
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes–Rogers and Thron–Rogers Polynomials, with Coefficientwise Hankel-Total Positivity
About this Title
Mathias Pétréolle, Alan D. Sokal and Bao-Xuan Zhu
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 291, Number 1450
ISBNs: 978-1-4704-6268-0 (print); 978-1-4704-7683-0 (online)
DOI: https://doi.org/10.1090/memo/1450
Published electronically: November 8, 2023
Keywords: Dyck path,
$m$-Dyck path,
Schröder path,
$m$-Schröder path,
Motzkin path,
Łukasiewicz path,
Catalan numbers,
Fuss–Catalan numbers,
Schröder numbers,
continued fraction,
S-fraction,
T-fraction,
J-fraction,
branched continued fraction,
Stieltjes–Rogers polynomials,
Thron–Rogers polynomials,
Jacobi–Rogers polynomials,
production matrix,
totally positive matrix,
total positivity,
Hankel matrix,
Lindström–Gessel–Viennot lemma,
Stieltjes moment problem,
Fuss–Narayana polynomial,
Fuss–Narayana symmetric function,
Eulerian polynomial,
Eulerian symmetric function,
Stirling permutation,
hypergeometric series,
basic hypergeometric series,
contiguous relation
Table of Contents
Chapters
- 1. Introduction
- 2. The $\boldsymbol {m}$-Stieltjes–Rogers and $\boldsymbol {m}$-Thron–Rogers polynomials
- 3. Relation between different values of $\boldsymbol {m}$
- 4. The $\boldsymbol {m}$-Jacobi–Rogers polynomials
- 5. The generalized $\boldsymbol {m}$-Stieltjes–Rogers, $\boldsymbol {m}$-Thron–Rogers and $\boldsymbol {m}$-Jacobi–Rogers polynomials
- 6. Generalized $\boldsymbol {m}$-Jacobi–Rogers polynomials in terms of ordered trees and forests
- 7. Contraction formulae for $\boldsymbol {m}$-branched continued fractions
- 8. Production matrices
- 9. Total positivity
- 10. Weights periodic of period $\boldsymbol {m\!+\!1}$ or $\boldsymbol {m}$
- 11. Weights eventually periodic of period $\boldsymbol {m\!+\!1}$ or $\boldsymbol {m}$
- 12. Weights quasi-affine or factorized of period ${\boldsymbol {m\!+\!1}}$ or $\boldsymbol {m}$
- 13. Ratios of contiguous hypergeometric series I: $\boldsymbol { {{}_{m+1 \!}{F}{_{0}}\!} }$
- 14. Ratios of contiguous hypergeometric series II: $\boldsymbol { {{}_{r }{F}{_{s}}\!} }$
- 15. Ratios of contiguous hypergeometric series III: $\boldsymbol { {_{r}{\phi }{_{s}}} }$
- 16. Some final remarks
Abstract
We define an infinite sequence of generalizations, parametrized by an integer $m \ge 1$, of the Stieltjes–Rogers and Thron–Rogers polynomials; they arise as the power-series expansions of some branched continued fractions, and as the generating polynomials for $m$-Dyck and $m$-Schröder paths with height-dependent weights. We prove that all of these sequences of polynomials are coefficientwise Hankel-totally positive, jointly in all the (infinitely many) indeterminates. We then apply this theory to prove the coefficientwise Hankel-total positivity for combinatorially interesting sequences of polynomials. Enumeration of unlabeled ordered trees and forests gives rise to multivariate Fuss–Narayana polynomials and Fuss–Narayana symmetric functions. Enumeration of increasing (labeled) ordered trees and forests gives rise to multivariate Eulerian polynomials and Eulerian symmetric functions, which include the univariate $m$th-order Eulerian polynomials as specializations. We also find branched continued fractions for ratios of contiguous hypergeometric series ${}_r \! F_s$ for arbitrary $r$ and $s$, which generalize Gauss’ continued fraction for ratios of contiguous ${}_2 \! F_1$; and for $s=0$ we prove the coefficientwise Hankel-total positivity. Finally, we extend the branched continued fractions to ratios of contiguous basic hypergeometric series ${}_r \! \phi _s$.- Martin Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A 87 (1999), no. 1, 33–51. MR 1698277, DOI 10.1006/jcta.1998.2945
- M. Aigner, Catalan and other numbers: a recurrent theme, Algebraic combinatorics and computer science, Springer Italia, Milan, 2001, pp. 347–390. MR 1854484
- Martin Aigner, Lattice paths and determinants, Computational discrete mathematics, Lecture Notes in Comput. Sci., vol. 2122, Springer, Berlin, 2001, pp. 1–12. MR 1911577, DOI 10.1007/3-540-45506-X_{1}
- Martin Aigner and Günter M. Ziegler, Proofs from The Book, 6th ed., Springer, Berlin, 2018. See corrected reprint of the 1998 original [ MR1723092]; Including illustrations by Karl H. Hofmann. MR 3823190, DOI 10.1007/978-3-662-57265-8
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 184042
- Marie Albenque and Jérémie Bouttier, Constellations and multicontinued fractions: application to Eulerian triangulations, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), Discrete Math. Theor. Comput. Sci. Proc., AR, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2012, pp. 805–816 (English, with English and French summaries). MR 2958050
- T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219. MR 884118, DOI 10.1016/0024-3795(87)90313-2
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Drew Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274, DOI 10.1090/S0065-9266-09-00565-1
- D. Arquès and J. Françon, Arbres bien étiquetés et fractions multicontinues, Ninth colloquium on trees in algebra and programming (Bordeaux, 1984) Cambridge Univ. Press, Cambridge, 1984, pp. 51–61 (French, with English summary). MR 787451
- Richard Askey, Appendix, Rocky Mountain J. Math. 15 (1985), no. 2, 311–318. Number theory (Winnipeg, Man., 1983). MR 823242, DOI 10.1216/RMJ-1985-15-2-311
- Bernard A. Asner Jr., On the total nonnegativity of the Hurwitz matrix, SIAM J. Appl. Math. 18 (1970), 407–414. MR 260768, DOI 10.1137/0118035
- Jean-Christophe Aval, Multivariate Fuss-Catalan numbers, Discrete Math. 308 (2008), no. 20, 4660–4669. MR 2438172, DOI 10.1016/j.disc.2007.08.100
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 185155
- Cyril Banderier and Philippe Flajolet, Basic analytic combinatorics of directed lattice paths, Theoret. Comput. Sci. 281 (2002), no. 1-2, 37–80. Selected papers in honour of Maurice Nivat. MR 1909568, DOI 10.1016/S0304-3975(02)00007-5
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: higher-order Eulerian and Ward numbers, Electron. J. Combin. 22 (2015), no. 3, Paper 3.37, 20. MR 3414183, DOI 10.37236/4814
- P. Barry, Riordan Arrays: A Primer (Logic Press, County Kildare, Ireland, 2016).
- F. Bergeron, Combinatorics of $r$-Dyck paths, $r$-parking functions, and the $r$-Tamari lattices, preprint (February 2012), arXiv:1202.6269.
- François Bergeron, Philippe Flajolet, and Bruno Salvy, Varieties of increasing trees, CAAP ’92 (Rennes, 1992) Lecture Notes in Comput. Sci., vol. 581, Springer, Berlin, 1992, pp. 24–48. MR 1251994, DOI 10.1007/3-540-55251-0_{2}
- F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, vol. 67, Cambridge University Press, Cambridge, 1998. Translated from the 1994 French original by Margaret Readdy; With a foreword by Gian-Carlo Rota. MR 1629341
- Bruce C. Berndt, Robert L. Lamphere, and B. M. Wilson, Chapter 12 of Ramanujan’s second notebook: continued fractions, Rocky Mountain J. Math. 15 (1985), no. 2, 235–310. Number theory (Winnipeg, Man., 1983). MR 823241, DOI 10.1216/RMJ-1985-15-2-235
- Alexei Borodin and Grigori Olshanski, Representations of the infinite symmetric group, Cambridge Studies in Advanced Mathematics, vol. 160, Cambridge University Press, Cambridge, 2017. MR 3618143, DOI 10.1017/CBO9781316798577
- Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833, DOI 10.1090/memo/0413
- Francesco Brenti, Combinatorics and total positivity, J. Combin. Theory Ser. A 71 (1995), no. 2, 175–218. MR 1342446, DOI 10.1016/0097-3165(95)90000-4
- F. Brenti, The applications of total positivity to combinatorics, and conversely, Total positivity and its applications (Jaca, 1994) Math. Appl., vol. 359, Kluwer Acad. Publ., Dordrecht, 1996, pp. 451–473. MR 1421615, DOI 10.1007/978-94-015-8674-0_{2}2
- Francesco Brenti, Hilbert polynomials in combinatorics, J. Algebraic Combin. 7 (1998), no. 2, 127–156. MR 1609885, DOI 10.1023/A:1008656320759
- Gregory W. Brumfiel, Partially ordered rings and semi-algebraic geometry, London Mathematical Society Lecture Note Series, vol. 37, Cambridge University Press, Cambridge-New York, 1979. MR 553280
- Naiomi T. Cameron and Jillian E. McLeod, Returns and hills on generalized Dyck paths, J. Integer Seq. 19 (2016), no. 6, Article 16.6.1, 28. MR 3546615, DOI 10.9734/bjmcs/2016/30398
- L. Carlitz, Eulerian numbers and operators, Collect. Math. 24 (1973), 175–200. MR 366682
- Xiang-Ke Chang, Xing-Biao Hu, Hongchuan Lei, and Yeong-Nan Yeh, Combinatorial proofs of addition formulas, Electron. J. Combin. 23 (2016), no. 1, Paper 1.8, 13. MR 3484713, DOI 10.37236/4793
- Xi Chen, Huyile Liang, and Yi Wang, Total positivity of Riordan arrays, European J. Combin. 46 (2015), 68–74. MR 3305345, DOI 10.1016/j.ejc.2014.11.009
- Xi Chen, Huyile Liang, and Yi Wang, Total positivity of recursive matrices, Linear Algebra Appl. 471 (2015), 383–393. MR 3314343, DOI 10.1016/j.laa.2015.01.009
- J. Cigler, Some remarks on Catalan families, European J. Combin. 8 (1987), no. 3, 261–267. MR 919877, DOI 10.1016/S0195-6698(87)80030-6
- E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), no. 1-3, 115–150. MR 1657214, DOI 10.1016/S0024-3795(98)10087-3
- Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. With contributions by Franky Backeljauw and Catherine Bonan-Hamada; Verified numerical output by Stefan Becuwe and Cuyt. MR 2410517
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production matrices, Adv. in Appl. Math. 34 (2005), no. 1, 101–122. MR 2102277, DOI 10.1016/j.aam.2004.05.002
- Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production matrices and Riordan arrays, Ann. Comb. 13 (2009), no. 1, 65–85. MR 2529720, DOI 10.1007/s00026-009-0013-1
- Michael Domaratzki, Combinatorial interpretations of a generalization of the Genocchi numbers, J. Integer Seq. 7 (2004), no. 3, Article 04.3.6, 11. MR 2110777
- Philippe Duchon, On the enumeration and generation of generalized Dyck words, Discrete Math. 225 (2000), no. 1-3, 121–135 (English, with English and French summaries). Formal power series and algebraic combinatorics (Toronto, ON, 1998). MR 1798327, DOI 10.1016/S0012-365X(00)00150-3
- Dominique Dumont, Une généralisation trivariée symétrique des nombres eulériens, J. Combin. Theory Ser. A 28 (1980), no. 3, 307–320 (French). MR 570212, DOI 10.1016/0097-3165(80)90073-4
- D. Dumont, Pics de cycle et dérivées partielles, Séminaire Lotharingien de Combinatoire 13, article B13a (1986).
- Dominique Dumont and Germain Kreweras, Sur le développement d’une fraction continue liée à la série hypergéométrique et son interprétation en termes de records et anti-records dans les permutations, European J. Combin. 9 (1988), no. 1, 27–32 (French, with English summary). MR 938819, DOI 10.1016/S0195-6698(88)80023-4
- Dominique Dumont and Arthur Randrianarivony, Sur une extension des nombres de Genocchi, European J. Combin. 16 (1995), no. 2, 147–151 (French, with English summary). MR 1324424, DOI 10.1016/S0195-6698(95)90053-5
- Alexander Dyachenko, Total nonnegativity of infinite Hurwitz matrices of entire and meromorphic functions, Complex Anal. Oper. Theory 8 (2014), no. 5, 1097–1127. MR 3208805, DOI 10.1007/s11785-013-0344-0
- Askar Dzhumadil’daev and Damir Yeliussizov, Stirling permutations on multisets, European J. Combin. 36 (2014), 377–392. MR 3131903, DOI 10.1016/j.ejc.2013.08.002
- Paul H. Edelman, Chain enumeration and noncrossing partitions, Discrete Math. 31 (1980), no. 2, 171–180. MR 583216, DOI 10.1016/0012-365X(80)90033-3
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, Electron. J. Combin. 27 (2020), no. 4, Paper No. 4.6, 36. MR 4245181, DOI 10.37236/9571
- G. Eneström, Die Schriften Eulers chronologisch nach den Jahren geordnet, in denen sie verfaßt worden sind, Jahresbericht der Deutschen Mathematiker-Vereinigung (Teubner, Leipzig, 1913).
- L. Euler, De seriebus divergentibus, Novi Commentarii Academiae Scientiarum Petropolitanae 5, 205–237 (1760); reprinted in Opera Omnia, ser. 1, vol. 14, pp. 585–617. [Latin original and English and German translations available at http://eulerarchive.maa.org/pages/E247.html]
- L. Euler, De transformatione seriei divergentis $1 - mx + m(m+n)x^2 - m(m+n)(m+2n)x^3 + \text {etc.}$ in fractionem continuam, Nova Acta Academiae Scientarum Imperialis Petropolitanae 2, 36–45 (1788); reprinted in Opera Omnia, ser. 1, vol. 16, pp. 34–46. and then corrected according to arXiv:1201.6687 [Latin original and English and German translations available at http://eulerarchive.maa.org/pages/E616.html]
- Shaun M. Fallat and Charles R. Johnson, Totally nonnegative matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2011. MR 2791531, DOI 10.1515/9781400839018
- P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), no. 2, 125–161. MR 592851, DOI 10.1016/0012-365X(80)90050-3
- Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009. MR 2483235, DOI 10.1017/CBO9780511801655
- Sergey Fomin, Loop-erased walks and total positivity, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3563–3583. MR 1837248, DOI 10.1090/S0002-9947-01-02824-0
- Sergey Fomin, Total positivity and cluster algebras, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 125–145. MR 2827788
- S. Fomin, L. Williams and A. Zelevinsky, Introduction to Cluster Algebras, forthcoming book; preliminary draft of Chapters 1–5 posted at arXiv:1608.05735 and arXiv:1707.07190 at arXiv.org.
- Sergey Fomin and Andrei Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), no. 2, 335–380. MR 1652878, DOI 10.1090/S0894-0347-99-00295-7
- Sergey Fomin and Andrei Zelevinsky, Total positivity: tests and parametrizations, Math. Intelligencer 22 (2000), no. 1, 23–33. MR 1745560, DOI 10.1007/BF03024444
- Jean Françon, Histoires de fichiers, RAIRO Informat. Théor. 12 (1978), no. 1, 49–62, ii (French, with English summary). MR 483819
- Evelyn Frank, A new class of continued fraction expansions for the ratios of hypergeometric functions, Trans. Amer. Math. Soc. 81 (1956), 453–476. MR 76937, DOI 10.1090/S0002-9947-1956-0076937-0
- Éric Fusy and Emmanuel Guitter, Comparing two statistical ensembles of quadrangulations: a continued fraction approach, Ann. Inst. Henri Poincaré D 4 (2017), no. 2, 125–176. MR 3656902, DOI 10.4171/AIHPD/37
- F. P. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, Revised edition, AMS Chelsea Publishing, Providence, RI, 2002. Translation based on the 1941 Russian original; Edited and with a preface by Alex Eremenko. MR 1908601, DOI 10.1090/chel/345
- F. Gantmakher and M. Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. 4 (1937), 445–476 (French). MR 1556987
- Mariano Gasca and Charles A. Micchelli (eds.), Total positivity and its applications, Mathematics and its Applications, vol. 359, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1421593, DOI 10.1007/978-94-015-8674-0
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- C.F. Gauss, Disquisitiones generales circa seriem infinitam $1 + {\alpha \beta \over 1 . \gamma } x + {\alpha (\alpha +1)\beta (\beta +1) \over 1 . 2 . \gamma (\gamma +1)} xx + {\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2) \over 1 . 2 . 3 . \gamma (\gamma +1) (\gamma +2)} x^3 + \text {etc.}$, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, Classis Mathematicae 2 (1813). [Reprinted in C.F. Gauss, Werke, vol. 3 (Cambridge University Press, Cambridge, 2011), pp. 123–162.]
- I. Gessel, A note on Stirling permutations, unpublished manuscript, August 1978, cited in \cite{Park_{9}4a}.
- I. Gessel, private communication, 27 May 2015.
- Ira M. Gessel, Lagrange inversion, J. Combin. Theory Ser. A 144 (2016), 212–249. MR 3534068, DOI 10.1016/j.jcta.2016.06.018
- Ira M. Gessel and Seunghyun Seo, A refinement of Cayley’s formula for trees, Electron. J. Combin. 11 (2004/06), no. 2, Research Paper 27, 23. MR 2224940, DOI 10.37236/1884
- Ira Gessel and Richard P. Stanley, Stirling polynomials, J. Combinatorial Theory Ser. A 24 (1978), no. 1, 24–33. MR 462961, DOI 10.1016/0097-3165(78)90042-0
- I.M. Gessel and X.G. Viennot, Determinants, paths, and plane partitions, Brandeis University preprint (1989). Available on-line at http://people.brandeis.edu/~gessel/homepage/papers/ or http://xavierviennot.org/xavier/articles.html
- I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota; A Wiley-Interscience Publication. MR 702512
- D. Gouyou-Beauchamps, Construction of $q$-equations for convex polyominoes, paper presented at 10th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC ’98), available on-line at http://www-igm.univ-mlv.fr/~fpsac/FPSAC98/articles.html
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR 1397498
- Benjamin Hackl, Clemens Heuberger, and Helmut Prodinger, Counting ascents in generalized Dyck paths, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, LIPIcs. Leibniz Int. Proc. Inform., vol. 110, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018, pp. Art. No. 26, 15. MR 3826145
- J. Haglund and Mirkó Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European J. Combin. 33 (2012), no. 4, 477–487. MR 2864433, DOI 10.1016/j.ejc.2011.10.007
- Mark D. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), no. 1, 17–76. MR 1256101, DOI 10.1023/A:1022450120589
- G.-N. Han, Escaliers évalués et nombres classiques, Séminaire Lotharingien de Combinatoire 24, paper B24a (1993) [= Publ. I.R.M.A. Strasbourg, 461/S-24, pp. 77–85].
- Tian-Xiao He, Matrix characterizations of Riordan arrays, Linear Algebra Appl. 465 (2015), 15–42. MR 3274660, DOI 10.1016/j.laa.2014.09.008
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962–3974. MR 2537389, DOI 10.1016/j.disc.2008.11.021
- E. Heine, Untersuchungen über die Reihe, J. Reine Angew. Math. 34 (1847), 285–328 (German). MR 1578577, DOI 10.1515/crll.1847.34.285
- Einar Hille, Note on Some Hypergeometric Series of Higher Order, J. London Math. Soc. 4 (1929), no. 1, 50–54. MR 1574906, DOI 10.1112/jlms/s1-4.1.50
- Olga Holtz, Hermite-Biehler, Routh-Hurwitz, and total positivity, Linear Algebra Appl. 372 (2003), 105–110. MR 1999142, DOI 10.1016/S0024-3795(03)00501-9
- A. Hurwitz, Über die Wurzeln einiger transzendenten Gleichungen, Mitteilungen der Mathematischen Gesellschaft im Hamburg 2, 25–31 (1890). [Reprinted in Mathematische Werke, vol. 1 (Springer-Verlag, Basel, 1932), pp. 299–305.]
- Svante Janson, Markus Kuba, and Alois Panholzer, Generalized Stirling permutations, families of increasing trees and urn models, J. Combin. Theory Ser. A 118 (2011), no. 1, 94–114. MR 2737187, DOI 10.1016/j.jcta.2009.11.006
- William B. Jones and Wolfgang J. Thron, Continued fractions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley Publishing Co., Reading, MA, 1980. Analytic theory and applications; With a foreword by Felix E. Browder; With an introduction by Peter Henrici. MR 595864
- Matthieu Josuat-Vergès, A $q$-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J. 46 (2018), no. 2, 483–507. MR 3803972, DOI 10.1007/s11139-017-9885-6
- S. Karlin, Total Positivity (Stanford University Press, Stanford CA, 1968).
- Samuel Karlin and James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141–1164. MR 114248
- J. H. B. Kemperman, A Hurwitz matrix is totally positive, SIAM J. Math. Anal. 13 (1982), no. 2, 331–341. MR 647131, DOI 10.1137/0513025
- Alexey Nikolaevitch Khovanskii, The application of continued fractions and their generalizations to problems in approximation theory, P. Noordhoff N. V., Groningen, 1963. Translated by Peter Wynn. MR 156126
- Haseo Ki and Young-One Kim, On the zeros of some generalized hypergeometric functions, J. Math. Anal. Appl. 243 (2000), no. 2, 249–260. MR 1741522, DOI 10.1006/jmaa.1999.6662
- Donald E. Knuth, The art of computer programming. Vol. 3, Addison-Wesley, Reading, MA, 1998. Sorting and searching; Second edition [of MR0445948]. MR 3077154
- C. Krattenthaler, A systematic list of two- and three-term contiguous relations for basic hypergeometric series, posted 25 August 2002, http://www.mat.univie.ac.at/~kratt/artikel/contrel.ps.gz
- C. Krattenthaler, HYP [Manual for the Mathematica package HYP], posted 20 September 2003, http://www.mat.univie.ac.at/~kratt/hyp_hypq/hypm
- G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333–350 (French). MR 309747, DOI 10.1016/0012-365X(72)90041-6
- Markus Kuba and Anna L. Varvak, On path diagrams and Stirling permutations, Sém. Lothar. Combin. 82 ([2020–2021]), Art. B82c, 28. MR 4275434
- T. Y. Lam, An introduction to real algebra, Rocky Mountain J. Math. 14 (1984), no. 4, 767–814. Ordered fields and real algebraic geometry (Boulder, Colo., 1983). MR 773114, DOI 10.1216/RMJ-1984-14-4-767
- J.H. Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, Mémoires de l’Académie Royale des Sciences de Berlin 17, 265–322 (1768). Available on-line at http://www.kuttaka.org/~JHL/L1768b.html
- Michel Lassalle, Two integer sequences related to Catalan numbers, J. Combin. Theory Ser. A 119 (2012), no. 4, 923–935. MR 2881235, DOI 10.1016/j.jcta.2012.01.002
- Romuald Lenczewski and RafałSałapata, Multivariate Fuss-Narayana polynomials and their application to random matrices, Electron. J. Combin. 20 (2013), no. 2, Paper 41, 14. MR 3084583, DOI 10.37236/2799
- Huyile Liang, Lili Mu, and Yi Wang, Catalan-like numbers and Stieltjes moment sequences, Discrete Math. 339 (2016), no. 2, 484–488. MR 3431358, DOI 10.1016/j.disc.2015.09.012
- Bernt Lindström, On the vector representations of induced matroids, Bull. London Math. Soc. 5 (1973), 85–90. MR 335313, DOI 10.1112/blms/5.1.85
- Marcin Lis, The planar Ising model and total positivity, J. Stat. Phys. 166 (2017), no. 1, 72–89. MR 3592851, DOI 10.1007/s10955-016-1690-x
- Lisa Lorentzen and Haakon Waadeland, Continued fractions with applications, Studies in Computational Mathematics, vol. 3, North-Holland Publishing Co., Amsterdam, 1992. MR 1172520
- M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997. With a foreword by Roger Lyndon and a preface by Dominique Perrin; Corrected reprint of the 1983 original, with a new preface by Perrin. MR 1475463, DOI 10.1017/CBO9780511566097
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- George Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, De Gruyter Exp. Math., vol. 26, de Gruyter, Berlin, 1998, pp. 133–145. MR 1648700
- G. Lusztig, A survey of total positivity, Milan J. Math. 76 (2008), 125–134. MR 2465988, DOI 10.1007/s00032-008-0083-2
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959, DOI 10.1090/surv/146
- Wojciech Młotkowski, Probability measures corresponding to Aval numbers, Colloq. Math. 129 (2012), no. 2, 189–202. MR 3021804, DOI 10.4064/cm129-2-3
- Lili Mu, Jianxi Mao, and Yi Wang, Row polynomial matrices of Riordan arrays, Linear Algebra Appl. 522 (2017), 1–14. MR 3621174, DOI 10.1016/j.laa.2017.02.006
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. MR 2266879, DOI 10.1017/CBO9780511735127
- The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org
- Roy Oste and Joris Van der Jeugt, Motzkin paths, Motzkin polynomials and recurrence relations, Electron. J. Combin. 22 (2015), no. 2, Paper 2.8, 19. MR 3359911, DOI 10.37236/4781
- R. Pan, Algorithmic solution to Problem 1 (and linear extensions of general one-level grid-like posets), http://www.math.ucsd.edu/~projectp/problems/p1.html (24 February 2015) and http://www.math.ucsd.edu/~projectp/problems/solutions/OneLevelGridPoset (28 June 2016).
- SeungKyung Park, The $r$-multipermutations, J. Combin. Theory Ser. A 67 (1994), no. 1, 44–71. MR 1280598, DOI 10.1016/0097-3165(94)90003-5
- SeungKyung Park, Inverse descents of $r$-multipermutations, Discrete Math. 132 (1994), no. 1-3, 215–229. MR 1297383, DOI 10.1016/0012-365X(94)90239-9
- Paul Peart and Wen-Jin Woan, Generating functions via Hankel and Stieltjes matrices, J. Integer Seq. 3 (2000), no. 2, Article 00.2.1, 1 HTML document. MR 1778992
- O. Perron, Die Lehre von den Kettenbrüchen (Teubner, Leipzig, 1913). Second edition: Teubner, Leipzig, 1929; reprinted by Chelsea, New York, 1950. Third edition, 2 vols.: Teubner, Stuttgart, 1954, 1957.
- T. Kyle Petersen, Eulerian numbers, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser/Springer, New York, 2015. With a foreword by Richard Stanley. MR 3408615, DOI 10.1007/978-1-4939-3091-3
- M. Pétréolle and A.D. Sokal, Three-term contiguous relations for all generalized hypergeometric functions ${}_r F_s$ and basic hypergeometric functions ${}_r \phi _s$, in preparation.
- Allan Pinkus, Totally positive matrices, Cambridge Tracts in Mathematics, vol. 181, Cambridge University Press, Cambridge, 2010. MR 2584277
- J. Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875, Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002; With a foreword by Jean Picard. MR 2245368
- Alexander Prestel and Charles N. Delzell, Positive polynomials, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR 1829790, DOI 10.1007/978-3-662-04648-7
- Helmut Prodinger, Returns, hills, and $t$-ary trees, J. Integer Seq. 19 (2016), no. 7, Article 16.7.2, 8. MR 3555875
- Earl D. Rainville, Special functions, The Macmillan Company, New York, 1960. MR 107725
- K. G. Ramanathan, Hypergeometric series and continued fractions, Proc. Indian Acad. Sci. Math. Sci. 97 (1987), no. 1-3, 277–296 (1988). MR 983621, DOI 10.1007/BF02837830
- A. Rattan, Parking functions and related combinatorial structures, Ph.D. thesis, University of Waterloo (2014).
- E. Roblet, Une interprétation combinatoire des approximants de Padé, Thèse de doctorat, Université Bordeaux I (1994). Reprinted as Publications du Laboratoire de Combinatoire et d’Informatique Mathématique (LACIM) #17, Université du Québec à Montréal (1994). Available on-line at http://lacim.uqam.ca/en/les-parutions/
- Emmanuel Roblet and Xavier Gérard Viennot, Théorie combinatoire des T-fractions et approximants de Padé en deux points, Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), 1996, pp. 271–288 (French, with English summary). MR 1394960, DOI 10.1016/0012-365X(95)00142-J
- Steven Roman, An introduction to Catalan numbers, Compact Textbooks in Mathematics, Birkhäuser/Springer, Cham, 2015. With a foreword by Richard Stanley. MR 3380815, DOI 10.1007/978-3-319-22144-1
- B. Salvy and P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software 20, 163–177 (1994).
- Konrad Schmüdgen, The moment problem, Graduate Texts in Mathematics, vol. 277, Springer, Cham, 2017. MR 3729411
- I. J. Schoenberg and Anne Whitney, On Pólya frequence functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246–259. MR 53177, DOI 10.1090/S0002-9947-1953-0053177-X
- Louis W. Shapiro, Seyoum Getu, Wen Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), no. 1-3, 229–239. Combinatorics and theoretical computer science (Washington, DC, 1989). MR 1137996, DOI 10.1016/0166-218X(91)90088-E
- John Shareshian and Michelle L. Wachs, Eulerian quasisymmetric functions, Adv. Math. 225 (2010), no. 6, 2921–2966. MR 2728998, DOI 10.1016/j.aim.2010.05.009
- J. A. Shohat and J. D. Tamarkin, The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, American Mathematical Society, New York, 1943. MR 8438
- Rodica Simion, Noncrossing partitions, Discrete Math. 217 (2000), no. 1-3, 367–409 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766277, DOI 10.1016/S0012-365X(99)00273-3
- Barry Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math. 137 (1998), no. 1, 82–203. MR 1627806, DOI 10.1006/aima.1998.1728
- M. Skandera, Introductory notes on total positivity (June 2003), available at http://www.math.lsa.umich.edu/~fomin/565/intp.ps
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 201688
- A.D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials, talk at the Séminaire de Combinatoire Philippe Flajolet, Institut Henri Poincaré, Paris, 5 June 2014; transparencies available at http://semflajolet.math.cnrs.fr/index.php/Main/2013-2014
- A.D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials, in preparation.
- A.D. Sokal, unpublished, May 2015.
- Alan D. Sokal, A simple algorithm for expanding a power series as a continued fraction, Expo. Math. 41 (2023), no. 2, 245–287. MR 4602842, DOI 10.1016/j.exmath.2022.12.001
- A.D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, preprint (March 2020), arXiv:2003.08192.
- Chunwei Song, The generalized Schröder theory, Electron. J. Combin. 12 (2005), Research Paper 53, 10. MR 2176529, DOI 10.37236/1950
- Roland Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), no. 4, 611–628. MR 1268597, DOI 10.1007/BF01459754
- Renzo Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994), no. 1-3, 267–290. MR 1297386, DOI 10.1016/0012-365X(92)00570-H
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717, DOI 10.1007/978-1-4615-9763-6
- Richard P. Stanley, Parking functions and noncrossing partitions, Electron. J. Combin. 4 (1997), no. 2, Research Paper 20, approx. 14. The Wilf Festschrift (Philadelphia, PA, 1996). MR 1444167, DOI 10.37236/1335
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Richard P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015. MR 3467982, DOI 10.1017/CBO9781139871495
- Richard P. Stanley and Yinghui Wang, Some aspects of $(r,k)$-parking functions, J. Combin. Theory Ser. A 159 (2018), 54–78. MR 3820361, DOI 10.1016/j.jcta.2018.05.003
- John R. Stembridge, Immanants of totally positive matrices are nonnegative, Bull. London Math. Soc. 23 (1991), no. 5, 422–428. MR 1141010, DOI 10.1112/blms/23.5.422
- T.-J. Stieltjes, Sur la réduction en fraction continue d’une série procédant suivant les puissances descendantes d’une variable, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 3 (1889), H1–H17 (French). MR 1508085
- T.-J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), no. 4, J1–J122 (French). MR 1508159
- Elmar Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40–61 (German). MR 173169, DOI 10.1007/BF01114877
- Anna Leonidovna Varvak, Encoding properties of lattice paths, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–Brandeis University. MR 2705747
- G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, Notes de conférences données à l’Université du Québec à Montréal, septembre-octobre 1983. Available on-line at http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html
- Mirkó Visontai, Some remarks on the joint distribution of descents and inverse descents, Electron. J. Combin. 20 (2013), no. 1, Paper 52, 12. MR 3040614, DOI 10.37236/2135
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, 1948. MR 25596
- Wikipedia, Gauss’s continued fraction, http://en.wikipedia.org/wiki/Gauss
- Wen-jin Woan, Hankel matrices and lattice paths, J. Integer Seq. 4 (2001), no. 1, Article 01.1.2, 9. MR 1832715
- Catherine H. Yan, Parking functions, Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 835–893. MR 3409354
- Bao-Xuan Zhu, Log-convexity and strong $q$-log-convexity for some triangular arrays, Adv. in Appl. Math. 50 (2013), no. 4, 595–606. MR 3032307, DOI 10.1016/j.aam.2012.11.003
- Bao-Xuan Zhu, Some positivities in certain triangular arrays, Proc. Amer. Math. Soc. 142 (2014), no. 9, 2943–2952. MR 3223349, DOI 10.1090/S0002-9939-2014-12008-9
- Bao-Xuan Zhu, Log-concavity and strong $q$-log-convexity for Riordan arrays and recursive matrices, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 6, 1297–1310. MR 3724701, DOI 10.1017/S0308210516000500
- B.-X. Zhu, Total positivity, continued fractions and Stieltjes moment sequences, in preparation.