
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
SYZ Geometry for Calabi-Yau 3-folds: Taub-NUT and Ooguri-Vafa Type Metrics
About this Title
Yang Li
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 292, Number 1453
ISBNs: 978-1-4704-6782-1 (print); 978-1-4704-7698-4 (online)
DOI: https://doi.org/10.1090/memo/1453
Published electronically: November 21, 2023
Table of Contents
Chapters
- 1. Introduction and Background Review
- 2. Taub-NUT Type Metrics on $\mathbb {C}^3$
- 3. The Positive Vertex
- 4. The Negative Vertex
Abstract
We construct a family of Calabi-Yau metrics on $\mathbb {C}^3$ with properties analogous to the Taub-NUT metric on $\mathbb {C}^2$, and construct a family of Calabi-Yau 3-fold metric models on the positive and negative vertices of SYZ fibrations with properties analogous to the Ooguri-Vafa metric.- Michael Atiyah and Nigel Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988. MR 934202, DOI 10.1515/9781400859306
- Gao Chen and Xiuxiong Chen, Gravitational instantons with faster than quadratic curvature decay. I, Acta Math. 227 (2021), no. 2, 263–307. MR 4366415, DOI 10.4310/acta.2021.v227.n2.a2
- Ronan J. Conlon and Hans-Joachim Hein, Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J. 162 (2013), no. 15, 2855–2902. MR 3161306, DOI 10.1215/00127094-2382452
- Ronan J. Conlon and Frédéric Rochon, New examples of complete Calabi-Yau metrics on $\Bbb C^n$ for $n \geq 3$, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 2, 259–303 (English, with English and French summaries). MR 4258163, DOI 10.24033/asens.2459
- Anda Degeratu and Rafe Mazzeo, Fredholm theory for elliptic operators on quasi-asymptotically conical spaces, Proc. Lond. Math. Soc. (3) 116 (2018), no. 5, 1112–1160. MR 3805053, DOI 10.1112/plms.12105
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, II, J. Differential Geom. 107 (2017), no. 2, 327–371. MR 3707646, DOI 10.4310/jdg/1506650422
- Mark Gross, Topological mirror symmetry, Invent. Math. 144 (2001), no. 1, 75–137. MR 1821145, DOI 10.1007/s002220000119
- Mark Gross, Special Lagrangian fibrations. I. Topology, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 156–193. MR 1672120
- Mark Gross, Special Lagrangian fibrations. II. Geometry. A survey of techniques in the study of special Lagrangian fibrations, Surveys in differential geometry: differential geometry inspired by string theory, Surv. Differ. Geom., vol. 5, Int. Press, Boston, MA, 1999, pp. 341–403. MR 1772274, DOI 10.4310/SDG.1999.v5.n1.a4
- Mark Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture, Current developments in mathematics 2012, Int. Press, Somerville, MA, 2013, pp. 133–191. MR 3204345
- Mark Gross, Valentino Tosatti, and Yuguang Zhang, Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J. 162 (2013), no. 3, 517–551. MR 3024092, DOI 10.1215/00127094-2019703
- Mark Gross and P. M. H. Wilson, Large complex structure limits of $K3$ surfaces, J. Differential Geom. 55 (2000), no. 3, 475–546. MR 1863732
- Hans-Joachim Hein, On gravitational instantons, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Princeton University. MR 2813955
- Hans-Joachim Hein, Song Sun, Jeff Viaclovsky, and Ruobing Zhang, Nilpotent structures and collapsing Ricci-flat metrics on the K3 surface, J. Amer. Math. Soc. 35 (2022), no. 1, 123–209. MR 4322391, DOI 10.1090/jams/978
- Dominic Joyce, Singularities of special Lagrangian fibrations and the SYZ conjecture, Comm. Anal. Geom. 11 (2003), no. 5, 859–907. MR 2032503, DOI 10.4310/CAG.2003.v11.n5.a3
- Dominic D. Joyce, Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics, vol. 12, Oxford University Press, Oxford, 2007. MR 2292510
- Maxim Kontsevich and Yan Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 203–263. MR 1882331, DOI 10.1142/9789812799821_{0}007
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. MR 992334
- Claude LeBrun, Complete Ricci-flat Kähler metrics on $\textbf {C}^n$ need not be flat, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 297–304. MR 1128554, DOI 10.1090/pspum/052.2/1128554
- Yang Li, A new complete Calabi-Yau metric on $\Bbb C^3$, Invent. Math. 217 (2019), no. 1, 1–34. MR 3958789, DOI 10.1007/s00222-019-00861-w
- Yang Li, On collapsing Calabi-Yau fibrations, J. Differential Geom. 117 (2021), no. 3, 451–483. MR 4255068, DOI 10.4310/jdg/1615487004
- Yang Li, A gluing construction of collapsing Calabi-Yau metrics on K3 fibred 3-folds, Geom. Funct. Anal. 29 (2019), no. 4, 1002–1047. MR 3990193, DOI 10.1007/s00039-019-00507-2
- John Loftin, Shing-Tung Yau, and Eric Zaslow, Affine manifolds, SYZ geometry and the “Y” vertex, J. Differential Geom. 71 (2005), no. 1, 129–158. MR 2191770
- David R. Morrison, On the structure of supersymmetric $T^3$ fibrations, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, Amer. Math. Soc., Providence, RI, 2010, pp. 91–112. MR 2681793, DOI 10.1090/conm/527/10401
- Henrik Pedersen and Y. Sun Poon, Hamiltonian constructions of Kähler-Einstein metrics and Kähler metrics of constant scalar curvature, Comm. Math. Phys. 136 (1991), no. 2, 309–326. MR 1096118
- Wei-Dong Ruan, Lagrangian torus fibration of quintic hypersurfaces. I. Fermat quintic case, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999) AMS/IP Stud. Adv. Math., vol. 23, Amer. Math. Soc., Providence, RI, 2001, pp. 297–332. MR 1876075, DOI 10.1090/amsip/023/13
- Wei-Dong Ruan, Lagrangian torus fibrations of Calabi-Yau hypersurfaces in toric varieties and SYZ mirror symmetry conjecture, Mirror symmetry, IV (Montreal, QC, 2000) AMS/IP Stud. Adv. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2002, pp. 33–55. MR 1968216, DOI 10.1090/amsip/033/03
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- Gábor Székelyhidi, Degenerations of $\mathbf C^n$ and Calabi-Yau metrics, Duke Math. J. 168 (2019), no. 14, 2651–2700. MR 4012345, DOI 10.1215/00127094-2019-0021
- Gábor Székelyhidi, Uniqueness of some Calabi-Yau metrics on $\textbf {C}^n$, Geom. Funct. Anal. 30 (2020), no. 4, 1152–1182. MR 4153912, DOI 10.1007/s00039-020-00543-3
- G. Tian and Shing-Tung Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3 (1990), no. 3, 579–609. MR 1040196, DOI 10.1090/S0894-0347-1990-1040196-6
- Valentino Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010), no. 2, 427–453. MR 2652468
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Ilia Zharkov, Limiting behavior of local Calabi-Yau metrics, Adv. Theor. Math. Phys. 8 (2004), no. 3, 395–420. MR 2105186
- Ilia Zharkov, Torus fibrations of Calabi-Yau hypersurfaces in toric varieties, Duke Math. J. 101 (2000), no. 2, 237–257. MR 1738179, DOI 10.1215/S0012-7094-00-10124-X