
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Sur un problème de compatibilité local-global localement analytique
About this Title
Christophe Breuil and Yiwen Ding
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 290, Number 1442
ISBNs: 978-1-4704-6547-6 (print); 978-1-4704-7628-1 (online)
DOI: https://doi.org/10.1090/memo/1442
Published electronically: October 10, 2023
Keywords: Représentation localement analytique,
$(\varphi ,\Gamma$)-module généralisé,
compatibilité local-global
Table of Contents
Chapters
- 1. Introduction
- 2. Foncteurs $F_\alpha$ et $(\varphi ,\Gamma )$-modules sur l’anneau de Robba
- 3. Foncteurs $F_\alpha$ et théorie d’Orlik-Strauch
- 4. Quelques résultats d’exactitude pour $F_\alpha$
- 5. Foncteurs $F_\alpha$, groupes Ext${}^1$ et compatibilité local-global
- A. Appendice
Abstract
On réinterprète et on précise la conjecture du $Ext^1$ localement analytique de \cite{Br1} de manière fonctorielle en utilisant les $(\varphi ,\Gamma )$-modules sur l’anneau de Robba (avec éventuellement de la $t$-torsion). Puis on démontre plusieurs cas particuliers ou partiels de cette conjecture “améliorée”, notamment pour $\operatorname {GL}_3(\mathbb {Q}_{p})$.
Abstract. We reinterpret the main conjecture of \cite{Br1} on the locally analytic $Ext^1$ in a functorial way using $(\varphi ,\Gamma )$-modules (possibly with $t$-torsion) over the Robba ring, making it more accurate. Then we prove several special or partial cases of this “improved” conjecture, notably for $\operatorname {GL}_3(\mathbb {Q}_{p})$.
- Yvette Amice, Duals, Proceedings of the Conference on $p$-adic Analysis (Nijmegen, 1978) Katholieke Univ., Nijmegen, 1978, pp. 1–15. MR 522117
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- Laurent Berger, Représentations $p$-adiques et équations différentielles, Invent. Math. 148 (2002), no. 2, 219–284 (French, with English summary). MR 1906150, DOI 10.1007/s002220100202
- Laurent Berger, Équations différentielles $p$-adiques et $(\phi ,N)$-modules filtrés, Astérisque 319 (2008), 13–38 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493215
- Laurent Berger, Construction de $(\phi ,\Gamma )$-modules: représentations $p$-adiques et $B$-paires, Algebra Number Theory 2 (2008), no. 1, 91–120 (French, with English and French summaries). MR 2377364, DOI 10.2140/ant.2008.2.91
- Laurent Berger, Peter Schneider, and Bingyong Xie, Rigid character groups, Lubin-Tate theory, and $(\varphi ,\Gamma )$-modules, Mem. Amer. Math. Soc. 263 (2020), no. 1275, v+79. MR 4068300, DOI 10.1090/memo/1275
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172
- Bourbaki N., Algèbre commutative Chapitres 1 à 4, Springer, 2006.
- Bourbaki N., Espaces vectoriels topologiques Chapitres 1 à 5, Springer, 2007.
- Christophe Breuil, $\rm Ext^1$ localement analytique et compatibilité local-global, Amer. J. Math. 141 (2019), no. 3, 611–703 (French, with French summary). MR 3956517, DOI 10.1353/ajm.2019.0020
- Christophe Breuil, Induction parabolique et $(\varphi ,\Gamma )$-modules, Algebra Number Theory 9 (2015), no. 10, 2241–2291 (French, with English and French summaries). MR 3437761, DOI 10.2140/ant.2015.9.2241
- Christophe Breuil, Socle localement analytique I, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 633–685 (French, with English and French summaries). MR 3477886
- Christophe Breuil, Vers le socle localement analytique pour $\textrm {GL}_n$ II, Math. Ann. 361 (2015), no. 3-4, 741–785 (French, with French summary). MR 3319547, DOI 10.1007/s00208-014-1086-7
- Christophe Breuil and Yiwen Ding, Higher $\mathcal L$-invariants for $\textrm {GL}_3(\Bbb Q_p)$ and local-global compatibility, Camb. J. Math. 8 (2020), no. 4, 775–951. MR 4220371, DOI 10.4310/CJM.2020.v8.n4.a2
- Christophe Breuil and Florian Herzig, Ordinary representations of $G(\Bbb {Q}_p)$ and fundamental algebraic representations, Duke Math. J. 164 (2015), no. 7, 1271–1352. MR 3347316, DOI 10.1215/00127094-2916104
- Christophe Breuil and Florian Herzig, Towards the finite slope part for $\textrm {GL}_n$, Int. Math. Res. Not. IMRN 24 (2020), 10495–10552. MR 4190408, DOI 10.1093/imrn/rnz053
- Christophe Breuil and Peter Schneider, First steps towards $p$-adic Langlands functoriality, J. Reine Angew. Math. 610 (2007), 149–180. MR 2359853, DOI 10.1515/CRELLE.2007.070
- Christophe Breuil, Eugen Hellmann, and Benjamin Schraen, A local model for the trianguline variety and applications, Publ. Math. Inst. Hautes Études Sci. 130 (2019), 299–412. MR 4028517, DOI 10.1007/s10240-019-00111-y
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- Ana Caraiani, Monodromy and local-global compatibility for $l=p$, Algebra Number Theory 8 (2014), no. 7, 1597–1646. MR 3272276, DOI 10.2140/ant.2014.8.1597
- Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Paškūnas, and Sug Woo Shin, Patching and the $p$-adic local Langlands correspondence, Camb. J. Math. 4 (2016), no. 2, 197–287. MR 3529394, DOI 10.4310/CJM.2016.v4.n2.a2
- Przemyslaw Chojecki and Claus Sorensen, Weak local-global compatibility in the $p$-adic Langlands program for $U(2)$, Rend. Semin. Mat. Univ. Padova 137 (2017), 101–133. MR 3652871, DOI 10.4171/RSMUP/137-6
- Przemyslaw Chojecki and Claus Sorensen, Strong local-global compatibility in the $p$-adic Langlands program for $U(2)$, Rend. Semin. Mat. Univ. Padova 137 (2017), 135–153. MR 3652872, DOI 10.4171/RSMUP/137-7
- Pierre Colmez, $(\phi ,\Gamma )$-modules et représentations du mirabolique de $\textrm {GL}_2(\mathbf Q_p)$, Astérisque 330 (2010), 61–153 (French, with English and French summaries). MR 2642405
- Pierre Colmez, Représentations de $\textrm {GL}_2(\mathbf Q_p)$ et $(\phi ,\Gamma )$-modules, Astérisque 330 (2010), 281–509 (French, with English and French summaries). MR 2642409
- Pierre Colmez and Gabriel Dospinescu, Complétés universels de représentations de $\text {GL}_2(\Bbb {Q}_p)$, Algebra Number Theory 8 (2014), no. 6, 1447–1519 (French, with English and French summaries). MR 3267142, DOI 10.2140/ant.2014.8.1447
- Pierre Colmez, Gabriel Dospinescu, and Vytautas Paškūnas, The $p$-adic local Langlands correspondence for $\textrm {GL}_2(\Bbb Q_p)$, Camb. J. Math. 2 (2014), no. 1, 1–47. MR 3272011, DOI 10.4310/CJM.2014.v2.n1.a1
- Yiwen Ding, Simple ${\mathcal L}$-invariants for $\textrm {GL}_n$, Trans. Amer. Math. Soc. 372 (2019), no. 11, 7993–8042. MR 4029688, DOI 10.1090/tran/7859
- Gabriel Dospinescu, Extensions de représentations de de Rham et vecteurs localement algébriques, Compos. Math. 151 (2015), no. 8, 1462–1498 (French, with English and French summaries). MR 3383164, DOI 10.1112/S0010437X14007921
- Gabriel Dospinescu and Arthur-César Le Bras, Revêtements du demi-plan de Drinfeld et correspondance de Langlands $p$-adique, Ann. of Math. (2) 186 (2017), no. 2, 321–411 (French, with English and French summaries). MR 3702670, DOI 10.4007/annals.2017.186.2.1
- Matthew Emerton, Locally analytic vectors in representations of locally $p$-adic analytic groups, Mem. Amer. Math. Soc. 248 (2017), no. 1175, iv+158. MR 3685952, DOI 10.1090/memo/1175
- Matthew Emerton, Jacquet modules of locally analytic representations of $p$-adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 5, 775–839 (English, with English and French summaries). MR 2292633, DOI 10.1016/j.ansens.2006.08.001
- Emerton M., Jacquet modules of locally analytic representations of $p$-adic reductive groups II. The relation to parabolic induction, à paraître à J. Inst. Math. Jussieu.
- Emerton M., Local-global compatibility in the $p$-adic Langlands programme for ${\operatorname {GL}_2}_{/\textbf {Q}}$, prépublication 2011.
- Márton Erdélyi and Gergely Zábrádi, Links between generalized Montréal-functors, Math. Z. 286 (2017), no. 3-4, 1227–1275. MR 3671575, DOI 10.1007/s00209-016-1799-2
- Christian Tobias Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, Heft 23, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., vol. 23, Univ. Münster, Math. Inst., Münster, 1999, pp. x+111 (German). MR 1691735
- Jean-Marc Fontaine, Arithmétique des représentations galoisiennes $p$-adiques, Astérisque 295 (2004), xi, 1–115 (French, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104360
- Sarah Glaz, Commutative coherent rings, Lecture Notes in Mathematics, vol. 1371, Springer-Verlag, Berlin, 1989. MR 999133, DOI 10.1007/BFb0084570
- Julien Hauseux, Extensions entre séries principales $p$-adiques et modulo $p$ de $G(F)$, J. Inst. Math. Jussieu 15 (2016), no. 2, 225–270 (French, with English and French summaries). MR 3480966, DOI 10.1017/S1474748014000243
- Richard Hill and David Loeffler, Emerton’s Jacquet functors for non-Borel parabolic subgroups, Doc. Math. 16 (2011), 1–31. MR 2804506
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- Ronald S. Irving, Singular blocks of the category $\scr O$, Math. Z. 204 (1990), no. 2, 209–224. MR 1055986, DOI 10.1007/BF02570868
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arithmetic families of $(\varphi ,\Gamma )$-modules, J. Amer. Math. Soc. 27 (2014), no. 4, 1043–1115. MR 3230818, DOI 10.1090/S0894-0347-2014-00794-3
- Jan Kohlhaase, Invariant distributions on $p$-adic analytic groups, Duke Math. J. 137 (2007), no. 1, 19–62. MR 2309143, DOI 10.1215/S0012-7094-07-13712-8
- Jan Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187–240. MR 2774315, DOI 10.1515/CRELLE.2011.013
- Ruochuan Liu, Cohomology and duality for $(\phi ,\Gamma )$-modules over the Robba ring, Int. Math. Res. Not. IMRN 3 (2008), Art. ID rnm150, 32. MR 2416996, DOI 10.1093/imrn/rnm150
- Ruochuan Liu, Locally analytic vectors of some crystabelian representations of $\textrm {GL}_2(\Bbb Q_p)$, Compos. Math. 148 (2012), no. 1, 28–64. MR 2881308, DOI 10.1112/S0010437X11005525
- Ruochuan Liu, Bingyong Xie, and Yuancao Zhang, Locally analytic vectors of unitary principal series of $\textrm {GL}_2(\Bbb Q_p)$, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 1, 167–190 (English, with English and French summaries). MR 2961790, DOI 10.24033/asens.2163
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Kentaro Nakamura, Classification of two-dimensional split trianguline representations of $p$-adic fields, Compos. Math. 145 (2009), no. 4, 865–914. MR 2521248, DOI 10.1112/S0010437X09004059
- Kentaro Nakamura, Deformations of trianguline $B$-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo 20 (2013), no. 4, 461–568. MR 3185293
- Orlik S., On some properties of the functor $\mathcal {F}_P^G$ from Lie algebra to locally analytic representations, prépublication 2020 (arXiv:1802.07514v2).
- Sascha Orlik and Matthias Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28 (2015), no. 1, 99–157. MR 3264764, DOI 10.1090/S0894-0347-2014-00803-1
- Zicheng Qian, Dilogarithm and higher $\mathcal L$-invariants for $\textrm {GL}_3(\textbf {Q}_p)$, Represent. Theory 25 (2021), 344–411. MR 4252054, DOI 10.1090/ert/567
- François Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Proc. Sympos. Pure Math., Vol. XXVI, Amer. Math. Soc., Providence, RI, 1973, pp. 425–430. MR 354942
- Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547, DOI 10.1007/978-3-662-04728-6
- Peter Schneider, $p$-adic Lie groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 344, Springer, Heidelberg, 2011. MR 2810332, DOI 10.1007/978-3-642-21147-8
- Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $p$-adic representation theory, with applications to $\textrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443–468. MR 1887640, DOI 10.1090/S0894-0347-01-00377-0
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
- Peter Schneider and Jeremy Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297–326. MR 2133762, DOI 10.1090/S1088-4165-05-00277-3
- P. Schneider, J. Teitelbaum, and Dipendra Prasad, $U({\mathfrak {g}})$-finite locally analytic representations, Represent. Theory 5 (2001), 111–128. With an appendix by Dipendra Prasad. MR 1835001, DOI 10.1090/S1088-4165-01-00109-1
- Peter Schneider and Marie-France Vigneras, A functor from smooth $o$-torsion representations to $(\phi ,\Gamma )$-modules, On certain $L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 525–601. MR 2767527
- Benjamin Schraen, Représentations localement analytiques de $\textrm {GL}_3(\Bbb Q_p)$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 43–145 (French, with English and French summaries). MR 2760195, DOI 10.24033/asens.2140
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Gergely Zábrádi, Multivariable $(\varphi ,\Gamma )$-modules and smooth $o$-torsion representations, Selecta Math. (N.S.) 24 (2018), no. 2, 935–995. MR 3782415, DOI 10.1007/s00029-016-0259-5