
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces
About this Title
Karl-Theodor Sturm
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 290, Number 1443
ISBNs: 978-1-4704-6696-1 (print); 978-1-4704-7629-8 (online)
DOI: https://doi.org/10.1090/memo/1443
Published electronically: October 24, 2023
Table of Contents
Chapters
- Introduction and Main Results at a Glance
- 1. The Metric Space $(\mathbb {X}_p, \Delta \!\!\!\!\Delta _p)$
- 2. The Topology of $(\mathbb {X}_p, \Delta \!\!\!\!\Delta _p)$
- 3. Geodesics in $(\mathbb {X}_p, \Delta \!\!\!\!\Delta _p)$
- 4. Cone Structure and Curvature Bounds for $(\mathbb {X}, \Delta \!\!\!\!\Delta )$
- 5. The Space $\mathbb {Y}$ of Gauged Measure Spaces
- 6. The Space $\mathbb {Y}$ as a Riemannian Orbifold
- 7. Semiconvex Functions on $\mathbb {Y}$ and their Gradients
- 8. The $\mathcal {F}$-Functional
- 9. Addendum: The $L^{p,q}$-Distortion Distance
Abstract
Equipped with the $L^{2,q}$-distortion distance $\DD _{2,q}$, the space $\XX _{2q}$ of all metric measure spaces $(X,\d ,\m )$ is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on $\ol \XX _{2q}$ are presented.- Romain Abraham, Jean-François Delmas, and Patrick Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab. 18 (2013), no. 14, 21. MR 3035742, DOI 10.1214/EJP.v18-2116
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005. MR 2129498
- Heinz Bauer, Measure and integration theory, De Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001. Translated from the German by Robert B. Burckel. MR 1897176, DOI 10.1515/9783110866209
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- Keith Ball, Eric A. Carlen, and Elliott H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463–482. MR 1262940, DOI 10.1007/BF01231769
- Yu. Burago, M. Gromov, and G. Perel′man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1–58. MR 1185284, DOI 10.1070/RM1992v047n02ABEH000877
- I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata 133 (2008), 195–218. MR 2390077, DOI 10.1007/s10711-008-9243-3
- Yann Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375–417. MR 1100809, DOI 10.1002/cpa.3160440402
- A. Bendikov and L. Saloff-Coste, Spaces of smooth functions and distributions on infinite-dimensional compact groups, J. Funct. Anal. 218 (2005), no. 1, 168–218. MR 2101219, DOI 10.1016/j.jfa.2004.06.006
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR 1484888
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. MR 1815410
- Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37–74. MR 1815411
- Bennett Chow and Dan Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. MR 2061425, DOI 10.1090/surv/110
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Thierry Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), no. 1, 181–232. MR 1681641, DOI 10.4171/RMI/254
- R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original. MR 1932358, DOI 10.1017/CBO9780511755347
- Kenji Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math. 87 (1987), no. 3, 517–547. MR 874035, DOI 10.1007/BF01389241
- Andreas Greven, Peter Pfaffelhuber, and Anita Winter, Convergence in distribution of random metric measure spaces ($\Lambda$-coalescent measure trees), Probab. Theory Related Fields 145 (2009), no. 1-2, 285–322. MR 2520129, DOI 10.1007/s00440-008-0169-3
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), no. 3-4, 157–198. MR 521460, DOI 10.1007/BF02395060
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- Bruce Kleiner and John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5, 2587–2855. MR 2460872, DOI 10.2140/gt.2008.12.2587
- Jean-François Le Gall, Geodesics in large planar maps and in the Brownian map, Acta Math. 205 (2010), no. 2, 287–360. MR 2746349, DOI 10.1007/s11511-010-0056-5
- Wolfgang Löhr, Equivalence of Gromov-Prohorov- and Gromov’s $\underline \square _\lambda$-metric on the space of metric measure spaces, Electron. Commun. Probab. 18 (2013), no. 17, 10. MR 3037215, DOI 10.1214/ecp.v18-2268
- John Lott, Some geometric calculations on Wasserstein space, Comm. Math. Phys. 277 (2008), no. 2, 423–437. MR 2358290, DOI 10.1007/s00220-007-0367-3
- Nina Lebedeva and Anton Petrunin, Curvature bounded below: a definition a la Berg-Nikolaev, Electron. Res. Announc. Math. Sci. 17 (2010), 122–124. MR 2735031, DOI 10.3934/era.2010.17.122
- John Lott and Cédric Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR 2480619, DOI 10.4007/annals.2009.169.903
- A. Lytchak, Open map theorem for metric spaces, Algebra i Analiz 17 (2005), no. 3, 139–159; English transl., St. Petersburg Math. J. 17 (2006), no. 3, 477–491. MR 2167848, DOI 10.1090/S1061-0022-06-00916-2
- Robert J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), no. 3, 589–608. MR 1844080, DOI 10.1007/PL00001679
- Facundo Mémoli, Gromov-Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11 (2011), no. 4, 417–487. MR 2811584, DOI 10.1007/s10208-011-9093-5
- Grégory Miermont, Tessellations of random maps of arbitrary genus, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 725–781 (English, with English and French summaries). MR 2571957, DOI 10.24033/asens.2108
- John Morgan and Gang Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. MR 2334563, DOI 10.1305/ndjfl/1193667709
- Xi-Nan Ma, Neil S. Trudinger, and Xu-Jia Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal. 177 (2005), no. 2, 151–183. MR 2188047, DOI 10.1007/s00205-005-0362-9
- Yukio Otsu and Takashi Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629–658. MR 1274133
- Shin-Ichi Ohta and Karl-Theodor Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), no. 10, 1386–1433. MR 2547978, DOI 10.1002/cpa.20273
- Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174. MR 1842429, DOI 10.1081/PDE-100002243
- Songzi Li and Xiang-Dong Li, $W$-entropy, super Perelman Ricci flows, and $( K,m)$-Ricci solitons, J. Geom. Anal. 30 (2020), no. 3, 3149–3180. MR 4105148, DOI 10.1007/s12220-019-00193-4
- Peter Petersen, Riemannian geometry, 2nd ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. MR 2243772
- Anton Petrunin, Semiconcave functions in Alexandrov’s geometry, Surveys in differential geometry. Vol. XI, Surv. Differ. Geom., vol. 11, Int. Press, Somerville, MA, 2007, pp. 137–201. MR 2408266, DOI 10.4310/SDG.2006.v11.n1.a6
- Conrad Plaut, Metric spaces of curvature $\geq k$, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 819–898. MR 1886682
- Anton Petrunin, Applications of quasigeodesics and gradient curves, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 203–219. MR 1452875
- Zhongmin Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001. MR 1845637, DOI 10.1142/9789812811622
- S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545, DOI 10.1007/978-3-642-85473-6
- Karl-Theodor Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR 2237206, DOI 10.1007/s11511-006-0002-8
- W. Thurston, The geometry and topology of three-manifolds, Princeton University lecture notes, 1980, http://library.msri.org/books/gt3m.
- A. M. Vershik, The universal Uryson space, Gromov’s metric triples, and random metrics on the series of natural numbers, Uspekhi Mat. Nauk 53 (1998), no. 5(323), 57–64 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 5, 921–928. MR 1691182, DOI 10.1070/rm1998v053n05ABEH000069
- Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR 1964483, DOI 10.1090/gsm/058
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- Anatoly M. Vershik, Pavel B. Zatitskiy, and Fedor V. Petrov, Geometry and dynamics of admissible metrics in measure spaces, Cent. Eur. J. Math. 11 (2013), no. 3, 379–400. MR 3016311, DOI 10.2478/s11533-012-0149-9
- Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100, DOI 10.1017/CBO9780511470967
- P. B. Zatitskiĭ and F. V. Petrov, Correction of metrics, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2011), no. Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XX, 201–209, 309 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 181 (2012), no. 6, 867–870. MR 2870235, DOI 10.1007/s10958-012-0720-8