
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Local Smoothing Estimates for Schrödinger Equations on Hyperbolic Space
About this Title
Andrew Lawrie, Jonas Lührmann, Sung-Jin Oh and Sohrab Shahshahani
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 291, Number 1447
ISBNs: 978-1-4704-6697-8 (print); 978-1-4704-7680-9 (online)
DOI: https://doi.org/10.1090/memo/1447
Published electronically: November 8, 2023
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries, Function Spaces and Multipliers
- 3. Overview of the scheme and outline of the paper
- 4. Regularity theory of the heat flow: Littlewood–Paley theory
- 5. Smoothing for Low Frequencies
- 6. Smoothing for High Frequencies
- 7. Transitioning Estimate and Proof of Theorems 1.5 and 1.15
- 8. Local smoothing estimate in the stationary, symmetric case and its perturbations
- 9. Proof of Corollaries 1.18 and 1.19
Abstract
We establish global-in-time frequency localized local smoothing estimates for Schrödinger equations on hyperbolic space $\mathbb {H}^d$, $d \geq 2$. In the presence of symmetric first and zeroth order potentials, which are possibly time-dependent, possibly large, and have sufficiently fast polynomial decay, these estimates are proved up to a localized lower order error. Then in the time-independent case, we show that a spectral condition (namely, absence of threshold resonances) implies the full local smoothing estimates (without any error), after projecting to the continuous spectrum. In the process, as a means to localize in frequency, we develop a general Littlewood–Paley machinery on $\mathbb {H}^d$ based on the heat flow. Our results and techniques are motivated by applications to the problem of stability of solitary waves to nonlinear Schrödinger-type equations on $\mathbb {H}^{d}$. Specifically, some of the estimates established in this paper play a crucial role in the authors’ proof of the nonlinear asymptotic stability of harmonic maps under the Schrödinger maps evolution on the hyperbolic plane; see Lawrie, Lührmann, Oh, and Shahshahani, 2023.
As a testament of the robustness of approach, which is based on the positive commutator method and a heat flow based Littlewood-Paley theory, we also show that the main results are stable under small time-dependent perturbations, including polynomially decaying second order ones, and small lower order nonsymmetric perturbations.
- Jean-Philippe Anker and Vittoria Pierfelice, Nonlinear Schrödinger equation on real hyperbolic spaces, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 5, 1853–1869 (English, with English and French summaries). MR 2566713, DOI 10.1016/j.anihpc.2009.01.009
- V. Banica, The nonlinear Schrödinger equation on hyperbolic space, Comm. Partial Differential Equations 32 (2007), no. 10-12, 1643–1677. MR 2372482, DOI 10.1080/03605300600854332
- Elvise Berchio, Debdip Ganguly, and Gabriele Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, J. Funct. Anal. 272 (2017), no. 4, 1661–1703. MR 3590248, DOI 10.1016/j.jfa.2016.11.018
- David Borthwick and Jeremy L. Marzuola, Dispersive estimates for scalar and matrix Schrödinger operators on $\Bbb {H}^{n+1}$, Math. Phys. Anal. Geom. 18 (2015), no. 1, Art. 22, 26. MR 3376154, DOI 10.1007/s11040-015-9191-8
- Jean-Marc Bouclet, Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds, Ann. Global Anal. Geom. 44 (2013), no. 2, 115–136. MR 3073583, DOI 10.1007/s10455-012-9359-4
- William O. Bray, Aspects of harmonic analysis on real hyperbolic space, Fourier analysis (Orono, ME, 1992) Lecture Notes in Pure and Appl. Math., vol. 157, Dekker, New York, 1994, pp. 77–102. MR 1277819
- Xi Chen, Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-time Strichartz estimates without loss, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 3, 803–829 (English, with English and French summaries). MR 3778653, DOI 10.1016/j.anihpc.2017.08.003
- Xi Chen and Andrew Hassell, Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy, Comm. Partial Differential Equations 41 (2016), no. 3, 515–578. MR 3473907, DOI 10.1080/03605302.2015.1116561
- Xi Chen and Andrew Hassell, Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds II: Spectral measure, restriction theorem, spectral multipliers, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 3, 1011–1075 (English, with English and French summaries). MR 3805767
- Michael Christ and Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), no. 2, 409–425. MR 1809116, DOI 10.1006/jfan.2000.3687
- J. L. Clerc and E. M. Stein, $L^{p}$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912. MR 367561, DOI 10.1073/pnas.71.10.3911
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 499948
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413–439. MR 928265, DOI 10.1090/S0894-0347-1988-0928265-0
- Piero D’Ancona, Luca Fanelli, Luis Vega, and Nicola Visciglia, Endpoint Strichartz estimates for the magnetic Schrödinger equation, J. Funct. Anal. 258 (2010), no. 10, 3227–3240. MR 2601614, DOI 10.1016/j.jfa.2010.02.007
- Shin-ichi Doi, Remarks on the Cauchy problem for Schrödinger-type equations, Comm. Partial Differential Equations 21 (1996), no. 1-2, 163–178. MR 1373768, DOI 10.1080/03605309608821178
- Harold Donnelly, Eigenvalues embedded in the continuum for negatively curved manifolds, Michigan Math. J. 28 (1981), no. 1, 53–62. MR 600414
- M. Burak Erdoğan, Michael Goldberg, and Wilhelm Schlag, Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\Bbb R^3$, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 2, 507–531. MR 2390334, DOI 10.4171/JEMS/120
- M. Burak Erdoğan, Michael Goldberg, and Wilhelm Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions, Forum Math. 21 (2009), no. 4, 687–722. MR 2541480, DOI 10.1515/FORUM.2009.035
- Richard Froese, Ira Herbst, Maria Hoffmann-Ostenhof, and Thomas Hoffmann-Ostenhof, On the absence of positive eigenvalues for one-body Schrödinger operators, J. Analyse Math. 41 (1982), 272–284. MR 687957, DOI 10.1007/BF02803406
- Emmanuel Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Mathematics, vol. 1635, Springer-Verlag, Berlin, 1996. MR 1481970, DOI 10.1007/BFb0092907
- Lars Hörmander, The analysis of linear partial differential operators. II, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Differential operators with constant coefficients; Reprint of the 1983 original. MR 2108588, DOI 10.1007/b138375
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- Alexandru D. Ionescu, Benoit Pausader, and Gigliola Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces, Anal. PDE 5 (2012), no. 4, 705–746. MR 3006640, DOI 10.2140/apde.2012.5.705
- Alexandru D. Ionescu and Gigliola Staffilani, Semilinear Schrödinger flows on hyperbolic spaces: scattering $H^1$, Math. Ann. 345 (2009), no. 1, 133–158. MR 2520054, DOI 10.1007/s00208-009-0344-6
- Koichi Kaizuka, Resolvent estimates on symmetric spaces of noncompact type, J. Math. Soc. Japan 66 (2014), no. 3, 895–926. MR 3238321, DOI 10.2969/jmsj/06630895
- Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega, The Cauchy problem for quasi-linear Schrödinger equations, Invent. Math. 158 (2004), no. 2, 343–388. MR 2096797, DOI 10.1007/s00222-004-0373-4
- S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), no. 1, 126–163. MR 2221254, DOI 10.1007/s00039-006-0551-1
- Andrew Lawrie, Jonas Lührmann, Sung-Jin Oh, and Sohrab Shahshahani, Asymptotic stability of harmonic maps on the hyperbolic plane under the Schrödinger maps evolution, Comm. Pure Appl. Math. 76 (2023), no. 3, 453–584. MR 4544804, DOI 10.1002/cpa.22012
- Andrew Lawrie, Sung-Jin Oh, and Sohrab Shahshahani, The Cauchy problem for wave maps on hyperbolic space in dimensions $d\geq 4$, Int. Math. Res. Not. IMRN 7 (2018), 1954–2051. MR 3801478, DOI 10.1093/imrn/rnw272
- Andrew Lawrie, Sung-Jin Oh, and Sohrab Shahshahani, Profile decompositions for wave equations on hyperbolic space with applications, Math. Ann. 365 (2016), no. 1-2, 707–803. MR 3498926, DOI 10.1007/s00208-015-1305-x
- Ze Li, Endpoint Strichartz estimates for magnetic wave equations on two dimensional hyperbolic spaces, Differential Integral Equations 32 (2019), no. 7-8, 369–408. MR 3945761
- Ze Li, Asymptotic stability of large energy harmonic maps under the wave map from 2D hyperbolic spaces to 2D hyperbolic spaces, Adv. Math. 370 (2020), 107234, 87. MR 4106646, DOI 10.1016/j.aim.2020.107234
- Ze Li, Xiao Ma, and Lifeng Zhao, Asymptotic stability of harmonic maps between 2D hyperbolic spaces under the wave map equation. II. Small energy case, Dyn. Partial Differ. Equ. 15 (2018), no. 4, 283–336. MR 3890944, DOI 10.4310/dpde.2018.v15.n4.a3
- Gianni Mancini and Kunnath Sandeep, On a semilinear elliptic equation in $\Bbb H^n$, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 635–671. MR 2483639
- Jeremy Marzuola, Jason Metcalfe, and Daniel Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal. 255 (2008), no. 6, 1497–1553. MR 2565717, DOI 10.1016/j.jfa.2008.05.022
- Andrea Rica Nahmod, Geometry of operators and spectral analysis, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–Yale University. MR 2687620
- Andrea R. Nahmod, Generalized uncertainty principles on spaces of homogeneous type, J. Funct. Anal. 119 (1994), no. 1, 171–209. MR 1255277, DOI 10.1006/jfan.1994.1007
- Igor Rodnianski and Wilhelm Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math. 155 (2004), no. 3, 451–513. MR 2038194, DOI 10.1007/s00222-003-0325-4
- I. Rodnianski and T. Tao, Longtime decay estimates for the Schrödinger equation on manifolds, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 223–253. MR 2333213
- Igor Rodnianski and Terence Tao, Effective limiting absorption principles, and applications, Comm. Math. Phys. 333 (2015), no. 1, 1–95. MR 3294943, DOI 10.1007/s00220-014-2177-8
- W. Schlag, Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 255–285. MR 2333215
- Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. MR 904948, DOI 10.1215/S0012-7094-87-05535-9
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1970. MR 252961
- Daniel Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc. 353 (2001), no. 2, 795–807. MR 1804518, DOI 10.1090/S0002-9947-00-02750-1
- Daniel Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math. 130 (2008), no. 3, 571–634. MR 2418923, DOI 10.1353/ajm.0.0000
- András Vasy and Jared Wunsch, Absence of super-exponentially decaying eigenfunctions of Riemannian manifolds with pinched negative curvature, Math. Res. Lett. 12 (2005), no. 5-6, 673–684. MR 2189229, DOI 10.4310/MRL.2005.v12.n5.a5
- Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874–878. MR 934859, DOI 10.1090/S0002-9939-1988-0934859-0