
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Potential Estimates and Quasilinear Parabolic Equations with Measure Data
About this Title
Quoc-Hung Nguyen
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 291, Number 1449
ISBNs: 978-1-4704-6722-7 (print); 978-1-4704-7682-3 (online)
DOI: https://doi.org/10.1090/memo/1449
Published electronically: November 8, 2023
Keywords: Quasilinear parabolic equations,
renormalized solutions,
Wolff parabolic potential,
Riesz parabolic potential,
Bessel parabolic potential,
maximal potential,
heat kernel,
Radon measures,
uniformly thick domain,
Reifenberg flat domain,
decay estimates,
Lorentz spaces,
Riccati type equations,
capacity
Table of Contents
Chapters
- 1. Introduction and main results
- 2. Nonlinear potential theory to parabolic equations
- 3. Global gradient estimates for parabolic equations
- 4. Quasilinear Lane–Emden type and quasilinear Riccati type parabolic equations
- 5. Appendix
Abstract
In this memoir, we study the existence and regularity of the quasilinear parabolic equations: \begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*} in either $\mathbb {R}^{N+1}$ or $\mathbb {R}^N\times (0,\infty )$ or on a bounded domain $\Omega \times (0,T)\subset \mathbb {R}^{N+1}$ where $N\geq 2$. We shall assume that the nonlinearity $A$ fulfills standard growth conditions, the function $B$ is a continuous and $\mu$ is a radon measure. Our first task is to establish the existence results with $B(u,\nabla u)=\pm |u|^{q-1}u$, for $q>1$. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with $B\equiv 0$, under minimal conditions on the boundary of domain and on nonlinearity $A$. Finally, due to these estimates, we solve the existence problems with $B(u,\nabla u)=|\nabla u|^q$ for $q>1$.- David R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), no. 4, 765–778. MR 458158
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- David R. Adams and Richard J. Bagby, Translation-dilation invariant estimates for Riesz potentials, Indiana Univ. Math. J. 23 (1973/74), 1051–1067. MR 348471, DOI 10.1512/iumj.1974.23.23086
- D. R. Adams and M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 117–135 (English, with French summary). MR 1112194
- Richard J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math. 15 (1971), 610–634. MR 291792
- Pierre Baras and Michel Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Applicable Anal. 18 (1984), no. 1-2, 111–149 (French, with English summary). MR 762868, DOI 10.1080/00036818408839514
- Pierre Baras and Michel Pierre, Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 185–212 (French, with English summary). MR 797270
- Paolo Baroni, Agnese Di Castro, and Giampiero Palatucci, Global estimates for nonlinear parabolic equations, J. Evol. Equ. 13 (2013), no. 1, 163–195. MR 3020141, DOI 10.1007/s00028-013-0174-6
- Dominique Blanchard and Alessio Porretta, Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 3-4, 583–622 (2002). MR 1896079
- Marie-Françoise Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal. 107 (1989), no. 4, 293–324. MR 1004713, DOI 10.1007/BF00251552
- Marie-Françoise Bidaut-Véron, Necessary conditions of existence for an elliptic equation with source term and measure data involving $p$-Laplacian, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. Conf., vol. 8, Southwest Texas State Univ., San Marcos, TX, 2002, pp. 23–34. MR 1990293
- Marie Françoise Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud. 3 (2003), no. 1, 25–63. MR 1955596, DOI 10.1515/ans-2003-0102
- Marie-Francoise Bidaut-Véron and Stanislav Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1–49. MR 1849197, DOI 10.1007/BF02788105
- Marie-Françoise Bidaut-Véron and Nguyen Quoc Hung, Stability properties for quasilinear parabolic equations with measure data, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2103–2135. MR 3420503, DOI 10.4171/JEMS/552
- Marie-Françoise Bidaut-Véron and Quoc-Hung Nguyen, Evolution equations of $p$-Laplace type with absorption or source terms and measure data, Commun. Contemp. Math. 17 (2015), no. 6, 1550006, 25. MR 3485871, DOI 10.1142/S0219199715500066
- Marie-Françoise Bidaut-Véron and Quoc-Hung Nguyen, Pointwise estimates and existence of solutions of porous medium and $p$-Laplace evolution equations with absorption and measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 2, 675–705. MR 3559614
- Marie-Françoise Bidaut-Véron, Nguyen Quoc Hung, and Laurent Véron, Quasilinear Lane-Emden equations with absorption and measure data, J. Math. Pures Appl. (9) 102 (2014), no. 2, 315–337. MR 3227324, DOI 10.1016/j.matpur.2013.11.011
- Marie-Françoise Bidaut-Véron, Giang Hoang, Quoc-Hung Nguyen, and Laurent Véron, An elliptic semilinear equation with source term and boundary measure data: the supercritical case, J. Funct. Anal. 269 (2015), no. 7, 1995–2017. MR 3378867, DOI 10.1016/j.jfa.2015.06.020
- Marie-Françoise Bidaut-Véron, Quoc-Hung Nguyen, and Laurent Véron, Quasilinear and Hessian Lane-Emden type systems with measure data, Potential Anal. 52 (2020), no. 4, 615–643. MR 4091603, DOI 10.1007/s11118-018-9753-z
- Marie-Françoise Bidaut-Véron, Quoc-Hung Nguyen, and Laurent Véron, Quasilinear elliptic equations with a source reaction term involving the function and its gradient and measure data, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 148, 38. MR 4135645, DOI 10.1007/s00526-020-01808-3
- Lucio Boccardo, Andrea Dall’Aglio, Thierry Gallouët, and Luigi Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal. 147 (1997), no. 1, 237–258. MR 1453181, DOI 10.1006/jfan.1996.3040
- Haïm Brézis and Avner Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. (9) 62 (1983), no. 1, 73–97. MR 700049
- Sun-Sig Byun, Jihoon Ok, and Seungjin Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differential Equations 254 (2013), no. 11, 4290–4326. MR 3035434, DOI 10.1016/j.jde.2013.03.004
- Sun-Sig Byun and Lihe Wang, Parabolic equations with BMO nonlinearity in Reifenberg domains, J. Reine Angew. Math. 615 (2008), 1–24. MR 2384329, DOI 10.1515/CRELLE.2008.007
- Sun-Sig Byun and Lihe Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math. 212 (2007), no. 2, 797–818. MR 2329320, DOI 10.1016/j.aim.2006.12.002
- Sun-Sig Byun and Lihe Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal. 176 (2005), no. 2, 271–301. MR 2187159, DOI 10.1007/s00205-005-0357-6
- Le Trong Thanh Bui and Quoc-Hung Nguyen, Gradient weighted norm inequalities for very weak solutions of linear parabolic equations with BMO coefficients, Asymptot. Anal. 127 (2022), no. 4, 339–353. MR 4380796, DOI 10.3233/asy-211693
- Gianni Dal Maso, François Murat, Luigi Orsina, and Alain Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 741–808. MR 1760541
- Andrea Dall’Aglio and Luigi Orsina, Existence results for some nonlinear parabolic equations with nonregular data, Differential Integral Equations 5 (1992), no. 6, 1335–1354. MR 1184029
- Nguyen Anh Dao and Quoc-Hung Nguyen, Nonstationary Navier-Stokes equations with singular time-dependent external forces, C. R. Math. Acad. Sci. Paris 355 (2017), no. 9, 966–972 (English, with English and French summaries). MR 3709535, DOI 10.1016/j.crma.2017.09.007
- Emmanuele DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. MR 1230384, DOI 10.1007/978-1-4612-0895-2
- Jérôme Droniou, Alessio Porretta, and Alain Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal. 19 (2003), no. 2, 99–161. MR 1976292, DOI 10.1023/A:1023248531928
- Frank Duzaar and Giuseppe Mingione, Gradient estimates via non-linear potentials, Amer. J. Math. 133 (2011), no. 4, 1093–1149. MR 2823872, DOI 10.1353/ajm.2011.0023
- D. Feyel and A. de la Pradelle, Topologies fines et compactifications associées à certains espaces de Dirichlet, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 4, x, 121–146 (French, with English summary). MR 508018
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964. MR 181836
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
- Ronald Gariepy and William P. Ziemer, Thermal capacity and boundary regularity, J. Differential Equations 45 (1982), no. 3, 374–388. MR 672714, DOI 10.1016/0022-0396(82)90034-1
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR 473443
- Loukas Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. MR 2449250
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original. MR 2305115
- Petr Honzík and Benjamin J. Jaye, On the good-$\lambda$ inequality for nonlinear potentials, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4167–4180. MR 2957206, DOI 10.1090/S0002-9939-2012-11352-8
- Kurt Hansson, Vladimir G. Maz′ya, and Igor E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), no. 1, 87–120. MR 1673427, DOI 10.1007/BF02384829
- Carlos E. Kenig and Tatiana Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math. (2) 150 (1999), no. 2, 369–454. MR 1726699, DOI 10.2307/121086
- Carlos E. Kenig and Tatiana Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 323–401 (English, with English and French summaries). MR 1977823, DOI 10.1016/S0012-9593(03)00012-0
- Tero Kilpeläinen and Jan Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 591–613. MR 1205885
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- T. Kilpeläinen and P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal. 23 (1994), no. 7, 899–909. MR 1302151, DOI 10.1016/0362-546X(94)90127-9
- Tuomo Kuusi and Giuseppe Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal. 212 (2014), no. 3, 727–780. MR 3187676, DOI 10.1007/s00205-013-0695-8
- Tuomo Kuusi and Giuseppe Mingione, The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 835–892. MR 3191979, DOI 10.4171/JEMS/449
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1968 (Russian). Translated from the Russian by S. Smith. MR 241822
- Rüdiger Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3-4, 217–237. MR 635759, DOI 10.1017/S0308210500020242
- Tommaso Leonori and Francesco Petitta, Local estimates for parabolic equations with nonlinear gradient terms, Calc. Var. Partial Differential Equations 42 (2011), no. 1-2, 153–187. MR 2819633, DOI 10.1007/s00526-010-0384-5
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI 10.1090/S0002-9947-1988-0946438-4
- Gary M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations, Nonlinear Anal. 14 (1990), no. 6, 501–524. MR 1044078, DOI 10.1016/0362-546X(90)90038-I
- Gary M. Lieberman, Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal. 20 (1993), no. 5, 551–569. MR 1207530, DOI 10.1016/0362-546X(93)90038-T
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184, DOI 10.1142/3302
- Jan Malý and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997. MR 1461542, DOI 10.1090/surv/051
- Vladimir G. Maz′ya and Igor E. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), no. 1, 81–115. MR 1340271, DOI 10.1007/BF02559606
- Tadele Mengesha and Nguyen Cong Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal. 203 (2012), no. 1, 189–216. MR 2864410, DOI 10.1007/s00205-011-0446-7
- Tadele Mengesha and Nguyen Cong Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), no. 5, 2485–2507. MR 2756073, DOI 10.1016/j.jde.2010.11.009
- Giuseppe Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), no. 3, 571–627. MR 2578563, DOI 10.1007/s00208-009-0411-z
- Giuseppe Mingione, Nonlinear measure data problems, Milan J. Math. 79 (2011), no. 2, 429–496. MR 2862024, DOI 10.1007/s00032-011-0168-1
- Pasi Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn. Math. Diss. 104 (1996), 71. MR 1386213
- Jürgen Moser, Correction to: “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math. 20 (1967), 231–236. MR 203268, DOI 10.1002/cpa.3160200107
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI 10.1090/S0002-9947-1974-0340523-6
- Joachim Naumann and Jörg Wolf, Interior integral estimates on weak solutions of nonlinear parabolic systems, Inst. fur Math., Humboldt Universitet, Bonn, (1994).
- Phuoc-Tai Nguyen, Parabolic equations with exponential nonlinearity and measure data, J. Differential Equations 257 (2014), no. 7, 2704–2727. MR 3228981, DOI 10.1016/j.jde.2014.05.051
- Quoc-Hung Nguyen and Laurent Véron, Quasilinear and Hessian type equations with exponential reaction and measure data, Arch. Ration. Mech. Anal. 214 (2014), no. 1, 235–267. MR 3237886, DOI 10.1007/s00205-014-0756-7
- Quoc-Hung Nguyen, Global estimates for quasilinear parabolic equations on Reifenberg flat domains and its applications to Riccati type parabolic equations with distributional data, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 3927–3948. MR 3426099, DOI 10.1007/s00526-015-0926-y
- Quoc-Hung Nguyen and Laurent Véron, Wiener criteria for existence of large solutions of nonlinear parabolic equations with absorption in a non-cylindrical domain, J. Differential Equations 260 (2016), no. 5, 4805–4844. MR 3437606, DOI 10.1016/j.jde.2015.11.032
- Quoc-Hung Nguyen and Nguyen Cong Phuc, Good-$\lambda$ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems, with applications, Math. Ann. 374 (2019), no. 1-2, 67–98. MR 3961305, DOI 10.1007/s00208-018-1744-2
- Quoc-Hung Nguyen and Nguyen Cong Phuc, Pointwise gradient estimates for a class of singular quasilinear equations with measure data, J. Funct. Anal. 278 (2020), no. 5, 108391, 35. MR 4046205, DOI 10.1016/j.jfa.2019.108391
- Quoc-Hung Nguyen and Nguyen Cong Phuc, Existence and regularity estimates for quasilinear equations with measure data: the case $1<p\leq (3n-2)/(2n-1)$, Anal. PDE 15 (2022), no. 8, 1879–1895. MR 4546498, DOI 10.2140/apde.2022.15.1879
- Quoc-Hung Nguyen and Nguyen Cong Phuc, Quasilinear Riccati-type equations with oscillatory and singular data, Adv. Nonlinear Stud. 20 (2020), no. 2, 373–384. MR 4095475, DOI 10.1515/ans-2020-2079
- Francesco Petitta, Renormalized solutions of nonlinear parabolic equations with general measure data, Ann. Mat. Pura Appl. (4) 187 (2008), no. 4, 563–604. MR 2413369, DOI 10.1007/s10231-007-0057-y
- Francesco Petitta, Augusto C. Ponce, and Alessio Porretta, Diffuse measures and nonlinear parabolic equations, J. Evol. Equ. 11 (2011), no. 4, 861–905. MR 2861310, DOI 10.1007/s00028-011-0115-1
- Alessio Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4) 177 (1999), 143–172. MR 1747629, DOI 10.1007/BF02505907
- Nguyen Cong Phuc and Igor E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math. (2) 168 (2008), no. 3, 859–914. MR 2456885, DOI 10.4007/annals.2008.168.859
- Nguyen Cong Phuc and Igor E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal. 256 (2009), no. 6, 1875–1906. MR 2498563, DOI 10.1016/j.jfa.2009.01.012
- Nguyen Cong Phuc, Quasilinear Riccati type equations with super-critical exponents, Comm. Partial Differential Equations 35 (2010), no. 11, 1958–1981. MR 2754075, DOI 10.1080/03605300903585344
- Nguyen Cong Phuc, Global integral gradient bounds for quasilinear equations below or near the natural exponent, Ark. Mat. 52 (2014), no. 2, 329–354. MR 3255143, DOI 10.1007/s11512-012-0177-5
- Nguyen Cong Phuc, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv. Math. 250 (2014), 387–419. MR 3122172, DOI 10.1016/j.aim.2013.09.022
- Nguyen Cong Phuc, Morrey global bounds and quasilinear Riccati type equations below the natural exponent, J. Math. Pures Appl. (9) 102 (2014), no. 1, 99–123 (English, with English and French summaries). MR 3212250, DOI 10.1016/j.matpur.2013.11.003
- Pavol Quittner and Philippe Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states. MR 2346798
- E. R. Reifenberg, Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. MR 114145, DOI 10.1007/BF02547186
- Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922, DOI 10.1515/9783110889864.535
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Tatiana Toro, Doubling and flatness: geometry of measures, Notices Amer. Math. Soc. 44 (1997), no. 9, 1087–1094. MR 1470167
- Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR 1774162, DOI 10.1007/BFb0103908
- I. E. Verbitsky, Nonlinear potentials and trace inequalities, The Maz′ya anniversary collection, Vol. 2 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 110, Birkhäuser, Basel, 1999, pp. 323–343. MR 1747901
- Igor E. Verbitsky and Richard L. Wheeden, Weighted norm inequalities for integral operators, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3371–3391. MR 1443202, DOI 10.1090/S0002-9947-98-02017-0
- Laurent Véron, Elliptic equations involving measures, Stationary partial differential equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, pp. 593–712. MR 2103694, DOI 10.1016/S1874-5733(04)80010-X
- William P. Ziemer, Behavior at the boundary of solutions of quasilinear parabolic equations, J. Differential Equations 35 (1980), no. 3, 291–305. MR 563383, DOI 10.1016/0022-0396(80)90030-3