
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Finite Groups Which are Almost Groups of Lie Type in CharacteristicΒ $\mathbf p$
About this Title
Chris Parker, Gerald Pientka, Andreas Seidel and Gernot Stroth
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 292, Number 1452
ISBNs: 978-1-4704-6729-6 (print); 978-1-4704-7697-7 (online)
DOI: https://doi.org/10.1090/memo/1452
Published electronically: November 17, 2023
Keywords: Finite groups,
embedding,
identification of finite simple groups
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminary Group Theoretical Results
- 3. Identification Theorems of Some Almost Simple Groups
- 4. Strongly $\mathbf {p}$-embedded Subgroups
- 5. Sylow Embedded Subgroups of Linear Groups
- 6. Main Hypothesis and Notation for the Proof of the Main Theorems
- 7. The Embedding of $\mathbf Q$ in $\mathbf G$ UnderΒ Hypothesis
- 8. The Groups Which Satisfy Hypothesis with $\mathbf { N_{F^*(H)}(Q)}$ Not Soluble and $\mathbf {N_G(Q) \not \le H}$
- 9. The Groups with $\mathbf {F^*(H)\cong PSL_3(p^e)}$, $\mathbf p$ Odd
- 10. The Groups with $\mathbf {F^*(H) \cong PSL_3(2^e)}$ or $\mathbf {Sp_4(2^e)β}$
- 11. The Groups with $\mathbf {F^*(H) \cong \mathbf {Sp}_{2n}(2^e)}$, $\mathbf {n \ge 3}$
- 12. The Groups with $\mathbf {F^*(H)\cong {}^2F_4(2^{2e+1})^\prime }$
- 13. The Groups with $\mathbf {F^*(H)\cong F_4(2^e)}$
- 14. The Case When $\mathbf {p = 2}$ and Centralizer of Some $\mathbf {2}$-central Element of $\mathbf {H}$ is Soluble
- 15. The Groups with $\mathbf {F^*(H) \cong G_2(3^e)}$
- 16. The Groups with $\mathbf {F^*(H)\cong P\Omega ^+_8(3)}$ and $\mathbf {N_G(Q) \not \le H}$
- 17. The Case When $\mathbf {p = 3}$, the Centralizer of Some $\mathbf {3}$-central Element of $\mathbf {H}$ is Soluble and $\mathbf {N_G(Q) \not \le H}$
- 18. Proof of Theorem and Theorem
- 19. Groups Which Satisfy Hypothesis with $\mathbf {N_G(Q) \le H}$ and Some $\mathbf {p}$-local Subgroup Containing $\mathbf {S}$ Not Contained inΒ $\mathbf {H}$
- 20. Proof of Theorem
- 21. Proof of Theorem
- 22. Proof of Main TheoremΒ and Main Theorem
- A. Properties of Finite Simple Groups of Lie Type
- B. Properties Alternating Groups
- C. Small Modules for Finite Simple Groups
- D. $\mathbf {p}$-local Properties of Groups of Lie Type in Characteristic $\mathbf {p}$
- E. Miscellanea
Abstract
Let $p$ be a prime. In this paper we investigate finite $\mathcal K_{\{2,p\}}$-groups $G$ which have a subgroup $H \le G$ such that $K \le H = N_G(K) \le \operatorname {Aut}(K)$ for $K$ a simple group of Lie type in characteristic $p$, and $|G:H|$ is coprime to $p$. If $G$ is of local characteristic $p$, then $G$ is called almost of Lie type in characteristic $p$. Here $G$ is of local characteristic $p$ means that for all nontrivial $p$-subgroups $P$ of $G$, and $Q$ the largest normal $p$-subgroup in $N_G(P)$ we have the containment $C_G(Q)\le Q$. We determine details of the structure of groups which are almost of Lie type in characteristic $p$. In particular, in the case that the rank of $K$ is at least $3$ we prove that $G = H$. If $H$ has rank $2$ and $K$ is not $\operatorname {PSL}_3(p)$ we determine all the examples where $G \ne H$. We further investigate the situation above in which $G$ is of parabolic characteristic $p$. This is a weaker assumption than local characteristic $p$. In this case, especially when $p \in \{2,3\}$, many more examples appear.
In the appendices we compile a catalogue of results about the simple groups with proofs. These results may be of independent interest.
- Emil Artin, The orders of the classical simple groups, Comm. Pure Appl. Math. 8 (1955), 455β472. MR 73601, DOI 10.1002/cpa.3160080403
- Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1993. Corrected reprint of the 1986 original. MR 1264416
- Michael Aschbacher, Finite groups of $G_2(3)$-type, J. Algebra 257 (2002), no.Β 2, 197β214. MR 1947319, DOI 10.1016/S0021-8693(02)00522-7
- Michael Aschbacher and Bob Oliver, Fusion systems, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no.Β 4, 555β615. MR 3544261, DOI 10.1090/bull/1538
- Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1β91. MR 422401
- H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), no.Β 2, 551β562. MR 1047327, DOI 10.1080/00927879008823931
- A. S. Bang, Talteoretiske undersΓΈlgelser, Tidskrifft Math. (5)4 (1886),130β137.
- Gregory W. Bell, On the cohomology of the finite special linear groups. I, II, J. Algebra 54 (1978), no.Β 1, 216β238, 239β259. MR 511463, DOI 10.1016/0021-8693(78)90027-3
- Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlΓ€Γt, J. Algebra 17 (1971), 527β554 (German). MR 288172, DOI 10.1016/0021-8693(71)90008-1
- D. Benson, The Loewy structure of the projective indecomposable modules for $A_{8}$ in characteristic $2$, Comm. Algebra 11 (1983), no.Β 13, 1395β1432. MR 700572, DOI 10.1080/00927878308822912
- Enrico Bombieri, A. Odlyzko, and D. Hunt, Thompsonβs problem $(\sigma ^{2}=3)$, Invent. Math. 58 (1980), no.Β 1, 77β100. Appendices by A. Odlyzko and D. Hunt. MR 570875, DOI 10.1007/BF01402275
- Richard Brauer, On finite Desarguesian planes. II, Math. Z. 91 (1966), 124β151. MR 193153, DOI 10.1007/BF01110159
- R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556β590. MR 4042, DOI 10.2307/1968918
- John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, vol. 407, Cambridge University Press, Cambridge, 2013. With a foreword by Martin Liebeck. MR 3098485, DOI 10.1017/CBO9781139192576
- D. Bundy, N. Hebbinghaus, and B. Stellmacher, The local $C(G,T)$ theorem, J. Algebra 300 (2006), no.Β 2, 741β789. MR 2228220, DOI 10.1016/j.jalgebra.2005.08.040
- Andrew Chermak, Quadratic pairs without components, J. Algebra 258 (2002), no.Β 2, 442β476. MR 1943929, DOI 10.1016/S0021-8693(02)00637-3
- Andrew Chermak, Quadratic pairs, J. Algebra 277 (2004), no.Β 1, 36β72. MR 2059620, DOI 10.1016/S0021-8693(03)00334-X
- Charles W. Curtis, William M. Kantor, and Gary M. Seitz, The $2$-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1β59. MR 422440, DOI 10.1090/S0002-9947-1976-0422440-8
- A. Delgado, D. Goldschmidt, and B. Stellmacher, Groups and graphs: new results and methods, DMV Seminar, vol. 6, BirkhΓ€user Verlag, Basel, 1985. With a preface by the authors and Bernd Fischer. MR 862622
- Leonard Eugene Dickson, Determination of all the subgroups of the known simple group of order $25920$, Trans. Amer. Math. Soc. 5 (1904), no.Β 2, 126β166. MR 1500666, DOI 10.1090/S0002-9947-1904-1500666-3
- David M. Goldschmidt, $2$-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70β117. MR 335627, DOI 10.2307/1971014
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 231903
- Daniel Gorenstein and Koichiro Harada, On finite groups with Sylow $2$-subgroups of type $A_{n}$, $n=8,\,9,\,10,\,11$, Math. Z. 117 (1970), 207β238. MR 276348, DOI 10.1007/BF01109844
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no.Β 276, vii+731. MR 690900, DOI 10.1090/memo/0276
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 2. Part I. Chapter G, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1996. General group theory. MR 1358135, DOI 10.1090/surv/040.2
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1998. Almost simple $K$-groups. MR 1490581, DOI 10.1090/surv/040.3
- Jesper Grodal, Higher limits via subgroup complexes, Ann. of Math. (2) 155 (2002), no.Β 2, 405β457. MR 1906592, DOI 10.2307/3062122
- Robert M. Guralnick and Gunter Malle, Classification of $2F$-modules. I, J. Algebra 257 (2002), no.Β 2, 348β372. MR 1947326, DOI 10.1016/S0021-8693(02)00526-4
- Robert M. Guralnick and Gunter Malle, Classification of $2F$-modules. II, Finite groups 2003, Walter de Gruyter, Berlin, 2004, pp.Β 117β183. MR 2125071
- Martin M. Guterman, A characterization of the groups $F_{4}(2^{n})$, J. Algebra 20 (1972), 1β23. MR 301088, DOI 10.1016/0021-8693(72)90080-4
- D. F. Holt, Transitive permutation groups in which an involution central in a Sylow $2$-subgroup fixes a unique point, Proc. London Math. Soc. (3) 37 (1978), no.Β 1, 165β192. MR 575516, DOI 10.1112/plms/s3-37.1.165
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 224703
- G. D. James, The modular characters of the Mathieu groups, J. Algebra 27 (1973), 57β111. MR 330277, DOI 10.1016/0021-8693(73)90165-8
- Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 (1966), 147β186. MR 193138, DOI 10.1016/0021-8693(66)90010-X
- Zvonimir Janko and John G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274β292. MR 201504, DOI 10.1016/0021-8693(66)90041-X
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418β443. MR 360852, DOI 10.1016/0021-8693(74)90150-1
- R. Lawther, $2F$-modules, abelian sets of roots and 2-ranks, J. Algebra 307 (2007), no.Β 2, 614β642. MR 2275365, DOI 10.1016/j.jalgebra.2006.10.012
- Wolfgang Lempken, Christopher Parker, and Peter Rowley, Minimal parabolic systems for the symmetric and alternating groups, The atlas of finite groups: ten years on (Birmingham, 1995) London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp.Β 149β162. MR 1647419, DOI 10.1017/CBO9780511565830.016
- Richard Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972), 540β569. MR 299674, DOI 10.1016/0021-8693(72)90072-5
- Kay Magaard and Gernot Stroth, Groups of even type which are not of even characteristic, I, Israel J. Math. 213 (2016), no.Β 1, 211β278. MR 3509474, DOI 10.1007/s11856-016-1313-x
- David R. Mason, Finite simple groups with Sylow $2$-subgroup dihedral wreath $Z_{2}$, J. Algebra 26 (1973), 10β68. MR 318294, DOI 10.1016/0021-8693(73)90033-1
- Ulrich Meierfrankenfeld, Christopher Parker, and Peter Rowley, Isolated subgroups in finite groups, J. Lond. Math. Soc. (2) 79 (2009), no.Β 1, 107β128. MR 2472136, DOI 10.1112/jlms/jdn061
- U. Meierfrankenfeld and B. Stellmacher, The general FF-module theorem, J. Algebra 351 (2012), 1β63. MR 2862198, DOI 10.1016/j.jalgebra.2011.10.029
- U. Meierfrankenfeld and B. Stellmacher, Applications of the FF-Module Theorem and related results, J. Algebra 351 (2012), 64β106. MR 2862199, DOI 10.1016/j.jalgebra.2011.10.028
- U. Meierfrankenfeld, B. Stellmacher, and G. Stroth, The local structure for finite groups with a large $p$-subgroup, Mem. Amer. Math. Soc. 242 (2016), no.Β 1147, vii+342. MR 3517155, DOI 10.1090/memo/1147
- U. Meierfrankenfeld and G. Stroth, On quadratic $\textrm {GF}(2)$-modules for Chevalley groups over fields of odd order, Arch. Math. (Basel) 55 (1990), no.Β 2, 105β110. MR 1064374, DOI 10.1007/BF01189127
- U. Meierfrankenfeld and G. Stroth, Quadratic $\textrm {GF}(2)$-modules for sporadic simple groups and alternating groups, Comm. Algebra 18 (1990), no.Β 7, 2099β2139. MR 1063127, DOI 10.1080/00927879008824012
- Chris Parker, A 3-local characterization of $\rm U_6(2)$ and $\rm Fi_{22}$, J. Algebra 300 (2006), no.Β 2, 707β728. MR 2228218, DOI 10.1016/j.jalgebra.2005.10.043
- Christopher Parker and Peter Rowley, Symplectic amalgams, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1906439, DOI 10.1007/978-1-4471-0165-9
- Christopher Parker and Peter Rowley, A characteristic 5 identification of the Lyons group, J. London Math. Soc. (2) 69 (2004), no.Β 1, 128β140. MR 2025331, DOI 10.1112/S0024610703004848
- Christopher Parker and Peter Rowley, Local characteristic $p$ completions of weak $BN$-pairs, Proc. London Math. Soc. (3) 93 (2006), no.Β 2, 325β394. MR 2251156, DOI 10.1112/S0024611506015802
- Christopher Parker and Peter Rowley, A 3-local characterization of $\textrm {Co}_2$, J. Algebra 323 (2010), no.Β 3, 601β621. MR 2574854, DOI 10.1016/j.jalgebra.2009.09.039
- Chris Parker, M. Reza Salarian, and Gernot Stroth, A characterisation of almost simple groups with socle $^2\mathrm {E}_6(2)$ or $\textrm {M}(22)$, Forum Math. 27 (2015), no.Β 5, 2853β2899. MR 3393381, DOI 10.1515/forum-2013-0055
- Chris Parker and Gernot Stroth, Strongly $p$-embedded subgroups, Pure Appl. Math. Q. 7 (2011), no.Β 3, Special Issue: In honor of Jacques Tits, 797β858. MR 2848592, DOI 10.4310/PAMQ.2011.v7.n3.a9
- Chris Parker and Gernot Stroth, On strongly $p$-embedded subgroups of Lie rank 2, Arch. Math. (Basel) 93 (2009), no.Β 5, 405β413. MR 2563586, DOI 10.1007/s00013-009-0052-1
- Chris Parker and Gernot Stroth, An identification theorem for groups with socle $\rm PSU_6(2)$, J. Aust. Math. Soc. 93 (2012), no.Β 3, 277β310. MR 3073006, DOI 10.1017/S1446788712000390
- Chris Parker and Gernot Stroth, An identification theorem for the sporadic simple groups $F_2$ and M(23), J. Group Theory 16 (2013), no.Β 3, 319β352. MR 3053360, DOI 10.1515/jgt-2012-0045
- Chris Parker and Gernot Stroth, $\textrm {F}_4(2)$ and its automorphism group, J. Pure Appl. Algebra 218 (2014), no.Β 5, 852β878. MR 3149638, DOI 10.1016/j.jpaa.2013.10.005
- Chris Parker and Gernot Stroth, An improved 3-local characterization of McL and its automorphism group, J. Algebra 406 (2014), 69β90. MR 3188329, DOI 10.1016/j.jalgebra.2014.02.011
- Chris Parker and Gernot Stroth, A family of fusion systems related to the groups $\textrm {Sp}_4(p^a)$ and $\textrm {G}_2(p^a)$, Arch. Math. (Basel) 104 (2015), no.Β 4, 311β323. MR 3325764, DOI 10.1007/s00013-015-0751-8
- Chris Parker and Gernot Stroth, A 2-local identification of $\textrm {P}\Omega _8^+(3)$, J. Pure Appl. Algebra 220 (2016), no.Β 10, 3403β3424. MR 3497968, DOI 10.1016/j.jpaa.2016.04.006
- Gerald Pientka, βGruppen lokaler Charakteristik: eine Kennzeichnung von Gruppen vom Lie-Typ in Charakteristik $2$β, Dissertation, University Halle-Wittenberg, 2014, http://dx.doi.org/10.25673/1080.
- Albert Ruiz and Antonio Viruel, The classification of $p$-local finite groups over the extraspecial group of order $p^3$ and exponent $p$, Math. Z. 248 (2004), no.Β 1, 45β65. MR 2092721, DOI 10.1007/s00209-004-0652-1
- M. Reza Salarian and Gernot Stroth, Existence of strongly $p$-embedded subgroups, Comm. Algebra 43 (2015), no.Β 3, 983β1024. MR 3298118, DOI 10.1080/00927872.2013.865036
- Andreas Seidel, βGruppen lokaler Charakteristik - eine Kennzeichnung von Gruppen vom Lie Typ in ungerader Charakteristikβ, Dissertation, University Halle-Wittenberg, 2009, http://dx.doi.org/10.25673/34.
- Gary M. Seitz and Alexander E. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups. II, J. Algebra 158 (1993), no.Β 1, 233β243. MR 1223676, DOI 10.1006/jabr.1993.1132
- Ken-ichi Shinoda, The conjugacy classes of Chevalley groups of type $(F_{4})$ over finite fields of characteristic $2$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 133β159. MR 349863
- Stephen D. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75 (1982), no.Β 1, 286β289. MR 650422, DOI 10.1016/0021-8693(82)90076-X
- Bhama Srinivasan, The characters of the finite symplectic group $\textrm {Sp}(4,\,q)$, Trans. Amer. Math. Soc. 131 (1968), 488β525. MR 220845, DOI 10.1090/S0002-9947-1968-0220845-7
- Robert Steinberg, Automorphisms of finite linear groups, Canadian J. Math. 12 (1960), 606β615. MR 121427, DOI 10.4153/CJM-1960-054-6
- Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105β145. MR 136646, DOI 10.2307/1970423
- Ascher Wagner, The faithful linear representation of least degree of $S_{n}$ and $A_{n}$ over a field of characteristic $2.$, Math. Z. 151 (1976), no.Β 2, 127β137. MR 419581, DOI 10.1007/BF01213989
- Ascher Wagner, The faithful linear representations of least degree of $S_{n}$ and $A_{n}$ over a field of odd characteristic, Math. Z. 154 (1977), no.Β 2, 103β114. MR 437631, DOI 10.1007/BF01241824
- Ascher Wagner, An observation on the degrees of projective representations of the symmetric and alternating group over an arbitrary field, Arch. Math. (Basel) 29 (1977), no.Β 6, 583β589. MR 460451, DOI 10.1007/BF01220457
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405β514. MR 249504, DOI 10.2307/1970648
- John H. Walter, Finite groups with abelian Sylow $2$-subgroups of order $8$, Invent. Math. 2 (1967), 332β376. MR 218445, DOI 10.1007/BF01428899
- David L. Winter, The automorphism group of an extraspecial $p$-group, Rocky Mountain J. Math. 2 (1972), no.Β 2, 159β168. MR 297859, DOI 10.1216/RMJ-1972-2-2-159
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 183775
- Ernst Witt, ΓΌber Steinersche Systeme, Abh. Math. Sem. Univ. Hamburg 12 (1937), no.Β 1, 265β275 (German). MR 3069690, DOI 10.1007/BF02948948
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no.Β 1, 265β284 (German). MR 1546236, DOI 10.1007/BF01692444