
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Fundamental Factorization of a GLSM Part I: Construction
About this Title
Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim and Mark Shoemaker
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 289, Number 1435
ISBNs: 978-1-4704-6543-8 (print); 978-1-4704-7590-1 (online)
DOI: https://doi.org/10.1090/memo/1435
Published electronically: August 23, 2023
Keywords: Gromov–Witten theory,
Fan–Jarvis–Ruan–Witten theory,
matrix factorizations,
Landau–Ginzburg models,
gauged linear sigma model,
virtual cycle,
cosection localization
Table of Contents
Chapters
- 1. Introduction
- 2. Overview of the construction
- 3. Factorizations
- 4. Admissible resolutions of GLSMs
- 5. Construction of a projective embedding
- 6. The GLSM theory for convex hybrid models
- 7. Comparisons with other constructions
Abstract
We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov–Witten type invariants defined by Chang–Li and Fan–Jarvis–Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk–Vaintrob. The invariants are defined by constructing a “fundamental factorization” supported on the moduli space of Landau–Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier–Mukai transform; the associated map on Hochschild homology defines our theory.- Dima Arinkin, Andrei Căldăraru, and Márton Hablicsek, Formality of derived intersections and the orbifold HKR isomorphism, J. Algebra 540 (2019), 100–120. MR 4003476, DOI 10.1016/j.jalgebra.2019.08.002
- Dan Abramovich, Tom Graber, Martin Olsson, and Hsian-Hua Tseng, On the global quotient structure of the space of twisted stable maps to a quotient stack, J. Algebraic Geom. 16 (2007), no. 4, 731–751. MR 2357688, DOI 10.1090/S1056-3911-07-00443-2
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- Dan Abramovich and Tyler J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), no. 3, 685–699. MR 1937405, DOI 10.1090/S0002-9939-02-06562-0
- Pedro Acosta and Mark Shoemaker, Quantum cohomology of toric blowups and Landau-Ginzburg correspondences, Algebr. Geom. 5 (2018), no. 2, 239–263. MR 3769893, DOI 10.14231/AG-2018-008
- Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27–75. MR 1862797, DOI 10.1090/S0894-0347-01-00380-0
- Matthew Ballard, Dragos Deliu, David Favero, M. Umut Isik, and Ludmil Katzarkov, Resolutions in factorization categories, Adv. Math. 295 (2016), 195–249. MR 3488035, DOI 10.1016/j.aim.2016.02.008
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI 10.1007/s002220050136
- Matthew Ballard, David Favero, and Ludmil Katzarkov, A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math. Inst. Hautes Études Sci. 120 (2014), 1–111. MR 3270588, DOI 10.1007/s10240-013-0059-9
- Andrei Căldăraru, The Mukai pairing, I: the Hochschild structure, preprint arXiv:0308079 (2003).
- Daewoong Cheong, Ionuţ Ciocan-Fontanine, and Bumsig Kim, Orbifold quasimap theory, Math. Ann. 363 (2015), no. 3-4, 777–816. MR 3412343, DOI 10.1007/s00208-015-1186-z
- Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74. MR 1115626, DOI 10.1016/0550-3213(91)90292-6
- Ionut Ciocan-Fontanine, David Favero, Jérémy Guéré, Bumsig Kim, and Mark Shoemaker, Fundamental factorization of a GLSM part II: CohFT axioms. preprint.
- Alessandro Chiodo, The Witten top Chern class via $K$-theory, J. Algebraic Geom. 15 (2006), no. 4, 681–707. MR 2237266, DOI 10.1090/S1056-3911-06-00444-9
- Emily Clader, Felix Janda, and Yongbin Ruan, Higher-genus wall-crossing in the gauged linear sigma model, Duke Math. J. 170 (2021), no. 4, 697–773. With an appendix by Yang Zhou. MR 4280089, DOI 10.1215/00127094-2020-0053
- Ionuţ Ciocan-Fontanine and Bumsig Kim, Quasimap wall-crossings and mirror symmetry, Publ. Math. Inst. Hautes Études Sci. 131 (2020), 201–260. MR 4106795, DOI 10.1007/s10240-020-00114-0
- Ionuţ Ciocan-Fontanine, Bumsig Kim, and Davesh Maulik, Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014), 17–47. MR 3126932, DOI 10.1016/j.geomphys.2013.08.019
- Huai-Liang Chang and Jun Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN 18 (2012), 4163–4217. MR 2975379, DOI 10.1093/imrn/rnr186
- Huai-Liang Chang and Mu-Lin Li, Invariants of stable quasimaps with fields, Trans. Amer. Math. Soc. 373 (2020), no. 5, 3669–3691. MR 4082252, DOI 10.1090/tran/8011
- Huai-Liang Chang, Jun Li, and Wei-Ping Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015), no. 3, 1015–1063. MR 3348143, DOI 10.1007/s00222-014-0549-5
- Weimin Chen and Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25–85. MR 1950941, DOI 10.1090/conm/310/05398
- Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31. MR 2104605, DOI 10.1007/s00220-004-1089-4
- Alessandro Chiodo and Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), no. 1, 117–165. MR 2672282, DOI 10.1007/s00222-010-0260-0
- Dan Edidin, Riemann-Roch for Deligne-Mumford stacks, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 241–266. MR 3114943
- Dan Edidin, Brendan Hassett, Andrew Kresch, and Angelo Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001), no. 4, 761–777. MR 1844577
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Alexander I. Efimov and Leonid Positselski, Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory 9 (2015), no. 5, 1159–1292. MR 3366002, DOI 10.2140/ant.2015.9.1159
- Huijun Fan, Tyler Jarvis, and Yongbin Ruan, The Witten equation and its virtual fundamental cycle, 2007. preprint arXiv:0712.4025.
- Huijun Fan, Tyler Jarvis, and Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), no. 1, 1–106. MR 3043578, DOI 10.4007/annals.2013.178.1.1
- Huijun Fan, Tyler J. Jarvis, and Yongbin Ruan, A mathematical theory of the gauged linear sigma model, Geom. Topol. 22 (2018), no. 1, 235–303. MR 3720344, DOI 10.2140/gt.2018.22.235
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Alexander B. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 13 (1996), 613–663.
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1994 edition. MR 2394437
- Shuai Guo and Dustin Ross, The genus-one global mirror theorem for the quintic 3-fold, Compos. Math. 155 (2019), no. 5, 995–1024. MR 3946282, DOI 10.1112/s0010437x19007231
- Yuki Hirano, Derived Knörrer periodicity and Orlov’s theorem for gauged Landau-Ginzburg models, Compos. Math. 153 (2017), no. 5, 973–1007. MR 3631231, DOI 10.1112/S0010437X16008344
- Yuki Hirano, Equivalences of derived factorization categories of gauged Landau-Ginzburg models, Adv. Math. 306 (2017), 200–278. MR 3581302, DOI 10.1016/j.aim.2016.10.023
- Gerhard Hochschild, Bertram Kostant, and Alex Rosenberg, Differential forms on regular affine algebras, Collected papers, 2009, pp. 265–290.
- Daisuke Inoue, Atsushi Ito, and Makoto Miura, $I$-functions of Calabi-Yau 3-folds in Grassmannians, Commun. Number Theory Phys. 11 (2017), no. 2, 273–309. MR 3690251, DOI 10.4310/CNTP.2017.v11.n2.a2
- Mehmet Umut Isik, Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. IMRN 12 (2013), 2787–2808. MR 3071664, DOI 10.1093/imrn/rns125
- Bernhard Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998), no. 1-3, 223–273. MR 1492902, DOI 10.1016/S0022-4049(96)00085-0
- Bernhard Keller, On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998), 231–259. MR 1647519
- Frances Clare Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), no. 1, 41–85. MR 799252, DOI 10.2307/1971369
- Young-Hoon Kiem and Jun Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025–1050. MR 3073883, DOI 10.1090/S0894-0347-2013-00768-7
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Bumsig Kim and Jengseok Oh, Localized Chern characters for 2-periodic complexes, 2018. preprint.
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI 10.1023/B:MATH.0000027508.00421.bf
- Andrew Kresch, On the geometry of Deligne-Mumford stacks, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 259–271. MR 2483938, DOI 10.1090/pspum/080.1/2483938
- Andrew Kresch and Angelo Vistoli, On coverings of Deligne-Mumford stacks and surjectivity of the Brauer map, Bull. London Math. Soc. 36 (2004), no. 2, 188–192. MR 2026412, DOI 10.1112/S0024609303002728
- Kevin H. Lin and Daniel Pomerleano, Global matrix factorizations, Math. Res. Lett. 20 (2013), no. 1, 91–106. MR 3126725, DOI 10.4310/MRL.2013.v20.n1.a9
- Yuan-Pin Lee, Nathan Priddis, and Mark Shoemaker, A proof of the Landau-Ginzburg/Calabi-Yau correspondence via the crepant transformation conjecture, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 6, 1403–1443 (English, with English and French summaries). MR 3592361, DOI 10.24033/asens.2312
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Martin C. Olsson, (Log) twisted curves, Compos. Math. 143 (2007), no. 2, 476–494. MR 2309994, DOI 10.1112/S0010437X06002442
- Alexander Polishchuk, Homogeneity of cohomology classes associated with Koszul matrix factorizations, Compos. Math. 152 (2016), no. 10, 2071–2112. MR 3570001, DOI 10.1112/S0010437X16007557
- Alexander Polishchuk and Arkady Vaintrob, Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) Contemp. Math., vol. 276, Amer. Math. Soc., Providence, RI, 2001, pp. 229–249. MR 1837120, DOI 10.1090/conm/276/04523
- Alexander Polishchuk and Arkady Vaintrob, Matrix factorizations and singularity categories for stacks, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2609–2642 (English, with English and French summaries). MR 3112502
- Alexander Polishchuk and Arkady Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122. MR 3491884, DOI 10.1515/crelle-2014-0024
- Ajay C. Ramadoss, The Mukai pairing and integral transforms in Hochschild homology, Mosc. Math. J. 10 (2010), no. 3, 629–645, 662–663 (English, with English and Russian summaries). MR 2732577, DOI 10.17323/1609-4514-2010-10-3-629-645
- Ian Shipman, A geometric approach to Orlov’s theorem, Compos. Math. 148 (2012), no. 5, 1365–1389. MR 2982435, DOI 10.1112/S0010437X12000255
- Richard G. Swan, Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra 110 (1996), no. 1, 57–80. MR 1390671, DOI 10.1016/0022-4049(95)00091-7
- Edward Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 235–269. MR 1215968
- Edward Witten, Phases of $N=2$ theories in two dimensions, Mirror symmetry, II, 1997, pp. 143–211.
- Amnon Yekutieli, The continuous Hochschild cochain complex of a scheme (survey), Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001) Contemp. Math., vol. 324, Amer. Math. Soc., Providence, RI, 2003, pp. 227–233. MR 1986127, DOI 10.1090/conm/324/05744