AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
On Singularity Properties of Word Maps and Applications to Probabilistic Waring Type Problems
About this Title
Itay Glazer and Yotam I. Hendel
Publication: Memoirs of the American Mathematical Society
Publication Year:
2024; Volume 299, Number 1497
ISBNs: 978-1-4704-7043-2 (print); 978-1-4704-7875-9 (online)
DOI: https://doi.org/10.1090/memo/1497
Published electronically: July 11, 2024
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries
- 3. Some properties of the algebraic convolution operation
- 4. Lie algebra word maps
- 5. Lie algebra word maps: Proof of the main theorems
- 6. The commutator map revisited
- 7. Local behavior of word maps and a lower bound on the log canonical threshold of their fibers
- 8. Number theoretic interpretation of the flatness, $\varepsilon$-jet flatness and (FRS) properties
- 9. Applications to the $p$-adic probabilistic Waring type problem
Abstract
We study singularity properties of word maps on semisimple Lie algebras, semisimple algebraic groups and matrix algebras and obtain various applications to random walks induced by word measures on compact $p$-adic groups.
Given a word $w$ in a free Lie algebra $\mathcal {L}_{r}$, it induces a word map $\varphi _{w}:\mathfrak {g}^{r}\rightarrow \mathfrak {g}$ for every semisimple Lie algebra $\mathfrak {g}$. Given two words $w_{1}\in \mathcal {L}_{r_{1}}$ and $w_{2}\in \mathcal {L}_{r_{2}}$, we define and study the convolution of the corresponding word maps $\varphi _{w_{1}}*\varphi _{w_{2}}â\varphi _{w_{1}}+\varphi _{w_{2}}:\mathfrak {g}^{r_{1}+r_{2}}\rightarrow \mathfrak {g}$.
By introducing new degeneration techniques, we show that for any word $w\in \mathcal {L}_{r}$ of degree $d$, and any simple Lie algebra $\mathfrak {g}$ with $\varphi _{w}(\mathfrak {g}^{r})\neq 0$, one obtains a flat morphism with reduced fibers of rational singularities (abbreviated an (FRS) morphism) after taking $O(d^{4})$ self-convolutions of $\varphi _{w}$. Similar results are obtained for matrix word maps. We deduce that a group word map of length $\ell$ becomes (FRS), locally around identity, after $O(\ell ^{4})$ self-convolutions, for every semisimple algebraic group $\underline {G}$. We furthermore provide uniform lower bounds on the log canonical threshold of the fibers of Lie algebra, matrix and group word maps. For the commutator word $w_{0}=[X,Y]$, we show that $\varphi _{w_{0}}^{*4}$ is (FRS) for any semisimple Lie algebra, improving a result of Aizenbud-Avni, and obtaining applications in representation growth of compact $p$-adic and arithmetic groups.
The singularity properties we consider, such as the (FRS) property, are intimately connected to the point count of fibers over finite rings of the form $\mathbb {Z}/p^{k}\mathbb {Z}$. This allows us to relate them to properties of some natural families of random walks on finite and compact $p$-adic groups. We explore these connections, characterizing some of the singularity properties discussed in probabilistic terms, and provide applications to $p$-adic probabilistic Waring type problems.
- Avraham Aizenbud and Nir Avni, Representation growth and rational singularities of the moduli space of local systems, Invent. Math. 204 (2016), no. 1, 245â316. MR 3480557, DOI 10.1007/s00222-015-0614-8
- Avraham Aizenbud and Nir Avni, Counting points of schemes over finite rings and counting representations of arithmetic lattices, Duke Math. J. 167 (2018), no. 14, 2721â2743. MR 3859363, DOI 10.1215/00127094-2018-0021
- Nir Avni, Tsachik Gelander, Martin Kassabov, and Aner Shalev, Word values in $p$-adic and adelic groups, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1323â1330. MR 3138499, DOI 10.1112/blms/bdt063
- A. S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449â463. MR 36751, DOI 10.1090/S0002-9939-1950-0036751-9
- Nir Avni and Chen Meiri, Words have bounded width in $\textrm {SL}(n, {\Bbb Z})$, Compos. Math. 155 (2019), no. 7, 1245â1258. MR 3963488, DOI 10.1112/s0010437x19007334
- Tatiana Bandman, Nikolai Gordeev, Boris KunyavskiÄ, and Eugene Plotkin, Equations in simple Lie algebras, J. Algebra 355 (2012), 67â79. MR 2889532, DOI 10.1016/j.jalgebra.2012.01.012
- Roman Bezrukavnikov, Martin W. Liebeck, Aner Shalev, and Pham Huu Tiep, Character bounds for finite groups of Lie type, Acta Math. 221 (2018), no. 1, 1â57. MR 3877017, DOI 10.4310/ACTA.2018.v221.n1.a1
- A. Borel, On free subgroups of semisimple groups, Enseign. Math. (2) 29 (1983), no. 1-2, 151â164. MR 702738
- Alexander Bors, Fibers of automorphic word maps and an application to composition factors, J. Group Theory 20 (2017), no. 6, 1103â1133. MR 3719319, DOI 10.1515/jgth-2017-0024
- Nero Budur, Rational singularities, quiver moment maps, and representations of surface groups, Int. Math. Res. Not. IMRN 15 (2021), 11782â11817. MR 4294133, DOI 10.1093/imrn/rnz236
- William Crawley-Boevey, Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), no. 3, 257â293. MR 1834739, DOI 10.1023/A:1017558904030
- Raf Cluckers, Itay Glazer, and Yotam I. Hendel, A number theoretic characterization of $E$-smooth and (FRS) morphisms: estimates on the number of $\Bbb Z/p^k\Bbb Z$-points, Algebra Number Theory 17 (2023), no. 12, 2229â2260. MR 4650394, DOI 10.2140/ant.2023.17.2229
- Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Integrability of oscillatory functions on local fields: transfer principles, Duke Math. J. 163 (2014), no. 8, 1549â1600. MR 3210968, DOI 10.1215/00127094-2713482
- Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Transfer principles for bounds of motivic exponential functions, Families of automorphic forms and the trace formula, Simons Symp., Springer, [Cham], 2016, pp. 111â127. MR 3675165
- Raf Cluckers, Julia Gordon, and Immanuel Halupczok, Uniform analysis on local fields and applications to orbital integrals, Trans. Amer. Math. Soc. Ser. B 5 (2018), 125â166. MR 3859937, DOI 10.1090/btran/25
- E. S. Chibrikov, A right normed basis for free Lie algebras and Lyndon-Shirshov words, J. Algebra 302 (2006), no. 2, 593â612. MR 2293773, DOI 10.1016/j.jalgebra.2006.03.036
- Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations, Publ. Math. Inst. Hautes Ătudes Sci. 108 (2008), 1â181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France VignĂ©ras. MR 2470687, DOI 10.1007/s10240-008-0016-1
- V. N. Äubarikov, Multiple rational trigonometric sums and multiple integrals, Mat. Zametki 20 (1976), no. 1, 61â68 (Russian). MR 429785
- Raf Cluckers and François Loeser, Constructible motivic functions and motivic integration, Invent. Math. 173 (2008), no. 1, 23â121. MR 2403394, DOI 10.1007/s00222-008-0114-1
- Raf Cluckers and François Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math. (2) 171 (2010), no. 2, 1011â1065. MR 2630060, DOI 10.4007/annals.2010.171.1011
- Antoine Chambert-Loir, Johannes Nicaise, and Julien Sebag, Motivic integration, Progress in Mathematics, vol. 325, BirkhÀuser/Springer, New York, 2018. MR 3838446, DOI 10.1007/978-1-4939-7887-8
- Raf Cluckers, Presburger sets and $p$-minimal fields, J. Symbolic Logic 68 (2003), no. 1, 153â162. MR 1959315, DOI 10.2178/jsl/1045861509
- Raf Cluckers, Multivariate Igusa theory: decay rates of exponential sums, Int. Math. Res. Not. 76 (2004), 4093â4108. MR 2109987, DOI 10.1155/S1073792804141913
- Serge Cantat and Junyi Xie, Algebraic actions of discrete groups: the $p$-adic method, Acta Math. 220 (2018), no. 2, 239â295. MR 3849285, DOI 10.4310/ACTA.2018.v220.n2.a2
- J. Denef, On the degree of Igusaâs local zeta function, Amer. J. Math. 109 (1987), no. 6, 991â1008. MR 919001, DOI 10.2307/2374583
- RenĂ©e Elkik, SingularitĂ©s rationnelles et dĂ©formations, Invent. Math. 47 (1978), no. 2, 139â147 (French). MR 501926, DOI 10.1007/BF01578068
- Lawrence Ein and Mircea MustaĆŁÇ, Inversion of adjunction for local complete intersection varieties, Amer. J. Math. 126 (2004), no. 6, 1355â1365. MR 2102399
- Lawrence Ein and Mircea MustaĆŁÄ, Jet schemes and singularities, Algebraic geometryâSeattle 2005. Part 2, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505â546. MR 2483946, DOI 10.1090/pspum/080.2/2483946
- Abdelrhman Elkasapy and Andreas Thom, On the length of the shortest non-trivial element in the derived and the lower central series, J. Group Theory 18 (2015), no. 5, 793â804. MR 3393415, DOI 10.1515/jgth-2015-0007
- Itay Glazer and Yotam I. Hendel, On singularity properties of convolutions of algebraic morphisms, Selecta Math. (N.S.) 25 (2019), no. 1, Paper No. 15, 41. MR 3911739, DOI 10.1007/s00029-019-0457-z
- Itay Glazer and Yotam I. Hendel, On singularity properties of convolutions of algebraic morphismsâthe general case, J. Lond. Math. Soc. (2) 103 (2021), no. 4, 1453â1479. With an appendix by Glazer, Hendel and Gady Kozma. MR 4273476, DOI 10.1112/jlms.12414
- Itay Glazer, On rational singularities and counting points of schemes over finite rings, Algebra Number Theory 13 (2019), no. 2, 485â500. MR 3927053, DOI 10.2140/ant.2019.13.485
- Robert M. Guralnick, Michael Larsen, and Pham Huu Tiep, Character levels and character bounds, Forum Math. Pi 8 (2020), e2, 81. MR 4061963, DOI 10.1017/fmp.2019.9
- Robert M. Guralnick, Michael Larsen, and Pham Huu Tiep, Character levels and character bounds for finite classical groups, Invent. Math. 235 (2024), no. 1, 151â210. MR 4688703, DOI 10.1007/s00222-023-01221-5
- A. Grothendieck, ĂlĂ©ments de gĂ©omĂ©trie algĂ©brique. IV. Ătude locale des schĂ©mas et des morphismes de schĂ©mas IV, Inst. Hautes Ătudes Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Shelly Garion and Aner Shalev, Commutator maps, measure preservation, and $T$-systems, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4631â4651. MR 2506422, DOI 10.1090/S0002-9947-09-04575-9
- David Hilbert, Beweis fĂŒr die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{ter}$ Potenzen (Waringsches Problem), Math. Ann. 67 (1909), no. 3, 281â300 (German). MR 1511530, DOI 10.1007/BF01450405
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109â203; 79 (1964), 205â326. MR 199184, DOI 10.2307/1970547
- Chun Yin Hui, Michael Larsen, and Aner Shalev, The Waring problem for Lie groups and Chevalley groups, Israel J. Math. 210 (2015), no. 1, 81â100. MR 3430269, DOI 10.1007/s11856-015-1246-9
- Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779â813. MR 2630056, DOI 10.4007/annals.2010.171.779
- Andrei Jaikin-Zapirain, On the verbal width of finitely generated pro-$p$ groups, Rev. Mat. Iberoam. 24 (2008), no. 2, 617â630. MR 2459206, DOI 10.4171/RMI/549
- Guy Kapon, Singularity properties of graph varieties, arXiv:1905.05847 (2019).
- Martin Kassabov, Universal lattices and unbounded rank expanders, Invent. Math. 170 (2007), no. 2, 297â326. MR 2342638, DOI 10.1007/s00222-007-0064-z
- Michael Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149â156. MR 2041227, DOI 10.1007/BF02787545
- Jun Li, The space of surface group representations, Manuscripta Math. 78 (1993), no. 3, 223â243. MR 1206154, DOI 10.1007/BF02599310
- Martin W. Liebeck, E. A. OâBrien, Aner Shalev, and Pham Huu Tiep, The Ore conjecture, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939â1008. MR 2654085, DOI 10.4171/JEMS/220
- David A. Levin and Yuval Peres, Markov chains and mixing times, American Mathematical Society, Providence, RI, 2017. Second edition of [ MR2466937]; With contributions by Elizabeth L. Wilmer; With a chapter on âCoupling from the pastâ by James G. Propp and David B. Wilson. MR 3726904, DOI 10.1090/mbk/107
- Martin W. Liebeck and Aner Shalev, Diameters of finite simple groups: sharp bounds and applications, Ann. of Math. (2) 154 (2001), no. 2, 383â406. MR 1865975, DOI 10.2307/3062101
- Michael Larsen and Aner Shalev, Characters of symmetric groups: sharp bounds and applications, Invent. Math. 174 (2008), no. 3, 645â687. MR 2453603, DOI 10.1007/s00222-008-0145-7
- Michael Larsen and Aner Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009), no. 2, 437â466. MR 2476780, DOI 10.1090/S0894-0347-08-00615-2
- Michael Larsen and Aner Shalev, Fibers of word maps and some applications, J. Algebra 354 (2012), 36â48. MR 2879221, DOI 10.1016/j.jalgebra.2011.10.040
- Michael Larsen, Aner Shalev, and Pham Huu Tiep, The Waring problem for finite simple groups, Ann. of Math. (2) 174 (2011), no. 3, 1885â1950. MR 2846493, DOI 10.4007/annals.2011.174.3.10
- Michael Larsen, Aner Shalev, and Pham Huu Tiep, Probabilistic Waring problems for finite simple groups, Ann. of Math. (2) 190 (2019), no. 2, 561â608. MR 3997129, DOI 10.4007/annals.2019.190.2.3
- Serge Lang and AndrĂ© Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819â827. MR 65218, DOI 10.2307/2372655
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 422434
- Justin Malestein and Andrew Putman, On the self-intersections of curves deep in the lower central series of a surface group, Geom. Dedicata 149 (2010), 73â84. MR 2737679, DOI 10.1007/s10711-010-9465-z
- Laurentiu Maxim, Morihiko Saito, and Jörg SchĂŒrmann, Thom-Sebastiani theorems for filtered $\mathcal D$-modules and for multiplier ideals, Int. Math. Res. Not. IMRN 1 (2020), 91â111. MR 4050564, DOI 10.1093/imrn/rny032
- Mircea MustaĆŁÄ, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397â424. With an appendix by David Eisenbud and Edward Frenkel. MR 1856396, DOI 10.1007/s002220100152
- Mircea MustaĆŁÇ, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), no. 3, 599â615. MR 1896234, DOI 10.1090/S0894-0347-02-00391-0
- Mircea MustaĆŁÄ, IMPANGA lecture notes on log canonical thresholds, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., ZĂŒrich, 2012, pp. 407â442. Notes by Tomasz Szemberg. MR 2976952, DOI 10.4171/114-1/16
- C. Martinez and E. Zelmanov, Products of powers in finite simple groups. part B, Israel J. Math. 96 (1996), no. part B, 469â479. MR 1433702, DOI 10.1007/BF02937318
- Ju. P. Razmyslov, The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero, Algebra i Logika 12 (1973), 83â113, 121 (Russian). MR 340348
- Andrew Reiser, Pushforwards of measures on real varieties under maps with rational singularities, arXiv:1807.00079 (2018).
- R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), no. 3, 311â327. MR 535074
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 245627
- Aner Shalev, Word maps, conjugacy classes, and a noncommutative Waring-type theorem, Ann. of Math. (2) 170 (2009), no. 3, 1383â1416. MR 2600876, DOI 10.4007/annals.2009.170.1383
- Gili Schul and Aner Shalev, Words and mixing times in finite simple groups, Groups Geom. Dyn. 5 (2011), no. 2, 509â527. MR 2782183, DOI 10.4171/GGD/137
- The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
- Garrett Stuck, Low-dimensional actions of semisimple groups, Israel J. Math. 76 (1991), no. 1-2, 27â71. MR 1177331, DOI 10.1007/BF02782843
- Jan Saxl and John S. Wilson, A note on powers in simple groups, Math. Proc. Cambridge Philos. Soc. 122 (1997), no. 1, 91â94. MR 1443588, DOI 10.1017/S030500419600165X
- Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II, Publ. Math. Inst. Hautes Ătudes Sci. 108 (2008), 183â239. MR 2470688, DOI 10.1007/s10240-008-0015-2
- André Weil, Adeles and algebraic groups, Progress in Mathematics, vol. 23, BirkhÀuser, Boston, MA, 1982. With appendices by M. Demazure and Takashi Ono. MR 670072