
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
On the Boundary Behavior of Mass-Minimizing Integral Currents
About this Title
Camillo De Lellis, Guido De Philippis, Jonas Hirsch and Annalisa Massaccesi
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 291, Number 1446
ISBNs: 978-1-4704-6695-4 (print); 978-1-4704-7679-3 (online)
DOI: https://doi.org/10.1090/memo/1446
Published electronically: November 8, 2023
Keywords: Boundary regularity,
area-minimizing currents,
minimal surfaces,
calculus of variations,
geometric measure theory
Table of Contents
Chapters
- 1. Introduction
- 2. Corollaries, open problems, and plan of the paper
- 3. Stratification and reduction to collapsed points
- 4. Regularity for $\left (Q-{\textstyle \frac 12}\right )$ $\mathrm {Dir}$-minimizers
- 5. First Lipschitz approximation and harmonic blow-up
- 6. Decay of the excess and uniqueness of tangent cones
- 7. Second Lipschitz approximation
- 8. Center manifolds
- 9. Monotonicity of the frequency function
- 10. Final blow-up argument
Abstract
Let $\Sigma$ be a smooth Riemannian manifold, $\Gamma \subset \Sigma$ a smooth closed oriented submanifold of codimension higher than $2$ and $T$ an integral area-minimizing current in $\Sigma$ which bounds $\Gamma$. We prove that the set of regular points of $T$ at the boundary is dense in $\Gamma$. Prior to our theorem the existence of any regular point was not known, except for some special choice of $\Sigma$ and $\Gamma$. As a corollary of our theorem- William K. Allard, On boundary regularity for Plateau’s problem, Bull. Amer. Math. Soc. 75 (1969), 522–523. MR 241802, DOI 10.1090/S0002-9904-1969-12229-9
- William K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417–491. MR 307015, DOI 10.2307/1970868
- William K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. (2) 101 (1975), 418–446. MR 397520, DOI 10.2307/1970934
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 200816, DOI 10.2307/1970520
- Frederick J. Almgren Jr., Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. $Q$-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR 1777737
- E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. MR 250205, DOI 10.1007/BF01404309
- Theodora Bourni, Allard-type boundary regularity for $C^{1,\alpha }$ boundaries, Adv. Calc. Var. 9 (2016), no. 2, 143–161. MR 3483600, DOI 10.1515/acv-2014-0032
- Sheldon Xu-Dong Chang, Two-dimensional area minimizing integral currents are classical minimal surfaces, J. Amer. Math. Soc. 1 (1988), no. 4, 699–778. MR 946554, DOI 10.1090/S0894-0347-1988-0946554-0
- Ennio De Giorgi, Frontiere orientate di misura minima, Editrice Tecnico Scientifica, Pisa, 1961 (Italian). Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61. MR 179651
- Ennio De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 19 (1965), 79–85 (Italian). MR 178385
- Camillo De Lellis, Guido De Philippis, and Jonas Hirsch, Nonclassical minimizing surfaces with smooth boundary, J. Differential Geom. 122 (2022), no. 2, 205–222. MR 4516939, DOI 10.4310/jdg/1669998183
- Camillo De Lellis, Guido De Philippis, Jonas Hirsch, and Annalisa Massaccesi, Boundary regularity of mass-minimizing integral currents and a question of Almgren, 2017 MATRIX annals, MATRIX Book Ser., vol. 2, Springer, Cham, 2019, pp. 193–205. MR 3931066
- Camillo De Lellis and Emanuele Nunzio Spadaro, $Q$-valued functions revisited, Mem. Amer. Math. Soc. 211 (2011), no. 991, vi+79. MR 2663735, DOI 10.1090/S0065-9266-10-00607-1
- Camillo De Lellis and Emanuele Spadaro, Regularity of area minimizing currents I: gradient $L^p$ estimates, Geom. Funct. Anal. 24 (2014), no. 6, 1831–1884. MR 3283929, DOI 10.1007/s00039-014-0306-3
- Camillo De Lellis and Emanuele Spadaro, Multiple valued functions and integral currents, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 4, 1239–1269. MR 3467655
- Camillo De Lellis and Emanuele Spadaro, Regularity of area minimizing currents II: center manifold, Ann. of Math. (2) 183 (2016), no. 2, 499–575. MR 3450482, DOI 10.4007/annals.2016.183.2.2
- Camillo De Lellis and Emanuele Spadaro, Regularity of area minimizing currents III: blow-up, Ann. of Math. (2) 183 (2016), no. 2, 577–617. MR 3450483, DOI 10.4007/annals.2016.183.2.3
- Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor, Regularity theory for 2-dimensional almost minimal currents III: Blowup, J. Differential Geom. 116 (2020), no. 1, 125–185. MR 4146358, DOI 10.4310/jdg/1599271254
- Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor, Regularity theory for 2-dimensional almost minimal currents II: Branched center manifold, Ann. PDE 3 (2017), no. 2, Paper No. 18, 85. MR 3712561, DOI 10.1007/s40818-017-0035-7
- Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor, Uniqueness of tangent cones for two-dimensional almost-minimizing currents, Comm. Pure Appl. Math. 70 (2017), no. 7, 1402–1421. MR 3666570, DOI 10.1002/cpa.21690
- Camillo De Lellis, Emanuele Spadaro, and Luca Spolaor, Regularity theory for $2$-dimensional almost minimal currents I: Lipschitz approximation, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1783–1801. MR 3739191, DOI 10.1090/tran/6995
- G. De Philippis and E. Paolini, A short proof of the minimality of Simons cone, Rend. Semin. Mat. Univ. Padova 121 (2009), 233–241. MR 2542144, DOI 10.4171/RSMUP/121-14
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 257325
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69–90. MR 157263, DOI 10.1007/BF02849427
- Robert Gulliver, A minimal surface with an atypical boundary branch point, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 211–228. MR 1173043
- Robert Hardt and Leon Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), no. 3, 439–486. MR 554379, DOI 10.2307/1971233
- Robert M. Hardt, On boundary regularity for integral currents or flat chains modulo two minimizing the integral of an elliptic integrand, Comm. Partial Differential Equations 2 (1977), no. 12, 1163–1232. MR 513682, DOI 10.1080/03605307708820058
- Jonas Hirsch, Boundary regularity of Dirichlet minimizing $Q$-valued functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 4, 1353–1407. MR 3616337
- Jonas Hirsch, Examples of holomorphic functions vanishing to infinite order at the boundary, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4249–4271. MR 3811527, DOI 10.1090/tran/7192
- J. Hirsch and M. Marini, Uniqueness of tangent cones to boundary points of two-dimensional almost-minimizing currents, 2019.
- Camillo De Lellis and Zihui Zhao, Dirichlet energy-minimizers with analytic boundary, Indiana Univ. Math. J. 72 (2023), no. 4, 1367–1428. MR 4637366
- Aaron Naber and Daniele Valtorta, The singular structure and regularity of stationary varifolds, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 10, 3305–3382. MR 4153109, DOI 10.4171/jems/987
- F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, 1916.
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Leon Simon, Rectifiability of the singular sets of multiplicity $1$ minimal surfaces and energy minimizing maps, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 246–305. MR 1375258
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Emanuele Nunzio Spadaro, Complex varieties and higher integrability of Dir-minimizing $Q$-valued functions, Manuscripta Math. 132 (2010), no. 3-4, 415–429. MR 2652440, DOI 10.1007/s00229-010-0353-5
- Luca Spolaor, Almgren’s type regularity for semicalibrated currents, Adv. Math. 350 (2019), 747–815. MR 3948685, DOI 10.1016/j.aim.2019.04.057
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- Brian White, Classical area minimizing surfaces with real-analytic boundaries, Acta Math. 179 (1997), no. 2, 295–305. MR 1607558, DOI 10.1007/BF02392746
- Brian White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math. 488 (1997), 1–35. MR 1465365, DOI 10.1515/crll.1997.488.1