
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Para-hyper-Kähler Geometry of the Deformation Space of Maximal Globally Hyperbolic Anti-de Sitter Three-Manifolds
About this Title
Filippo Mazzoli, Andrea Seppi and Andrea Tamburelli
Publication: Memoirs of the American Mathematical Society
Publication Year:
2025; Volume 306, Number 1546
ISBNs: 978-1-4704-7303-7 (print); 978-1-4704-8054-7 (online)
DOI: https://doi.org/10.1090/memo/1546
Published electronically: January 27, 2025
Table of Contents
Chapters
- 1. Introduction
- 2. Preliminaries on Anti-de Sitter geometry
- 3. The toy model: Genus 1
- 4. The general case: Genus $\geq 2$
- 5. Geometric interpretations
- 6. Symplectic reduction
- A. Para-complex geometry
Abstract
In this paper we study the para-hyper-Kähler geometry of the deformation space of MGHC anti-de Sitter structures on $\Sigma \times \mathbb R$, for $\Sigma$ a closed oriented surface. We show that a neutral pseudo-Riemannian metric and three symplectic structures coexist with an integrable complex structure and two para-complex structures, satisfying the relations of para-quaternionic numbers. We show that these structures are directly related to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameterization of Krasnov-Schlenker by the induced metric on $K$-surfaces, the identification with the cotangent bundle $T^*\mathcal T(\Sigma )$, and the circle action that arises from this identification. Finally, we study the relation to the natural para-complex geometry that the space inherits from being a component of the $\mathbb {P}\mathrm {SL}(2,\mathbb {B})$-character variety, where $\mathbb {B}$ is the algebra of para-complex numbers, and the symplectic geometry deriving from Goldman symplectic form.- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- Lars Andersson, Thierry Barbot, Riccardo Benedetti, Francesco Bonsante, William M. Goldman, François Labourie, Kevin P. Scannell, and Jean-Marc Schlenker, Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45; MR2328921] by G. Mess, Geom. Dedicata 126 (2007), 47–70. MR 2328922, DOI 10.1007/s10711-007-9164-6
- Lars Andersson, Thierry Barbot, François Béguin, and Abdelghani Zeghib, Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math. 16 (2012), no. 1, 37–87. MR 2904912, DOI 10.4310/AJM.2012.v16.n1.a2
- D. V. Alekseevskiĭ, K. Medori, and A. Tomassini, Homogeneous para-Kählerian Einstein manifolds, Uspekhi Mat. Nauk 64 (2009), no. 1(385), 3–50 (Russian, with Russian summary); English transl., Russian Math. Surveys 64 (2009), no. 1, 1–43. MR 2503094, DOI 10.1070/RM2009v064n01ABEH004591
- Dimitri V. Alekseevsky, Costantino Medori, and Adriano Tomassini, Para-Kähler Einstein metrics on homogeneous manifolds, C. R. Math. Acad. Sci. Paris 347 (2009), no. 1-2, 69–72 (English, with English and French summaries). MR 2536752, DOI 10.1016/j.crma.2008.11.016
- Thierry Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom. 101 (2015), no. 1, 1–46. MR 3356068
- Thierry Barbot, Lorentzian Kleinian groups, Handbook of group actions. Vol. III, Adv. Lect. Math. (ALM), vol. 40, Int. Press, Somerville, MA, 2018, pp. 311–358. MR 3888623
- Riccardo Benedetti and Francesco Bonsante, Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc. 198 (2009), no. 926, viii+164. MR 2499272, DOI 10.1090/memo/0926
- Thierry Barbot, François Béguin, and Abdelghani Zeghib, Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on $\textrm {AdS}_3$, Geom. Dedicata 126 (2007), 71–129. MR 2328923, DOI 10.1007/s10711-005-6560-7
- Thierry Barbot, François Béguin, and Abdelghani Zeghib, Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 2, 511–591 (English, with English and French summaries). MR 2895066, DOI 10.5802/aif.2622
- John K. Beem and Paul E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 67, Marcel Dekker, Inc., New York, 1981. MR 619853
- Francesco Bonsante, Gabriele Mondello, and Jean-Marc Schlenker, A cyclic extension of the earthquake flow I, Geom. Topol. 17 (2013), no. 1, 157–234. MR 3035326, DOI 10.2140/gt.2013.17.157
- Francesco Bonsante, Gabriele Mondello, and Jean-Marc Schlenker, A cyclic extension of the earthquake flow II, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 811–859 (English, with English and French summaries). MR 3377066, DOI 10.24033/asens.2259
- Antonio N. Bernal and Miguel Sánchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem, Comm. Math. Phys. 243 (2003), no. 3, 461–470. MR 2029362, DOI 10.1007/s00220-003-0982-6
- Francesco Bonsante and Jean-Marc Schlenker, Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010), no. 2, 279–333. MR 2729269, DOI 10.1007/s00222-010-0263-x
- Francesco Bonsante and Jean-Marc Schlenker, Fixed points of compositions of earthquakes, Duke Math. J. 161 (2012), no. 6, 1011–1054. MR 2913100, DOI 10.1215/00127094-1548434
- Francesco Bonsante and Andrea Seppi, Area-preserving diffeomorphisms of the hyperbolic plane and $K$-surfaces in anti-de Sitter space, J. Topol. 11 (2018), no. 2, 420–468. MR 3789829, DOI 10.1112/topo.12058
- Francesco Bonsante and Andrea Seppi, Equivariant maps into anti-de Sitter space and the symplectic geometry of $\Bbb H^2\times \Bbb H^2$, Trans. Amer. Math. Soc. 371 (2019), no. 8, 5433–5459. MR 3937298, DOI 10.1090/tran/7417
- Francesco Bonsante and Andrea Seppi, Anti–de Sitter geometry and Teichmüller theory, In the tradition of Thurston—geometry and topology, Springer, Cham, [2020] ©2020, pp. 545–643. MR 4264588, DOI 10.1007/978-3-030-55928-1_{1}5
- Francesco Bonsante, Andrea Seppi, and Andrea Tamburelli, On the volume of anti–de Sitter maximal globally hyperbolic three-manifolds, Geom. Funct. Anal. 27 (2017), no. 5, 1106–1160. MR 3714718, DOI 10.1007/s00039-017-0423-x
- V. Cruceanu, P. Fortuny, and P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1996), no. 1, 83–115. MR 1386154, DOI 10.1216/rmjm/1181072105
- Qiyu Chen and Andrea Tamburelli, Constant mean curvature foliation of globally hyperbolic $(2+1)$-spacetimes with particles, Geom. Dedicata 201 (2019), 281–315. MR 3978545, DOI 10.1007/s10711-018-0393-7
- Jeffrey Danciger, A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol. 17 (2013), no. 5, 3077–3134. MR 3190306, DOI 10.2140/gt.2013.17.3077
- Jeffrey Danciger, Ideal triangulations and geometric transitions, J. Topol. 7 (2014), no. 4, 1118–1154. MR 3286899, DOI 10.1112/jtopol/jtu011
- S. K. Donaldson, Moment maps in differential geometry, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 171–189. MR 2039989, DOI 10.4310/SDG.2003.v8.n1.a6
- Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437–449. MR 270697, DOI 10.1063/1.1665157
- Eduardo García-Río, Yasuo Matsushita, and Ramón Vázquez-Lorenzo, Paraquaternionic Kähler manifolds, Rocky Mountain J. Math. 31 (2001), no. 1, 237–260. MR 1821379, DOI 10.1216/rmjm/1008959679
- William Mark Goldman, DISCONTINUOUS GROUPS AND THE EULER CLASS, ProQuest LLC, Ann Arbor, MI, 1980. Thesis (Ph.D.)–University of California, Berkeley. MR 2630832
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- Thomas Wolf Stephen Hodge. HyperKähler Geometry and Teichmüller Space. PhD thesis, Imperial College London, 2005.
- Heinz Hopf, Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachr. 4 (1951), 232–249 (German). MR 40042, DOI 10.1002/mana.3210040122
- Kirill Krasnov and Jean-Marc Schlenker, Minimal surfaces and particles in 3-manifolds, Geom. Dedicata 126 (2007), 187–254. MR 2328927, DOI 10.1007/s10711-007-9132-1
- Geoffrey Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007), 3–45. MR 2328921, DOI 10.1007/s10711-007-9155-7
- Yair N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992), no. 1, 151–217. MR 1152229
- Ioannis D. Platis, Complex symplectic geometry of quasi-Fuchsian space, Geom. Dedicata 87 (2001), no. 1-3, 17–34. MR 1866841, DOI 10.1023/A:1012017528487
- John R. Parker and Ioannis D. Platis, Complex hyperbolic Fenchel-Nielsen coordinates, Topology 47 (2008), no. 2, 101–135. MR 2415771, DOI 10.1016/j.top.2007.08.001
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 211–228. MR 510549
- Andrea Seppi, Maximal surfaces in anti–de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 6, 1855–1913. MR 3945744, DOI 10.4171/JEMS/875
- Carlos Scarinci and Jean-Marc Schlenker, Symplectic Wick rotations between moduli spaces of 3-manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 3, 781–829. MR 3807587
- Andrea Tamburelli, Constant mean curvature foliation of domains of dependence in $AdS_3$, Trans. Amer. Math. Soc. 371 (2019), no. 2, 1359–1378. MR 3885182, DOI 10.1090/tran/7295
- Andrea Tamburelli, Fenchel-Nielsen coordinates on the augmented moduli space of anti-de Sitter structures, Math. Z. 297 (2021), no. 3-4, 1397–1419. MR 4229607, DOI 10.1007/s00209-020-02562-0
- Clifford Henry Taubes, Minimal surfaces in germs of hyperbolic 3-manifolds, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 69–100. MR 2172479, DOI 10.2140/gtm.2004.7.69
- Samuel Trautwein. Infinite dimensional GIT and moment maps in differential geometry. PhD thesis, ETH Zürich, 2018.
- Samuel Trautwein, The hyperkähler metric on the almost-Fuchsian moduli space, EMS Surv. Math. Sci. 6 (2019), no. 1-2, 83–131. MR 4073886, DOI 10.4171/emss/30
- Anthony J. Tromba, Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992. Lecture notes prepared by Jochen Denzler. MR 1164870, DOI 10.1007/978-3-0348-8613-0
- Massimo Vaccaro, (Para-)Hermitian and (para-)Kähler submanifolds of a para-quaternionic Kähler manifold, Differential Geom. Appl. 30 (2012), no. 4, 347–364. MR 2926274, DOI 10.1016/j.difgeo.2012.05.001
- Claire Voisin, Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77, Cambridge University Press, Cambridge, 2003. Translated from the French by Leila Schneps. MR 1997577, DOI 10.1017/CBO9780511615177
- Scott Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), no. 2, 207–234. MR 690844, DOI 10.2307/2007075
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
- Michael Wolf, High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991), no. 4, 517–540. MR 1133870, DOI 10.1016/0040-9383(91)90037-5
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487–539. MR 1094467