
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
$G$-Global Homotopy Theory and Algebraic $K$-Theory
About this Title
Tobias Lenz
Publication: Memoirs of the American Mathematical Society
Publication Year:
2025; Volume 306, Number 1545
ISBNs: 978-1-4704-7287-0 (print); 978-1-4704-8053-0 (online)
DOI: https://doi.org/10.1090/memo/1545
Published electronically: January 24, 2025
Table of Contents
Chapters
- Introduction
- 1. Unstable $G$-global homotopy theory
- 2. Coherent commutativity
- 3. Stable $G$-global homotopy theory
- 4. $\except {toc}{\boldsymbol {G}}\for {toc}{G}$-global algebraic $\except {toc}{\boldsymbol {K}}\for {toc}{K}$-theory
- A. Abstract homotopy theory
Abstract
We develop the foundations of $G$-global homotopy theory as a synthesis of classical equivariant homotopy theory on the one hand and global homotopy theory in the sense of Schwede on the other hand. Using this framework, we then introduce the $G$-global algebraic $K$-theory of small symmetric monoidal categories with $G$-action, unifying $G$-equivariant algebraic $K$-theory, as considered for example by Shimakawa, and Schwede’s global algebraic $K$-theory.
As an application of the theory, we prove that the $G$-global algebraic $K$-theory functor exhibits the category of small symmetric monoidal categories with $G$-action as a model of connective $G$-global stable homotopy theory, generalizing and strengthening a classical non-equivariant result due to Thomason. This in particular allows us to deduce the corresponding statements for global and equivariant algebraic $K$-theory.
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722
- M. F. Atiyah and G. B. Segal, Equivariant $K$-theory and completion, J. Differential Geometry 3 (1969), 1–18. MR 259946
- Miguel Barrero Santamaría, Operads in Unstable Global Homotopy Theory, Master’s Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2020.
- Clark Barwick, On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 (2010), no. 2, 245–320. MR 2771591, DOI 10.4310/hha.2010.v12.n2.a9
- M. A. Batanin and C. Berger, Homotopy theory for algebras over polynomial monads, Theory Appl. Categ. 32 (2017), Paper No. 6, 148–253. MR 3607212
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- Andrew J. Blumberg, Continuous functors as a model for the equivariant stable homotopy category, Algebr. Geom. Topol. 6 (2006), 2257–2295. MR 2286026, DOI 10.2140/agt.2006.6.2257
- Pedro Boavida de Brito and Ieke Moerdijk, Dendroidal spaces, $\Gamma$-spaces and the special Barratt-Priddy-Quillen theorem, J. Reine Angew. Math. 760 (2020), 229–265. MR 4069891, DOI 10.1515/crelle-2018-0002
- Anna Marie Bohmann, Kristen Mazur, Angélica M. Osorno, Viktoriya Ozornova, Kate Ponto, and Carolyn Yarnall, A model structure on $G\mathcal Cat$, Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 123–134. MR 3380072, DOI 10.1090/conm/641/12861
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin-New York, 1978, pp. 80–130. MR 513569
- Kenneth S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419–458. MR 341469, DOI 10.1090/S0002-9947-1973-0341469-9
- Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 763905, DOI 10.2307/2006940
- Gunnar Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Invent. Math. 103 (1991), no. 3, 497–525. MR 1091616, DOI 10.1007/BF01239524
- Gunnar Carlsson, A survey of equivariant stable homotopy theory, Topology 31 (1992), no. 1, 1–27. MR 1153236, DOI 10.1016/0040-9383(92)90061-L
- Denis-Charles Cisinski, Higher categories and homotopical algebra, Cambridge Studies in Advanced Mathematics, vol. 180, Cambridge University Press, Cambridge, 2019. MR 3931682, DOI 10.1017/9781108588737
- Michael Cole, Mixing model structures, Topology Appl. 153 (2006), no. 7, 1016–1032. MR 2203016, DOI 10.1016/j.topol.2005.02.004
- Sjoerd E. Crans, Quillen closed model structures for sheaves, J. Pure Appl. Algebra 101 (1995), no. 1, 35–57. MR 1346427, DOI 10.1016/0022-4049(94)00033-F
- Brian Day, On closed categories of functors, Reports of the Midwest Category Seminar, IV, Lecture Notes in Math., Vol. 137, Springer, Berlin-New York, 1970, pp. 1–38. MR 272852
- Dieter Degrijse, Markus Hausmann, Wolfgang Luck, Irakli Patchkoria, and Stefan Schwede, Proper equivariant stable homotopy theory, Mem. Amer. Math. Soc. 288 (2023), no. 1432, vi+142. MR 4627088, DOI 10.1090/memo/1432
- John W. Duskin, Simplicial matrices and the nerves of weak $n$-categories. I. Nerves of bicategories, Theory Appl. Categ. 9 (2001/02), 198–308. CT2000 Conference (Como). MR 1897816
- W. G. Dwyer and D. M. Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35. MR 578563, DOI 10.1016/0022-4049(80)90113-9
- W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), no. 4, 427–440. MR 584566, DOI 10.1016/0040-9383(80)90025-7
- W. G. Dwyer and D. M. Kan, Singular functors and realization functors, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 2, 147–153. MR 749528
- W. G. Dwyer and D. M. Kan, Equivalences between homotopy theories of diagrams, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 180–205. MR 921478
- A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 275–284. MR 690052, DOI 10.1090/S0002-9947-1983-0690052-0
- Z. Fiedorowicz, H. Hauschild, and J. P. May, Equivariant algebraic $K$-theory, Algebraic $K$-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 23–80. MR 689388
- A. Fröhlich and C. T. C. Wall, Foundations of equivariant algebraic $K$-theory, Algebraic $K$-Theory and its Geometric Applications (Conf., Hull, 1969) Lecture Notes in Math., No. 108, Springer, Berlin-New York, 1969, pp. 12–27. MR 251108
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650, DOI 10.1007/978-3-0346-0189-4
- S. Gorchinskiy and V. Guletskiĭ, Symmetric powers in abstract homotopy categories, Adv. Math. 292 (2016), 707–754. MR 3464032, DOI 10.1016/j.aim.2016.01.011
- Bertrand J. Guillou and J. Peter May, Equivariant iterated loop space theory and permutative $G$-categories, Algebr. Geom. Topol. 17 (2017), no. 6, 3259–3339. MR 3709647, DOI 10.2140/agt.2017.17.3259
- Markus Hausmann, $G$-symmetric spectra, semistability and the multiplicative norm, J. Pure Appl. Algebra 221 (2017), no. 10, 2582–2632. MR 3646319, DOI 10.1016/j.jpaa.2017.01.004
- Markus Hausmann, Symmetric spectra model global homotopy theory of finite groups, Algebr. Geom. Topol. 19 (2019), no. 3, 1413–1452. MR 3954287, DOI 10.2140/agt.2019.19.1413
- Markus Hausmann, Global group laws and equivariant bordism rings, Ann. of Math. (2) 195 (2022), no. 3, 841–910. MR 4413745, DOI 10.4007/annals.2022.195.3.2
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Vladimir Hinich, Dwyer-Kan localization revisited, Homology Homotopy Appl. 18 (2016), no. 1, 27–48. MR 3460765, DOI 10.4310/HHA.2016.v18.n1.a3
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Philip S. Hirschhorn, Overcategories and undercategories of cofibrantly generated model categories, J. Homotopy Relat. Struct. 16 (2021), no. 4, 753–768. MR 4343079, DOI 10.1007/s40062-021-00294-4
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- André Joyal, Notes on Quasi-Categories, 2008. lecture notes, available at www.math.uchicago.edu/\~may/IMA/Joyal.pdf.
- G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]. MR 2177301
- Tobias Lenz, On the global homotopy theory of symmetric monoidal categories, New York J. Math. 29 (2023), 635–686. MR 4595252
- Tobias Lenz, Parsummable categories as a strictification of symmetric monoidal categories, Theory Appl. Categ. 37 (2021), Paper No. 17, 482–529. MR 4266478, DOI 10.1007/s10409-021-01054-6
- Tobias Lenz, Genuine versus naïve symmetric monoidal $G$-categories, Doc. Math. 28 (2023), no. 5, 1079–1161. MR 4705607, DOI 10.4171/dm/933
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- John A. Lind, Diagram spaces, diagram spectra and spectra of units, Algebr. Geom. Topol. 13 (2013), no. 4, 1857–1935. MR 3073903, DOI 10.2140/agt.2013.13.1857
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Kerodon, 2018.
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Michael A. Mandell, An inverse $K$-theory functor, Doc. Math. 15 (2010), 765–791. MR 2735988
- M. A. Mandell and J. P. May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 1922205, DOI 10.1090/memo/0755
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR 420610
- J. P. May, $E_{\infty }$ spaces, group completions, and permutative categories, New developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972) London Math. Soc. Lecture Note Ser., No. 11, Cambridge Univ. Press, London-New York, 1974, pp. 61–93. MR 339152
- J. P. May, The spectra associated to permutative categories, Topology 17 (1978), no. 3, 225–228. MR 508886, DOI 10.1016/0040-9383(78)90027-7
- J. Peter May, Mona Merling, and Angélica M. Osorno, Equivariant Infinite Loop Space Theory, the Space Level Story, arXiv:1704.03413 (2017).
- Aaron Mazel-Gee, Quillen adjunctions induce adjunctions of quasicategories, New York J. Math. 22 (2016), 57–93. MR 3484677
- M. C. McCord, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc. 146 (1969), 273–298. MR 251719, DOI 10.1090/S0002-9947-1969-0251719-4
- Mona Merling, Equivariant algebraic K-theory of $G$-rings, Math. Z. 285 (2017), no. 3-4, 1205–1248. MR 3623747, DOI 10.1007/s00209-016-1745-3
- Haynes Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. MR 750716, DOI 10.2307/2007071
- Dominik Ostermayr, Equivariant $\Gamma$-spaces, Homology Homotopy Appl. 18 (2016), no. 1, 295–324. MR 3498648, DOI 10.4310/HHA.2016.v18.n1.a16
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 223432
- Charles Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topology Appl. 119 (2002), no. 1, 65–94. MR 1881711, DOI 10.1016/S0166-8641(01)00057-8
- Emily Riehl, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014. MR 3221774, DOI 10.1017/CBO9781107261457
- Steffen Sagave and Christian Schlichtkrull, Diagram spaces and symmetric spectra, Adv. Math. 231 (2012), no. 3-4, 2116–2193. MR 2964635, DOI 10.1016/j.aim.2012.07.013
- Steffen Sagave and Stefan Schwede, Homotopy invariance of convolution products, Int. Math. Res. Not. IMRN 8 (2021), 6246–6292. MR 4251277, DOI 10.1093/imrn/rnz334
- Christian Schlichtkrull and Mirjam Solberg, Braided injections and double loop spaces, Trans. Amer. Math. Soc. 368 (2016), no. 10, 7305–7338. MR 3471092, DOI 10.1090/tran/6614
- Stefan Schwede, Stable homotopical algebra and $\Gamma$-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 2, 329–356. MR 1670249, DOI 10.1017/S0305004198003272
- Stefan Schwede, An untitled book project about symmetric spectra, 2007. available at www.math.uni-bonn.de/people/schwede/SymSpec.pdf, version dated July 12th, 2007.
- Stefan Schwede, On the homotopy groups of symmetric spectra, Geom. Topol. 12 (2008), no. 3, 1313–1344. MR 2421129, DOI 10.2140/gt.2008.12.1313
- Stefan Schwede, Equivariant properties of symmetric products, J. Amer. Math. Soc. 30 (2017), no. 3, 673–711. MR 3630085, DOI 10.1090/jams/879
- Stefan Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018. MR 3838307, DOI 10.1017/9781108349161
- Stefan Schwede, Categories and orbispaces, Algebr. Geom. Topol. 19 (2019), no. 6, 3171–3215. MR 4023338, DOI 10.2140/agt.2019.19.3171
- Stefan Schwede, Lectures on Equivariant Stable Homotopy Theory, 2020. lecture notes, available at www.math.uni-bonn.de/people/schwede/equivariant.pdf, version dated February 12th 2020.
- Stefan Schwede, Orbispaces, orthogonal spaces, and the universal compact Lie group, Math. Z. 294 (2020), no. 1-2, 71–107. MR 4050064, DOI 10.1007/s00209-019-02265-1
- Stefan Schwede, Global algebraic K-theory, J. Topol. 15 (2022), no. 3, 1325–1454. MR 4461851, DOI 10.1112/topo.12241
- Stefan Schwede and Brooke E. Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), no. 2, 491–511. MR 1734325, DOI 10.1112/S002461150001220X
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Nobuo Shimada and Kazuhisa Shimakawa, Delooping symmetric monoidal categories, Hiroshima Math. J. 9 (1979), no. 3, 627–645. MR 549667
- Kazuhisa Shimakawa, Infinite loop $G$-spaces associated to monoidal $G$-graded categories, Publ. Res. Inst. Math. Sci. 25 (1989), no. 2, 239–262. MR 1003787, DOI 10.2977/prims/1195173610
- Kazuhisa Shimakawa, A note on $\Gamma _G$-spaces, Osaka J. Math. 28 (1991), no. 2, 223–228. MR 1132161
- Brooke Shipley, A convenient model category for commutative ring spectra, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 473–483. MR 2066511, DOI 10.1090/conm/346/06300
- Marc Stephan, On equivariant homotopy theory for model categories, Homology Homotopy Appl. 18 (2016), no. 2, 183–208. MR 3551501, DOI 10.4310/HHA.2016.v18.n2.a10
- Dennis P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, $K$-Monographs in Mathematics, vol. 8, Springer, Dordrecht, 2005. The 1970 MIT notes; Edited and with a preface by Andrew Ranicki. MR 2162361
- R. W. Thomason, Symmetric monoidal categories model all connective spectra, Theory Appl. Categ. 1 (1995), No. 5, 78–118. MR 1337494
- David White, Model structures on commutative monoids in general model categories, J. Pure Appl. Algebra 221 (2017), no. 12, 3124–3168. MR 3666740, DOI 10.1016/j.jpaa.2017.03.001