
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Global Regularity for Gravity Unstable Muskat Bubbles
About this Title
Francisco Gancedo, Eduardo García-Juárez, Neel Patel and Robert M. Strain
Publication: Memoirs of the American Mathematical Society
Publication Year:
2023; Volume 292, Number 1455
ISBNs: 978-1-4704-6764-7 (print); 978-1-4704-7700-4 (online)
DOI: https://doi.org/10.1090/memo/1455
Published electronically: November 21, 2023
Keywords: Fluid interface,
Muskat problem,
Global regularity,
Bubble,
Equilibria,
Unstable,
Viscosity jump,
Surface tension
Table of Contents
Chapters
- 1. Introduction
- 2. Contour dynamics formulation
- 3. Notation and main results
- 4. Implicit function theorem
- 5. Fourier multiplier estimates
- 6. A priori estimates on the vorticity strength
- 7. Global existence and instant analyticity
- 8. Uniqueness
Abstract
In this paper, we study the dynamics of fluids in porous media governed by Darcy’s law: the Muskat problem. We consider the setting of two immiscible fluids of different densities and viscosities under the influence of gravity in which one fluid is completely surrounded by the other. This setting is gravity unstable because along a portion of the interface, the denser fluid must be above the other. Surprisingly, even without capillarity, the circle-shaped bubble is a steady state solution moving with vertical constant velocity determined by the density jump between the fluids. Taking advantage of our discovery of this steady state, we are able to prove global in time existence and uniqueness of dynamic bubbles of nearly circular shapes under the influence of surface tension. We prove this global existence result for low regularity initial data. Moreover, we prove that these solutions are instantly analytic and decay exponentially fast in time to the circle.- Thomas Alazard and Omar Lazar, Paralinearization of the Muskat equation and application to the Cauchy problem, Arch. Ration. Mech. Anal. 237 (2020), no. 2, 545–583. MR 4097324, DOI 10.1007/s00205-020-01514-6
- Thomas Alazard, Nicolas Meunier, and Didier Smets, Lyapunov functions, identities and the Cauchy problem for the Hele-Shaw equation, Comm. Math. Phys. 377 (2020), no. 2, 1421–1459. MR 4115021, DOI 10.1007/s00220-020-03761-w
- David M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension, European J. Appl. Math. 15 (2004), no. 5, 597–607. MR 2128613, DOI 10.1017/S0956792504005662
- David M. Ambrose, The zero surface tension limit of two-dimensional interfacial Darcy flow, J. Math. Fluid Mech. 16 (2014), no. 1, 105–143. MR 3171344, DOI 10.1007/s00021-013-0146-1
- Jacob Bear, Dynamics of fluids in porous media, Dover, New York, 1972.
- Thomas Beck, Philippe Sosoe, and Percy Wong, Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems, J. Differential Equations 256 (2014), no. 1, 206–222. MR 3115840, DOI 10.1016/j.jde.2013.09.001
- Stephen Cameron, Global well-posedness for the two-dimensional Muskat problem with slope less than 1, Anal. PDE 12 (2019), no. 4, 997–1022. MR 3869383, DOI 10.2140/apde.2019.12.997
- Stephen Cameron, Gobal wellposedness for the 3D Muskat problem with medium size slope, arXiv:2002.00508, 2020.
- Ángel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Breakdown of smoothness for the Muskat problem, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 805–909. MR 3048596, DOI 10.1007/s00205-013-0616-x
- Angel Castro, Diego Córdoba, Charles Fefferman, and Francisco Gancedo, Splash singularities for the one-phase Muskat problem in stable regimes, Arch. Ration. Mech. Anal. 222 (2016), no. 1, 213–243. MR 3519969, DOI 10.1007/s00205-016-0999-6
- Ángel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and María López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves, Ann. of Math. (2) 175 (2012), no. 2, 909–948. MR 2993754, DOI 10.4007/annals.2012.175.2.9
- Xinfu Chen, The Hele-Shaw problem and area-preserving curve-shortening motions, Arch. Rational Mech. Anal. 123 (1993), no. 2, 117–151. MR 1219420, DOI 10.1007/BF00695274
- C. H. Arthur Cheng, Rafael Granero-Belinchón, and Steve Shkoller, Well-posedness of the Muskat problem with $H^2$ initial data, Adv. Math. 286 (2016), 32–104. MR 3415681, DOI 10.1016/j.aim.2015.08.026
- Th. Clausen, Über die Function $\sin \phi +\sin \frac {1}{2^2}\phi +\sin 3\phi$ + etc, J. Reine Angew. Math. 8 (1832), 298–300 (German). MR 1577877, DOI 10.1515/crll.1832.8.298
- Peter Constantin, Diego Córdoba, Francisco Gancedo, Luis Rodríguez-Piazza, and Robert M. Strain, On the Muskat problem: global in time results in 2D and 3D, Amer. J. Math. 138 (2016), no. 6, 1455–1494. MR 3595492, DOI 10.1353/ajm.2016.0044
- Peter Constantin, Diego Córdoba, Francisco Gancedo, and Robert M. Strain, On the global existence for the Muskat problem, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 201–227. MR 2998834, DOI 10.4171/JEMS/360
- Peter Constantin, Francisco Gancedo, Roman Shvydkoy, and Vlad Vicol, Global regularity for 2D Muskat equations with finite slope, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 4, 1041–1074. MR 3661870, DOI 10.1016/j.anihpc.2016.09.001
- P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity 6 (1993), no. 3, 393–415. MR 1223740
- Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Interface evolution: the Hele-Shaw and Muskat problems, Ann. of Math. (2) 173 (2011), no. 1, 477–542. MR 2753607, DOI 10.4007/annals.2011.173.1.10
- Antonio Córdoba, Diego Córdoba, and Francisco Gancedo, Porous media: the Muskat problem in three dimensions, Anal. PDE 6 (2013), no. 2, 447–497. MR 3071395, DOI 10.2140/apde.2013.6.447
- Diego Córdoba and Francisco Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities, Comm. Math. Phys. 273 (2007), no. 2, 445–471. MR 2318314, DOI 10.1007/s00220-007-0246-y
- Diego Córdoba and Omar Lazar, Global well-posedness for the 2D stable Muskat problem in $H^{3/2}$, Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), no. 5, 1315–1351 (English, with English and French summaries). MR 4363243, DOI 10.24033/asens.2483
- Henry Darcy, Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856.
- Jean Duchon and Raoul Robert, Évolution d’une interface par capillarité et diffusion de volume. I. Existence locale en temps, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 361–378 (French, with English summary). MR 779874
- Joachim Escher and Bogdan-Vasile Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results, Z. Anal. Anwend. 30 (2011), no. 2, 193–218. MR 2793001, DOI 10.4171/ZAA/1431
- Joachim Escher and Gieri Simonett, Classical solutions for Hele-Shaw models with surface tension, Adv. Differential Equations 2 (1997), no. 4, 619–642. MR 1441859
- Patrick T. Flynn and Huy Q. Nguyen, The vanishing surface tension limit of the Muskat problem, Comm. Math. Phys. 382 (2021), no. 2, 1205–1241. MR 4227171, DOI 10.1007/s00220-021-03980-9
- Francisco Gancedo, A survey for the Muskat problem and a new estimate, SeMA J. 74 (2017), no. 1, 21–35. MR 3608884, DOI 10.1007/s40324-016-0078-9
- F. Gancedo, E. García-Juárez, N. Patel, and R. M. Strain, On the Muskat problem with viscosity jump: global in time results, Adv. Math. 345 (2019), 552–597. MR 3899970, DOI 10.1016/j.aim.2019.01.017
- Francisco Gancedo, Rafael Granero-Belinchón, and Stefano Scrobogna, Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 6, 1299–1343. MR 4168918, DOI 10.1016/j.anihpc.2020.04.005
- Francisco Gancedo and Omar Lazar, Global well-posedness for the three dimensional Muskat problem in the critical Sobolev space, Arch. Ration. Mech. Anal. 246 (2022), no. 1, 141–207. MR 4487512, DOI 10.1007/s00205-022-01808-x
- Eduardo García-Juárez, Yoichiro Mori, and Robert M. Strain, The Peskin problem with viscosity contrast, Anal. PDE 16 (2023), no. 3, 785–838. MR 4596732, DOI 10.2140/apde.2023.16.785
- Javier Gómez-Serrano and Rafael Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof, Nonlinearity 27 (2014), no. 6, 1471–1498. MR 3215843, DOI 10.1088/0951-7715/27/6/1471
- Yan Guo, Chris Hallstrom, and Daniel Spirn, Dynamics near unstable, interfacial fluids, Comm. Math. Phys. 270 (2007), no. 3, 635–689. MR 2276460, DOI 10.1007/s00220-006-0164-4
- Ulrich Hornung (ed.), Homogenization and porous media, Interdisciplinary Applied Mathematics, vol. 6, Springer-Verlag, New York, 1997. MR 1434315, DOI 10.1007/978-1-4612-1920-0
- Thomas Y. Hou, John S. Lowengrub, and Michael J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994), no. 2, 312–338. MR 1294935, DOI 10.1006/jcph.1994.1170
- Matt Jacobs, Inwon Kim, and Alpár R. Mészáros, Weak solutions to the Muskat problem with surface tension via optimal transport, Arch. Ration. Mech. Anal. 239 (2021), no. 1, 389–430. MR 4198722, DOI 10.1007/s00205-020-01579-3
- Bogdan-Vasile Matioc, The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results, Anal. PDE 12 (2019), no. 2, 281–332. MR 3861893, DOI 10.2140/apde.2019.12.281
- Morris Muskat, Two fluid systems in porous media. the encroachment of water into an oil sand, J. Appl. Phys. 5 (1934), No. 9, 250–264, doi:10.1063/1.1745259.
- Huy Q. Nguyen, On well-posedness of the Muskat problem with surface tension, Adv. Math. 374 (2020), 107344, 35. MR 4131404, DOI 10.1016/j.aim.2020.107344
- Huy Q. Nguyen and Benoît Pausader, A paradifferential approach for well-posedness of the Muskat problem, Arch. Ration. Mech. Anal. 237 (2020), no. 1, 35–100. MR 4090462, DOI 10.1007/s00205-020-01494-7
- Felix Otto, Viscous fingering: an optimal bound on the growth rate of the mixing zone, SIAM J. Appl. Math. 57 (1997), no. 4, 982–990. MR 1462048, DOI 10.1137/S003613999529438X
- P. G. Saffman, Viscous fingering in Hele-Shaw cells, J. Fluid Mech. 173 (1986), 73–94. MR 877015, DOI 10.1017/S0022112086001088
- P. G. Saffman and Geoffrey Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. London Ser. A 245 (1958), 312–329. (2 plates). MR 97227, DOI 10.1098/rspa.1958.0085
- Michael Siegel, Russel E. Caflisch, and Sam Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem, Comm. Pure Appl. Math. 57 (2004), no. 10, 1374–1411. MR 2070208, DOI 10.1002/cpa.20040
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI 10.1007/BF01762360
- Luc C. Tartar, Incompressible fluid flow in a porous medium - convergence of the homogenization process, appendix to the book “Nonhomogeneous media and vibration theory” by Enrique Sánchez-Palencia ed., Lecture Notes in Physics, vol. 127, pp. 368–377, Springer-Verlag, Berlin-New York, 1980, DOI: 10.1007/978-1-4612-1920-0.
- J. Ye and S. Tanveer, Global existence for a translating near-circular Hele-Shaw bubble with surface tension, SIAM J. Math. Anal. 43 (2011), no. 1, 457–506. MR 2783213, DOI 10.1137/100786332
- J. Ye and S. Tanveer, Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape, Complex Var. Elliptic Equ. 57 (2012), no. 1, 23–61. MR 2864701, DOI 10.1080/17476933.2010.504835