997), no.Β 1, 105β150. MR 1416728, DOI 10.1112/S0024611597000051
- Darrin D. Frey, Conjugacy of $\textrm {Alt}_5$ and $\textrm {SL}(2,5)$ subgroups of $E_8(\textbf {C})$, Mem. Amer. Math. Soc. 133 (1998), no.Β 634, viii+162. MR 1423302, DOI 10.1090/memo/0634
- Darrin D. Frey, Conjugacy of $\rm Alt_5$ and $\rm SL(2,5)$ subgroups of $E_7({\Bbb C})$, J. Group Theory 4 (2001), no.Β 3, 277β323. MR 1839999, DOI 10.1515/jgth.2001.024
- Robert L. Griess Jr., Elementary abelian $p$-subgroups of algebraic groups, Geom. Dedicata 39 (1991), no.Β 3, 253β305. MR 1123145, DOI 10.1007/BF00150757
- Wayne Jones and Brian Parshall, On the $1$-cohomology of finite groups of Lie type, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) Academic Press, New York, 1976, pp.Β 313β328. MR 0404470
- Peter B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups $^2G_2(q)$, and their automorphism groups, J. Algebra 117 (1988), no.Β 1, 30β71. MR 955589, DOI 10.1016/0021-8693(88)90239-6
- R. Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra 23 (1995), no.Β 11, 4125β4156. MR 1351124, DOI 10.1080/00927879508825454
- R. Lawther, Unipotent classes in maximal subgroups of exceptional algebraic groups, J. Algebra 322 (2009), no.Β 1, 270β293. MR 2526390, DOI 10.1016/j.jalgebra.2009.01.031
- R. Lawther, Sublattices generated by root differences, J. Algebra 412 (2014), 255β263. MR 3215957, DOI 10.1016/j.jalgebra.2014.04.018
- Alastair J. Litterick, On non-generic finite subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 253 (2018), no.Β 1207, v+156. MR 3803556, DOI 10.1090/memo/1207
- Martin W. Liebeck, Benjamin M. S. Martin, and Aner Shalev, On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J. 128 (2005), no.Β 3, 541β557. MR 2145743, DOI 10.1215/S0012-7094-04-12834-9
- Martin W. Liebeck and Jan Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 55 (1987), no.Β 2, 299β330. MR 896223, DOI 10.1093/plms/s3-55_{2}.299
- Martin W. Liebeck and Gary M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedicata 35 (1990), no.Β 1-3, 353β387. MR 1066572, DOI 10.1007/BF00147353
- Martin W. Liebeck and Gary M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), no.Β 9, 3409β3482. MR 1458329, DOI 10.1090/S0002-9947-98-02121-7
- Martin W. Liebeck and Gary M. Seitz, On finite subgroups of exceptional algebraic groups, J. Reine Angew. Math. 515 (1999), 25β72. MR 1717629, DOI 10.1515/crll.1999.078
- Martin W. Liebeck and Gary M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004), no.Β 802, vi+227. MR 2044850, DOI 10.1090/memo/0802
- Martin W. Liebeck and Gary M. Seitz, Subgroups of exceptional algebraic groups which are irreducible on an adjoint or minimal module, J. Group Theory 7 (2004), no.Β 3, 347β372. MR 2063402, DOI 10.1515/jgth.2004.012
- Martin W. Liebeck, Jan Saxl, and Gary M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc. (3) 65 (1992), no.Β 2, 297β325. MR 1168190, DOI 10.1112/plms/s3-65.2.297
- Martin W. Liebeck, Jan Saxl, and Donna M. Testerman, Simple subgroups of large rank in groups of Lie type, Proc. London Math. Soc. (3) 72 (1996), no.Β 2, 425β457. MR 1367085, DOI 10.1112/plms/s3-72.2.425
- Kay Magaard, The maximal subgroups of the Chevalley groups F(,4)(F) where F is a finite or algebraically closed field of characteristic not equal to 2,3, ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)βCalifornia Institute of Technology. MR 2638705
- Gunter Malle, The maximal subgroups of ${}^2F_4(q^2)$, J. Algebra 139 (1991), no.Β 1, 52β69. MR 1106340, DOI 10.1016/0021-8693(91)90283-E
- Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no.Β 441, iv+197. MR 1048074, DOI 10.1090/memo/0441
- Peter Sin, Extensions of simple modules for $\textrm {SL}_3(2^n)$ and $\textrm {SU}_3(2^n)$, Proc. London Math. Soc. (3) 65 (1992), no.Β 2, 265β296. MR 1168189, DOI 10.1112/plms/s3-65.2.265
- Peter Sin, Extensions of simple modules for $\textrm {Sp}_4(2^n)$ and $\textrm {Suz}(2^m)$, Bull. London Math. Soc. 24 (1992), no.Β 2, 159β164. MR 1148676, DOI 10.1112/blms/24.2.159
- Peter Sin, Extensions of simple modules for $G_2(3^n)$ and ${}^2G_2(3^m)$, Proc. London Math. Soc. (3) 66 (1993), no.Β 2, 327β357. MR 1199070, DOI 10.1112/plms/s3-66.2.327
- David I. Stewart, The reductive subgroups of $F_4$, Mem. Amer. Math. Soc. 223 (2013), no.Β 1049, vi+88. MR 3075783, DOI 10.1090/S0065-9266-2012-00668-X
- Donna M. Testerman, A construction of certain maximal subgroups of the algebraic groups $E_6$ and $F_4$, J. Algebra 122 (1989), no.Β 2, 299β322. MR 999075, DOI 10.1016/0021-8693(89)90218-4
- Adam R. Thomas, Irreducible $A_1$ subgroups of exceptional algebraic groups, J. Algebra 447 (2016), 240β296. MR 3427635, DOI 10.1016/j.jalgebra.2015.08.026
- Adam R. Thomas, The irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 268 (2020), no.Β 1307, v+191. MR 4218306, DOI 10.1090/memo/1307
- Helmut VΓΆlklein, $1$-cohomology of Chevalley groups, J. Algebra 127 (1989), no.Β 2, 353β372. MR 1028458, DOI 10.1016/0021-8693(89)90257-3