
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Smooth Homotopy of Infinite-Dimensional $C^{\infty }$-Manifolds
About this Title
Hiroshi Kihara
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 289, Number 1436
ISBNs: 978-1-4704-6542-1 (print); 978-1-4704-7591-8 (online)
DOI: https://doi.org/10.1090/memo/1436
Published electronically: August 23, 2023
Keywords: Smooth homotopy,
$C^{\infty }$-manifolds,
convenient calculus,
diffeological spaces,
model category
Table of Contents
Chapters
- 1. Introduction
- 2. Diffeological spaces, arc-generated spaces, and $C^{\infty }$-manifolds
- 3. Quillen equivalences between ${\mathcal {S}}$, ${\mathcal {D}}$, and ${\mathcal {C}^0}$
- 4. Smoothing of continuous maps
- 5. Smoothing of continuous principal bundles
- 6. Smoothing of continuous sections
- 7. Dwyer-Kan equivalence between $(\mathsf {P}{\mathcal {D}}G / X)_{\mathrm {num}}$ and $(\mathsf {P}{\mathcal {C}^0}\widetilde {G} / \widetilde {X})_{\mathrm {num}}$
- 8. Diffeological polyhedra
- 9. Homotopy cofibrancy theorem
- 10. Locally contractible diffeological spaces
- 11. Applications to $C^{\infty }$-manifolds
- A. Pathological diffeological spaces
- B. Keller’s $C^{\infty }_{c}$-theory and diffeological spaces
- C. Smooth regularity and smooth paracompactness
Abstract
In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional $C^{\infty }$-manifolds in convenient calculus. More precisely, we discuss the smoothing of maps, sections, principal bundles, and gauge transformations.
We first introduce the notion of hereditary $C^\infty$-paracompactness along with the semiclassicality condition on a $C^\infty$-manifold, which enables us to use local convexity in local arguments. Then, we prove that for $C^\infty$-manifolds $M$ and $N$, the smooth singular complex of the diffeological space $C^\infty (M,N)$ is weakly equivalent to the ordinary singular complex of the topological space ${\mathcal {C}^0}(M,N)$ under the hereditary $C^\infty$-paracompactness and semiclassicality conditions on $M$. We next generalize this result to sections of fiber bundles over a $C^\infty$-manifold $M$ under the same conditions on $M$. Further, we establish the Dwyer-Kan equivalence between the simplicial groupoid of smooth principal $G$-bundles over $M$ and that of continuous principal $G$-bundles over $M$ for a Lie group $G$ and a $C^\infty$-manifold $M$ under the same conditions on $M$, encoding the smoothing results for principal bundles and gauge transformations.
For the proofs, we fully faithfully embed the category $C^{\infty }$ of $C^{\infty }$-manifolds into the category ${\mathcal {D}}$ of diffeological spaces and develop the smooth homotopy theory of diffeological spaces via a homotopical algebraic study of the model category ${\mathcal {D}}$ and the model category ${\mathcal {C}^0}$ of arc-generated spaces, also known as $\Delta$-generated spaces. Then, the hereditary $C^\infty$-paracompactness and semiclassicality conditions on $M$ imply that $M$ has the smooth homotopy type of a cofibrant object in ${\mathcal {D}}$. This result can be regarded as a smooth refinement of the results of Milnor, Palais, and Heisey, which give sufficient conditions under which an infinite-dimensional topological manifold has the homotopy type of a $CW$-complex. We also show that most of the important $C^\infty$-manifolds introduced and studied by Kriegl, Michor, and their coauthors are hereditarily $C^\infty$-paracompact and semiclassical, and hence, results can be applied to them.
- M. Aguilar and C. Prieto, Fiber bundles, unpublished note, available at: https://computo.matem.unam.mx/cprieto/phocadownloadpap/Libros/fiber\%20bundles.pdf.
- John C. Baez and Alexander E. Hoffnung, Convenient categories of smooth spaces, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5789–5825. MR 2817410, DOI 10.1090/S0002-9947-2011-05107-X
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994. Categories and structures. MR 1313497
- Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675, DOI 10.1007/978-1-4757-6848-0
- Theodor Bröcker and Klaus Jänich, Introduction to differential topology, Cambridge University Press, Cambridge-New York, 1982. Translated from the German by C. B. Thomas and M. J. Thomas. MR 674117
- J. Daniel Christensen, Gordon Sinnamon, and Enxin Wu, The $D$-topology for diffeological spaces, Pacific J. Math. 272 (2014), no. 1, 87–110. MR 3270173, DOI 10.2140/pjm.2014.272.87
- J. Daniel Christensen and Enxin Wu, The homotopy theory of diffeological spaces, New York J. Math. 20 (2014), 1269–1303. MR 3312059
- J. Daniel Christensen and Enxin Wu, Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. Géom. Différ. Catég. 57 (2016), no. 1, 3–50 (English, with English and French summaries). MR 3467758
- J. Daniel Christensen and Enxin Wu, Tangent spaces of bundles and of filtered diffeological spaces, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2255–2270. MR 3611335, DOI 10.1090/proc/13334
- J. Daniel Christensen and Enxin Wu, Smooth classifying spaces, Israel J. Math. 241 (2021), no. 2, 911–954. MR 4242549, DOI 10.1007/s11856-021-2120-6
- J. Daniel Christensen and Enxin Wu, Diffeological vector spaces, Pacific J. Math. 303 (2019), no. 1, 73–92. MR 4044857, DOI 10.2140/pjm.2019.303.73
- Krzysztof Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, vol. 39, Cambridge University Press, Cambridge, 1997. MR 1475462, DOI 10.1017/CBO9781139173131
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- Albrecht Dold, Lectures on algebraic topology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1335915, DOI 10.1007/978-3-642-67821-9
- Eduardo J. Dubuc, Concrete quasitopoi, Applications of sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977) Lecture Notes in Math., vol. 753, Springer, Berlin, 1979, pp. 239–254. MR 555548
- W. G. Dwyer and D. M. Kan, Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 4, 379–385. MR 770723
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 203742, DOI 10.1090/S0002-9904-1966-11558-6
- Katsuya Eda and Kazuhiro Kawamura, The singular homology of the Hawaiian earring, J. London Math. Soc. (2) 62 (2000), no. 1, 305–310. MR 1772189, DOI 10.1112/S0024610700001071
- Katsuya Eda and Kazuhiro Kawamura, Homotopy and homology groups of the $n$-dimensional Hawaiian earring, Fund. Math. 165 (2000), no. 1, 17–28. MR 1804998, DOI 10.4064/fm-165-1-17-28
- Samuel Eilenberg and Saunders MacLane, Acyclic models, Amer. J. Math. 75 (1953), 189–199. MR 52766, DOI 10.2307/2372628
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Alfred Frölicher and Andreas Kriegl, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1988. A Wiley-Interscience Publication. MR 961256
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 210125
- Olga Gil-Medrano and Peter W. Michor, Geodesics on spaces of almost Hermitian structures, Israel J. Math. 88 (1994), no. 1-3, 319–332. MR 1303501, DOI 10.1007/BF02937517
- Helge Glöckner, Fundamentals of direct limit Lie theory, Compos. Math. 141 (2005), no. 6, 1551–1577. MR 2188449, DOI 10.1112/S0010437X05001491
- Helge Glöckner, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal. 245 (2007), no. 1, 19–61. MR 2310802, DOI 10.1016/j.jfa.2006.12.018
- Helge Glöckner, Direct limits of infinite-dimensional Lie groups, Developments and trends in infinite-dimensional Lie theory, Progr. Math., vol. 288, Birkhäuser Boston, Boston, MA, 2011, pp. 243–280. MR 2743766, DOI 10.1007/978-0-8176-4741-4_{8}
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612, DOI 10.1007/978-3-0348-8707-6
- Marvin J. Greenberg, Lectures on algebraic topology, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 215295
- G. Hector, Géométrie et topologie des espaces difféologiques, Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994) World Sci. Publ., River Edge, NJ, 1995, pp. 55–80 (French, with English summary). MR 1414196
- Richard E. Heisey, Manifolds modelled on $R^{\infty }$ or bounded weak-* topologies, Trans. Amer. Math. Soc. 206 (1975), 295–312. MR 397768, DOI 10.1090/S0002-9947-1975-0397768-X
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Dale Husemoller, Fibre bundles, 3rd ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. MR 1249482, DOI 10.1007/978-1-4757-2261-1
- Patrick Iglesias-Zemmour, The moment maps in diffeology, Mem. Amer. Math. Soc. 207 (2010), no. 972, vi+72. MR 2681025, DOI 10.1090/S0065-9266-10-00582-X
- Patrick Iglesias-Zemmour, Diffeology, Mathematical Surveys and Monographs, vol. 185, American Mathematical Society, Providence, RI, 2013. MR 3025051, DOI 10.1090/surv/185
- Patrick Iglesias, Yael Karshon, and Moshe Zadka, Orbifolds as diffeologies, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2811–2831. MR 2592936, DOI 10.1090/S0002-9947-10-05006-3
- H. Jarchow, Locally convex spaces, Springer Science & Business Media, 2012.
- P. T. Johnstone, Topos theory, Courier Corporation, 2014.
- Hiroshi Kihara, Minimal fibrations and the organizing theorem of simplicial homotopy theory, Ric. Mat. 63 (2014), no. 1, 79–91. MR 3211060, DOI 10.1007/s11587-013-0165-5
- Hiroshi Kihara, Model category of diffeological spaces, J. Homotopy Relat. Struct. 14 (2019), no. 1, 51–90. MR 3913971, DOI 10.1007/s40062-018-0209-3
- H. Kihara, Convenient categories for global analysis, in preparation.
- A. Kriegl and P. W. Michor, The convenient setting for real analytic mappings, Acta Math. 165 (1990), no. 1-2, 105–159. MR 1064579, DOI 10.1007/BF02391903
- Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997. MR 1471480, DOI 10.1090/surv/053
- A. Kriegl and P. W. Michor, Smooth and continuous homotopies into convenient manifolds agree, unpublished preprint, 2002.
- M. V. Losik, Fréchet manifolds as diffeological spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1992), 36–42 (Russian). MR 1213569
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Jean-Pierre Magnot and Jordan Watts, The diffeology of Milnor’s classifying space, Topology Appl. 232 (2017), 189–213. MR 3720892, DOI 10.1016/j.topol.2017.10.011
- J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original. MR 1206474
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- J. P. May and K. Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories. MR 2884233
- Peter W. Michor, Manifolds of differentiable mappings, Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. MR 583436
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Christoph Müller and Christoph Wockel, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv. Geom. 9 (2009), no. 4, 605–626. MR 2574141, DOI 10.1515/ADVGEOM.2009.032
- James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- H. H. Schaefer and M. P. Wolff, Topological vector spaces, 2nd ed., Graduate Texts in Mathematics, vol. 3, Springer-Verlag, New York, 1999. MR 1741419, DOI 10.1007/978-1-4612-1468-7
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393
- Paul Selick, Introduction to homotopy theory, Fields Institute Monographs, vol. 9, American Mathematical Society, Providence, RI, 1997. MR 1450595, DOI 10.1090/fim/009
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 210112
- Andrew Stacey, Comparative smootheology, Theory Appl. Categ. 25 (2011), No. 4, 64–117. MR 2805746
- Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. Reprint of the 1957 edition; Princeton Paperbacks. MR 1688579
- Tammo tom Dieck, Partitions of unity in homotopy theory, Compositio Math. 23 (1971), 159–167. MR 293625
- M. Valdivia, On the completion of a bornological space, Arch. Math. (Basel) 29 (1977), no. 6, 608–613. MR 461078, DOI 10.1007/BF01220461
- S. Willard, General Topology. Courier Corporation, 2012.
- Christoph Wockel, Lie group structures on symmetry groups of principal bundles, J. Funct. Anal. 251 (2007), no. 1, 254–288. MR 2353707, DOI 10.1016/j.jfa.2007.05.016
- Christoph Wockel, A generalization of Steenrod’s approximation theorem, Arch. Math. (Brno) 45 (2009), no. 2, 95–104. MR 2591666
- Enxin Wu, Homological algebra for diffeological vector spaces, Homology Homotopy Appl. 17 (2015), no. 1, 339–376. MR 3350086, DOI 10.4310/HHA.2015.v17.n1.a17
- Kyôichi Yoshinaga, On a locally convex space introduced by J. S. E. Silva, J. Sci. Hiroshima Univ. Ser. A 21 (1957/58), 89–98. MR 97702