
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Global Existence of Small Amplitude Solutions for a Model Quadratic Quasilinear Coupled Wave-Klein-Gordon System in Two Space Dimension, with Mildly Decaying Cauchy Data
About this Title
A. Stingo
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 290, Number 1441
ISBNs: 978-1-4704-5992-5 (print); 978-1-4704-7627-4 (online)
DOI: https://doi.org/10.1090/memo/1441
Published electronically: September 29, 2023
Keywords: Global solution of coupled wave-Klein-Gordon systems,
Klainerman vector fields,
Semiclassical analysis
Table of Contents
Chapters
- 1. Introduction
- 2. Main Theorem and Preliminary Results
- 3. Energy Estimates
- 4. Uniform Estimates
- Appendix A.
- Appendix B.
Abstract
The aim of this monograph is to study the global existence of solutions to a coupled wave-Klein-Gordon system in space dimension two when initial data are small smooth and mildly decaying at infinity. Some physical models strictly related to general relativity have shown the importance of studying such systems but very few results are known at present in low space dimension. We study here a model two-dimensional system, in which the nonlinearity writes in terms of “null forms”, and show the global existence of small solutions. Our goal is to prove some energy estimates on the solution when a certain number of Klainerman vector fields is acting on it, and some optimal uniform estimates. The former ones are obtained using systematically quasilinear normal forms, in their para-differential version; the latter ones are recovered by deducing a new coupled system of a transport equation and an ordinary differential equation from the starting PDE system by means of a semiclassical micro-local analysis of the problem. We expect the strategy developed here to be robust enough to enable us, in the future, to treat the case of the most general nonlinearities.- Thomas Alazard and Jean-Marc Delort, Sobolev estimates for two dimensional gravity water waves, Astérisque 374 (2015), viii+241 (English, with English and French summaries). MR 3460636
- Serge Alinhac and Patrick Gérard, Pseudo-differential operators and the Nash-Moser theorem, Graduate Studies in Mathematics, vol. 82, American Mathematical Society, Providence, RI, 2007. Translated from the 1991 French original by Stephen S. Wilson. MR 2304160, DOI 10.1090/gsm/082
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751
- J.-M. Delort, A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on $\Bbb S^1$, Astérisque 341 (2012), vi+113 (English, with English and French summaries). MR 2952065
- J.-M. Delort, Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4299–4365. MR 2500890, DOI 10.1090/S0002-9947-09-04747-3
- J.-M. Delort, Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres, Mem. Amer. Math. Soc. 234 (2015), no. 1103, vi+80. MR 3288855, DOI 10.1090/memo/1103
- Jean-Marc Delort, Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 4, 1451–1528 (English, with English and French summaries). MR 3494176
- Mouez Dimassi and Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999. MR 1735654, DOI 10.1017/CBO9780511662195
- Vladimir Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z. 203 (1990), no. 4, 683–698. MR 1044072, DOI 10.1007/BF02570764
- Lars Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR 1466700
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- John K. Hunter, Mihaela Ifrim, and Daniel Tataru, Two dimensional water waves in holomorphic coordinates, Comm. Math. Phys. 346 (2016), no. 2, 483–552. MR 3535894, DOI 10.1007/s00220-016-2708-6
- John K. Hunter, Mihaela Ifrim, Daniel Tataru, and Tak Kwong Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc. 143 (2015), no. 8, 3407–3412. MR 3348783, DOI 10.1090/proc/12215
- Mihaela Ifrim and Daniel Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity 28 (2015), no. 8, 2661–2675. MR 3382579, DOI 10.1088/0951-7715/28/8/2661
- Mihaela Ifrim and Daniel Tataru, Two dimensional water waves in holomorphic coordinates II: Global solutions, Bull. Soc. Math. France 144 (2016), no. 2, 369–394. MR 3499085, DOI 10.24033/bsmf.2717
- Alexandru D. Ionescu and Fabio Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math. 199 (2015), no. 3, 653–804. MR 3314514, DOI 10.1007/s00222-014-0521-4
- Alexandru D. Ionescu and Benoit Pausader, On the global regularity for a wave-Klein-Gordon coupled system, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 6, 933–986. MR 3952698, DOI 10.1007/s10114-019-8413-6
- Soichiro Katayama, Global existence for coupled systems of nonlinear wave and Klein-Gordon equations in three space dimensions, Math. Z. 270 (2012), no. 1-2, 487–513. MR 2875845, DOI 10.1007/s00209-010-0808-0
- S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984) Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 293–326. MR 837683
- Philippe G. LeFloch and Yue Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields, Series in Applied and Computational Mathematics, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. MR 3729443
- Philippe G. LeFloch and Yue Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields, Comm. Math. Phys. 346 (2016), no. 2, 603–665. MR 3535896, DOI 10.1007/s00220-015-2549-8
- Philippe G. LeFloch and Yue Ma, The hyperboloidal foliation method, Series in Applied and Computational Mathematics, vol. 2, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. MR 3362362
- Yue Ma, Global solutions of nonlinear wave-Klein-Gordon system in one space dimension, Nonlinear Anal. 191 (2020), 111641, 57. MR 4017462, DOI 10.1016/j.na.2019.111641
- Y. Ma Global solutions of non-linear wave-Klein-Gordon system in two space dimension: semi-linear interactions. arXiv:1712.05315v1. 2017.
- Yue Ma, Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension: completion of the proof, J. Hyperbolic Differ. Equ. 14 (2017), no. 4, 627–670. MR 3732665, DOI 10.1142/S0219891617500217
- Yue Ma, Global solutions of quasilinear wave-Klein-Gordon system in two-space dimension: technical tools, J. Hyperbolic Differ. Equ. 14 (2017), no. 4, 591–625. MR 3732664, DOI 10.1142/S0219891617500205
- Guy Métivier, Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5, Edizioni della Normale, Pisa, 2008. MR 2418072
- Tohru Ozawa, Kimitoshi Tsutaya, and Yoshio Tsutsumi, Remarks on the Klein-Gordon equation with quadratic nonlinearity in two space dimensions, Nonlinear waves (Sapporo, 1995) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 10, Gakk\B{o}tosho, Tokyo, 1997, pp. 383–392. MR 1602662
- Annalaura Stingo, Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data, Bull. Soc. Math. France 146 (2018), no. 1, 155–213 (English, with English and French summaries). MR 3864873, DOI 10.24033/bsmf.2755
- Qian Wang, An intrinsic hyperboloid approach for Einstein Klein-Gordon equations, J. Differential Geom. 115 (2020), no. 1, 27–109. MR 4081931, DOI 10.4310/jdg/1586224841
- Q. Wang. Global existence for the Einstein equations with massive scalar fields. Lecture at the workshop Mathematical Problems in General Relativity. 2015.
- Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012. MR 2952218, DOI 10.1090/gsm/138