
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Cluster algebra structures on Poisson nilpotent algebras
About this Title
K. R. Goodearl and M. T. Yakimov
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 290, Number 1445
ISBNs: 978-1-4704-6735-7 (print); 978-1-4704-7631-1 (online)
DOI: https://doi.org/10.1090/memo/1445
Published electronically: October 12, 2023
Keywords: Cluster algebras,
Poisson algebras,
Poisson-prime elements,
Poisson-Ore extensions,
Poisson-CGL extensions
Table of Contents
Chapters
- 1. Introduction
- 2. Poisson algebras
- 3. Cluster algebras and Poisson cluster algebras
- 4. Poisson-primes in Poisson-Ore extensions
- 5. Iterated Poisson-Ore extensions
- 6. Symmetry and maximal tori for Poisson-CGL extensions
- 7. One-step mutations in Poisson-CGL extensions
- 8. Homogeneous Poisson-prime elements for subalgebras of symmetric Poisson-CGL extensions
- 9. Chains of mutations in symmetric Poisson-CGL extensions
- 10. Division properties of mutations between Poisson-CGL extension presentations
- 11. Symmetric Poisson nilpotent algebras and cluster algebras
Abstract
Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric Poisson nilpotent algebras, e.g. coordinate rings of Schubert cells for symmetrizable Kac–Moody groups, affine charts of Bott-Samelson varieties, coordinate rings of double Bruhat cells (in the last case after a localization). We prove that every symmetric Poisson nilpotent algebra satisfying a mild condition on certain scalars is canonically isomorphic to a cluster algebra which coincides with the corresponding upper cluster algebra, without additional localizations by frozen variables. The constructed cluster structure is compatible with the Poisson structure in the sense of Gekhtman, Shapiro and Vainshtein. All Poisson nilpotent algebras are proved to be equivariant Poisson Unique Factorization Domains. Their seeds are constructed from sequences of Poisson-prime elements for chains of Poisson UFDs; mutation matrices are effectively determined from linear systems in terms of the underlying Poisson structure. Uniqueness, existence, mutation, and other properties are established for these sequences of Poisson-prime elements.- Jason Bell, Stéphane Launois, Omar León Sánchez, and Rahim Moosa, Poisson algebras via model theory and differential-algebraic geometry, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 2019–2049. MR 3656478, DOI 10.4171/JEMS/712
- Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52. MR 2110627, DOI 10.1215/S0012-7094-04-12611-9
- Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455. MR 2146350, DOI 10.1016/j.aim.2004.08.003
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492, DOI 10.1007/978-3-0348-8205-7
- K. A. Brown, K. R. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Adv. Math. 206 (2006), no. 2, 567–629. MR 2263715, DOI 10.1016/j.aim.2005.10.004
- Kenneth A. Brown and Iain Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003), 193–216. MR 1989650, DOI 10.1515/crll.2003.048
- Gérard Cauchon, Effacement des dérivations et spectres premiers des algèbres quantiques, J. Algebra 260 (2003), no. 2, 476–518 (French, with English summary). MR 1967309, DOI 10.1016/S0021-8693(02)00542-2
- A. W. Chatters, Noncommutative unique factorization domains, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 49–54. MR 727079, DOI 10.1017/S0305004100061296
- A. W. Chatters and D. A. Jordan, Noncommutative unique factorisation rings, J. London Math. Soc. (2) 33 (1986), no. 1, 22–32. MR 829384, DOI 10.1112/jlms/s2-33.1.22
- Jacques Dixmier, Enveloping algebras, North-Holland Mathematical Library, Vol. 14, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French. MR 498740
- F. Dumas, Rational equivalence for Poisson polynomial algebras, Notes (2011), posted at http://math.univ-bpclermont.fr/$~$fdumas/recherche.html.
- Balázs Elek and Jiang-Hua Lu, Bott-Samelson varieties and Poisson Ore extensions, Int. Math. Res. Not. IMRN 14 (2021), 10745–10797. MR 4285734, DOI 10.1093/imrn/rnz127
- Sergey Fomin, Total positivity and cluster algebras, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 125–145. MR 2827788
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Sergey Fomin and Andrei Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), no. 2, 119–144. MR 1888840, DOI 10.1006/aama.2001.0770
- Christof Geiß, Bernard Leclerc, and Jan Schröer, Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), no. 1, 329–433. MR 2822235, DOI 10.1016/j.aim.2011.05.011
- Christof Geiss, Bernard Leclerc, and Jan Schröer, Factorial cluster algebras, Doc. Math. 18 (2013), 249–274. MR 3064982
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899–934, 1199 (English, with English and Russian summaries). {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}. MR 2078567, DOI 10.17323/1609-4514-2003-3-3-899-934
- Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010. MR 2683456, DOI 10.1090/surv/167
- M. Gekhtman, M. Shapiro, and A. Vainshtein, Exotic cluster structures on $SL_n$: the Cremmer-Gervais case, Mem. Amer. Math. Soc. 246 (2017), no. 1165, v+94. MR 3604689, DOI 10.1090/memo/1165
- Misha Gekhtman, Michael Shapiro, and Alek Vainshtein, Drinfeld double of $GL_n$ and generalized cluster structures, Proc. Lond. Math. Soc. (3) 116 (2018), no. 3, 429–484. MR 3772614, DOI 10.1112/plms.12086
- K. R. Goodearl, A Dixmier-Moeglin equivalence for Poisson algebras with torus actions, Algebra and its applications, Contemp. Math., vol. 419, Amer. Math. Soc., Providence, RI, 2006, pp. 131–154. MR 2279114, DOI 10.1090/conm/419/08001
- K. R. Goodearl and S. Launois, The Dixmier-Moeglin equivalence and a Gel′fand-Kirillov problem for Poisson polynomial algebras, Bull. Soc. Math. France 139 (2011), no. 1, 1–39 (English, with English and French summaries). MR 2815026, DOI 10.24033/bsmf.2598
- K. R. Goodearl and E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1381–1403. MR 1615971, DOI 10.1090/S0002-9947-99-02345-4
- Kenneth R. Goodearl and Milen T. Yakimov, Quantum cluster algebras and quantum nilpotent algebras, Proc. Natl. Acad. Sci. USA 111 (2014), no. 27, 9696–9703. MR 3263301, DOI 10.1073/pnas.1313071111
- K. R. Goodearl and M. T. Yakimov, From quantum Ore extensions to quantum tori via noncommutative UFDs, Adv. Math. 300 (2016), 672–716. MR 3534843, DOI 10.1016/j.aim.2016.03.029
- K. R. Goodearl and M. T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc. 247 (2017), no. 1169, vii+119. MR 3633289, DOI 10.1090/memo/1169
- K.R. Goodearl and M.T. Yakimov, Cluster structures on double Bruhat cells, in preparation.
- David A. Jordan, Ore extensions and Poisson algebras, Glasg. Math. J. 56 (2014), no. 2, 355–368. MR 3187902, DOI 10.1017/S0017089513000293
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, MA, 1970. MR 254021
- Bernhard Keller, On cluster theory and quantum dilogarithm identities, Representations of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 85–116. MR 2931896, DOI 10.4171/101-1/3
- S. Launois, T. H. Lenagan, and L. Rigal, Quantum unique factorisation domains, J. London Math. Soc. (2) 74 (2006), no. 2, 321–340. MR 2269632, DOI 10.1112/S0024610706022927
- Bernard Leclerc, Cluster algebras and representation theory, Proceedings of the International Congress of Mathematicians. Volume IV, Hindustan Book Agency, New Delhi, 2010, pp. 2471–2488. MR 2827980
- Frank Loose, Symplectic algebras and Poisson algebras, Comm. Algebra 21 (1993), no. 7, 2395–2416. MR 1218503, DOI 10.1080/00927879308824682
- Robert J. Marsh, Lecture notes on cluster algebras, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. MR 3155783
- Y. Mi, Quantization of Poisson CGL extensions, PhD thesis, Hong Kong University, November 2017.
- Greg Muller, Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207–247. MR 2995670, DOI 10.1016/j.aim.2012.10.002
- Bach Nguyen, Kurt Trampel, and Milen Yakimov, Noncommutative discriminants via Poisson primes, Adv. Math. 322 (2017), 269–307. MR 3720799, DOI 10.1016/j.aim.2017.10.018
- Sei-Qwon Oh, Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices, Comm. Algebra 27 (1999), no. 5, 2163–2180. MR 1683857, DOI 10.1080/00927879908826555
- Sei-Qwon Oh, Poisson polynomial rings, Comm. Algebra 34 (2006), no. 4, 1265–1277. MR 2220812, DOI 10.1080/00927870500454463
- L. Richard, Equivalence rationnelle et homologie de Hochschild pour certaines algèbres polynomiales classiques et quantiques, Thése de doctorat, Université Blaise Pascal (Clermont 2), (2002).
- Harold Williams, Cluster ensembles and Kac-Moody groups, Adv. Math. 247 (2013), 1–40. MR 3096792, DOI 10.1016/j.aim.2013.07.008
- Lauren K. Williams, Cluster algebras: an introduction, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 1, 1–26. MR 3119820, DOI 10.1090/S0273-0979-2013-01417-4
- Milen Yakimov, On the spectra of quantum groups, Mem. Amer. Math. Soc. 229 (2014), no. 1078, vi+91. MR 3185525