
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Local Lipschitz Continuity in the Initial Value and Strong Completeness for Nonlinear Stochastic Differential Equations
About this Title
Sonja Cox, Martin Hutzenthaler and Arnulf Jentzen
Publication: Memoirs of the American Mathematical Society
Publication Year:
2024; Volume 296, Number 1481
ISBNs: 978-1-4704-6701-2 (print); 978-1-4704-7818-6 (online)
DOI: https://doi.org/10.1090/memo/1481
Published electronically: May 1, 2024
Keywords: Non-linear stochastic ordinary differential equations,
non-linear stochastic partial differential equations,
regularity with respect to initial value,
strong completeness,
stochastic Van der Pol equation,
stochastic Duffing-Van der Pol equation,
stochastic Burgers equations,
Cahn-Hilliard-Cook equation,
non-linear stochastic wave equation
Table of Contents
Chapters
- 1. Introduction
- 2. Strong stability analysis for solutions of SDEs
- 3. Strong completeness of SDEs
- 4. Examples of SODEs
- 5. Examples of SPDEs
Abstract
Recently, Hairer et al. (2015) showed that there exist stochastic differential equations (SDEs) with infinitely often differentiable and globally bounded coefficient functions whose solutions fail to be locally Lipschitz continuous in the strong $L^p$-sense with respect to the initial value for every $p\in (0,\infty ]$. In this article we provide conditions on the coefficient functions of the SDE and on $p \in (0,\infty ]$ that are sufficient for local Lipschitz continuity in the strong $L^p$-sense with respect to the initial value and we establish explicit estimates for the local Lipschitz continuity constants. In particular, we prove local Lipschitz continuity in the initial value for several nonlinear stochastic ordinary and stochastic partial differential equations in the literature such as the stochastic van der Pol oscillator, Brownian dynamics, the Cox-Ingersoll-Ross processes and the Cahn-Hilliard-Cook equation. As an application of our estimates, we obtain strong completeness for several nonlinear SDEs.- Aurélien Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods Appl. 11 (2005), no. 4, 355–384. MR 2186814, DOI 10.1163/156939605777438569
- R. Anderson and R. May, Population biology of infectious diseases: Part I, Nature 280 (1979), 361–367.
- N. Bou-Rabee and M. Hairer, Nonasymptotic mixing of the MALA algorithm, IMA J. Numer. Anal. 33 (2013), no. 1, 80–110. MR 3020951, DOI 10.1093/imanum/drs003
- Marie-France Bru, Wishart processes, J. Theoret. Probab. 4 (1991), no. 4, 725–751. MR 1132135, DOI 10.1007/BF01259552
- Alexandros Beskos and Andrew Stuart, MCMC methods for sampling function space, ICIAM 07—6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, 2009, pp. 337–364. MR 2588600, DOI 10.4171/056-1/16
- Sonja Cox, Martin Hutzenthaler, Arnulf Jentzen, Jan van Neerven, and Timo Welti, Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions, IMA J. Numer. Anal. 41 (2021), no. 1, 493–548. MR 4205064, DOI 10.1093/imanum/drz063
- D. A. Dawson, Galerkin approximation of nonlinear Markov processes, Statistics and related topics (Ottawa, Ont., 1980) North-Holland, Amsterdam-New York, 1981, pp. 317–339. MR 665284
- Steffen Dereich, Andreas Neuenkirch, and Lukasz Szpruch, An Euler-type method for the strong approximation of the Cox-Ingersoll-Ross process, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), no. 2140, 1105–1115. MR 2898556, DOI 10.1098/rspa.2011.0505
- Philipp Dörsek, Semigroup splitting and cubature approximations for the stochastic Navier-Stokes equations, SIAM J. Numer. Anal. 50 (2012), no. 2, 729–746. MR 2914284, DOI 10.1137/110833841
- Giuseppe Da Prato and Arnaud Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal. 26 (1996), no. 2, 241–263. MR 1359472, DOI 10.1016/0362-546X(94)00277-O
- F. Delbaen and H. Shirakawa, An interest rate model with upper and lower bounds, Asia-Pacific Financial Markets 9 (2002), no. 3-4, 191–209.
- Richard Durrett, Probability models for DNA sequence evolution, 2nd ed., Probability and its Applications (New York), Springer, New York, 2008. MR 2439767, DOI 10.1007/978-0-387-78168-6
- Abdelhadi Es-Sarhir and Wilhelm Stannat, Improved moment estimates for invariant measures of semilinear diffusions in Hilbert spaces and applications, J. Funct. Anal. 259 (2010), no. 5, 1248–1272. MR 2652188, DOI 10.1016/j.jfa.2010.02.017
- Shizan Fang, Peter Imkeller, and Tusheng Zhang, Global flows for stochastic differential equations without global Lipschitz conditions, Ann. Probab. 35 (2007), no. 1, 180–205. MR 2303947, DOI 10.1214/009117906000000412
- István Gyöngy and Nicolai Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations, Probab. Theory Related Fields 105 (1996), no. 2, 143–158. MR 1392450, DOI 10.1007/BF01203833
- István Gyöngy and Annie Millet, Rate of convergence of space time approximations for stochastic evolution equations, Potential Anal. 30 (2009), no. 1, 29–64. MR 2465711, DOI 10.1007/s11118-008-9105-5
- P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 213864, DOI 10.1007/BF00281421
- Martin Hairer, Martin Hutzenthaler, and Arnulf Jentzen, Loss of regularity for Kolmogorov equations, Ann. Probab. 43 (2015), no. 2, 468–527. MR 3305998, DOI 10.1214/13-AOP838
- Martin Hutzenthaler and Arnulf Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Mem. Amer. Math. Soc. 236 (2015), no. 1112, v+99. MR 3364862, DOI 10.1090/memo/1112
- Martin Hutzenthaler and Arnulf Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients, Ann. Probab. 48 (2020), no. 1, 53–93. MR 4079431, DOI 10.1214/19-AOP1345
- Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab. 22 (2012), no. 4, 1611–1641. MR 2985171, DOI 10.1214/11-AAP803
- H. Haken, J. A. S. Kelso, and H. Bunz, A theoretical model of phase transitions in human hand movements, Biol. Cybernet. 51 (1985), no. 5, 347–356. MR 778098, DOI 10.1007/BF00336922
- Martin Hairer and Jonathan C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2) 164 (2006), no. 3, 993–1032. MR 2259251, DOI 10.4007/annals.2006.164.993
- Desmond J. Higham, Xuerong Mao, and Andrew M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal. 40 (2002), no. 3, 1041–1063. MR 1949404, DOI 10.1137/S0036142901389530
- P. Holmes and D. Rand, Phase portraits and bifurcations of the nonlinear oscillator: $\ \ddot x+(\alpha +\gamma x^{2})\dot x+\beta x+\delta x^{3}=0$, Internat. J. Non-Linear Mech. 15 (1980), no. 6, 449–458 (English, with French summary). MR 605732, DOI 10.1016/0020-7462(80)90031-1
- Matthias Hieber and Wilhelm Stannat, Stochastic stability of the Ekman spiral, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 1, 189–208. MR 3088441
- Yaozhong Hu, Semi-implicit Euler-Maruyama scheme for stiff stochastic equations, Stochastic analysis and related topics, V (Silivri, 1994) Progr. Probab., vol. 38, Birkhäuser Boston, Boston, MA, 1996, pp. 183–202. MR 1396331
- Tuomas Hytönen, Jan van Neerven, Mark Veraar, and Lutz Weis, Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 63, Springer, Cham, 2016. MR 3617205
- Akira Ichikawa, Semilinear stochastic evolution equations: boundedness, stability and invariant measures, Stochastics 12 (1984), no. 1, 1–39. MR 738933, DOI 10.1080/17442508408833293
- Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR 1876169, DOI 10.1007/978-1-4757-4015-8
- Peter Kloeden and Andreas Neuenkirch, Convergence of numerical methods for stochastic differential equations in mathematical finance, Recent developments in computational finance, Interdiscip. Math. Sci., vol. 14, World Sci. Publ., Hackensack, NJ, 2013, pp. 49–80. MR 3288634, DOI 10.1142/9789814436434_{0}002
- Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374, DOI 10.1007/978-3-662-12616-5
- N. V. Krylov, On Kolmogorov’s equations for finite-dimensional diffusions, Stochastic PDE’s and Kolmogorov equations in infinite dimensions (Cetraro, 1998) Lecture Notes in Math., vol. 1715, Springer, Berlin, 1999, pp. 1–63. MR 1731794, DOI 10.1007/BFb0092417
- Xue-Mei Li, Strong $p$-completeness of stochastic differential equations and the existence of smooth flows on noncompact manifolds, Probab. Theory Related Fields 100 (1994), no. 4, 485–511. MR 1305784, DOI 10.1007/BF01268991
- Di Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci. 1 (2003), no. 2, 361–375. MR 1980481
- Edward N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), no. 2, 130–141. MR 4021434, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Gottlieb Leha and Gunter Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep. 48 (1994), no. 3-4, 195–225. MR 1782748, DOI 10.1080/17442509408833906
- Gottlieb Leha and Gunter Ritter, Lyapunov functions and stationary distributions of stochastic evolution equations, Stochastic Anal. Appl. 21 (2003), no. 4, 763–799. MR 1988794, DOI 10.1081/SAP-120022862
- Wei Liu and Michael Röckner, SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal. 259 (2010), no. 11, 2902–2922. MR 2719279, DOI 10.1016/j.jfa.2010.05.012
- Xue-Mei Li and Michael Scheutzow, Lack of strong completeness for stochastic flows, Ann. Probab. 39 (2011), no. 4, 1407–1421. MR 2857244, DOI 10.1214/10-AOP585
- Alessandra Lunardi, Interpolation theory, 2nd ed., Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa, 2009. MR 2523200
- Bohdan Maslowski, On some stability properties of stochastic differential equations of Itô’s type, Časopis Pěst. Mat. 111 (1986), no. 4, 404–423, 435 (English, with Russian and Czech summaries). MR 871716
- Annie Millet and Pierre-Luc Morien, On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution, Ann. Appl. Probab. 11 (2001), no. 3, 922–951. MR 1865028, DOI 10.1214/aoap/1015345353
- Katrin Mittmann and Ingo Steinwart, On the existence of continuous modifications of vector-valued random fields, Georgian Math. J. 10 (2003), no. 2, 311–317. Dedicated to the memory of Professor Revaz Chitashvili. MR 2009978
- Xuerong Mao and Lukasz Szpruch, Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients, Stochastics 85 (2013), no. 1, 144–171. MR 3011916, DOI 10.1080/17442508.2011.651213
- Andreas Neuenkirch and Lukasz Szpruch, First order strong approximations of scalar SDEs defined in a domain, Numer. Math. 128 (2014), no. 1, 103–136. MR 3248050, DOI 10.1007/s00211-014-0606-4
- I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II, J. Chem. Phys 48 (1968), 1695–1700.
- Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. Itô calculus; Reprint of the second (1994) edition. MR 1780932, DOI 10.1017/CBO9781107590120
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1994. MR 1303781
- Sotirios Sabanis, A note on tamed Euler approximations, Electron. Commun. Probab. 18 (2013), no. 47, 10. MR 3070913, DOI 10.1214/ECP.v18-2824
- Sotirios Sabanis, Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients, Ann. Appl. Probab. 26 (2016), no. 4, 2083–2105. MR 3543890, DOI 10.1214/15-AAP1140
- Michael Scheutzow, Periodic behavior of the stochastic Brusselator in the mean-field limit, Probab. Theory Relat. Fields 72 (1986), no. 3, 425–462. MR 843504, DOI 10.1007/BF00334195
- Björn Schmalfuß, The random attractor of the stochastic Lorenz system, Z. Angew. Math. Phys. 48 (1997), no. 6, 951–975. MR 1488689, DOI 10.1007/s000330050074
- K. R. Schenk-Hoppé, Bifurcation scenarios of the noisy Duffing-van der Pol oscillator, Nonlinear Dynam. 11 (1996), no. 3, 255–274. MR 1423974, DOI 10.1007/BF00120720
- Klaus Reiner Schenk-Hoppé, Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive, Z. Angew. Math. Phys. 47 (1996), no. 5, 740–759. MR 1420853, DOI 10.1007/BF00915273
- G. Schöner, H. Haken, and J. A. S. Kelso, A stochastic theory of phase transitions in human hand movements, Biol. Cybernet. 53 (1986), 247–257.
- Martin Sauer and Wilhelm Stannat, Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition, Math. Comp. 84 (2015), no. 292, 743–766. MR 3290962, DOI 10.1090/S0025-5718-2014-02873-1
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- George R. Sell and Yuncheng You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002. MR 1873467, DOI 10.1007/978-1-4757-5037-9
- Setsuo Taniguchi, Stochastic flows of diffeomorphisms on an open set in $\textbf {R}^n$, Stochastics Stochastics Rep. 28 (1989), no. 4, 301–315. MR 1028536, DOI 10.1080/17442508908833599
- E. Tornatore, S. M. Buccellato, and P. Vetro, Stability of a stochastic SIR system, Physica A: Statistical Mechanics and its Applications 354 (2005), no. 0, 111 – 126.
- J. Timmer, S. Haussler, M. Lauk, and C.-H. Lucking, Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators?, Chaos: An Interdisciplinary Journal of Nonlinear Science 10 (2000), no. 1, 278–288.
- J. J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973), no. 9, 3919–3930.
- Balth. van der Pol, Lxxxviii. On relaxation-oscillations, Philosophical Magazine Series 7 2 (1926), no. 11, 978–992.
- Heinrich von Weizsäcker and Gerhard Winkler, Stochastic integrals, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1990. An introduction. MR 1062600, DOI 10.1007/978-3-663-13923-2
- Toshio Yamada and Yukio Ogura, On the strong comparison theorems for solutions of stochastic differential equations, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 1, 3–19. MR 612157, DOI 10.1007/BF00531971
- Xiang Zhou and Weinan E, Study of noise-induced transitions in the Lorenz system using the minimum action method, Commun. Math. Sci. 8 (2010), no. 2, 341–355. MR 2664454
- Xicheng Zhang, Stochastic flows and Bismut formulas for stochastic Hamiltonian systems, Stochastic Process. Appl. 120 (2010), no. 10, 1929–1949. MR 2673982, DOI 10.1016/j.spa.2010.05.015