
AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Arithmetic Quotients of the Bruhat-Tits Building for Projective General Linear Group in Positive Characteristic
About this Title
Satoshi Kondo and Seidai Yasuda
Publication: Memoirs of the American Mathematical Society
Publication Year:
2025; Volume 306, Number 1547
ISBNs: 978-1-4704-7313-6 (print); 978-1-4704-8055-4 (online)
DOI: https://doi.org/10.1090/memo/1547
Published electronically: January 27, 2025
Keywords: Modular symbol,
automorphic representation,
positive characteristic,
Bruhat-Tits building
Table of Contents
Chapters
- 1. Introduction
- 2. Generalized simplicial complexes and their (co)homology
- 3. The Bruhat-Tits building and apartments
- 4. Arithmetic subgroups and modular symbols
- 5. Automorphic Forms with Steinberg at infinity
- 6. Double cosets for automorphic forms
- 7. Proof of Theorem
- 8. Universal Modular Symbols
- 9. On finite $p$-subgroups of arithmetic subgroups
- 10. Some spectral sequences
- 11. Proof for universal modular symbols
- 12. Comparison of modular symbols
Abstract
Let $d \ge 1$. We study a subspace of the space of automorphic forms of $\mathrm {GL}_d$ over a global field of positive characteristic (or, a function field of a curve over a finite field). We fix a place $\infty$ of $F$, and we consider the subspace $\mathcal {A}_{\mathrm {St}}$ consisting of automorphic forms such that the local component at $\infty$ of the associated automorphic representation is the Steinberg representation (to be made precise in the text).
We have two results.
One theorem (Theorem 5.4.2) describes the constituents of $\mathcal {A}_{\mathrm {St}}$ as automorphic representation and gives a multiplicity one type statement.
For the other theorem (Theorem 4.5.1), we construct, using the geometry of the Bruhat-Tits building, an analogue of modular symbols in $\mathcal {A}_{\mathrm {St}}$ integrally (that is, in the space of $\mathbb {Z}$-valued automorphic forms). We show that the quotient is finite when a level is fixed and give a bound on the exponent of this quotient.
- Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729, DOI 10.1007/978-0-387-78835-7
- Avner Ash and Lee Rudolph, The modular symbol and continued fractions in higher dimensions, Invent. Math. 55 (1979), no. 3, 241–250. MR 553998, DOI 10.1007/BF01406842
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- A. Borel and J.-P. Serre, Cohomologie d’immeubles et de groupes $S$-arithmétiques, Topology 15 (1976), no. 3, 211–232 (French). MR 447474, DOI 10.1016/0040-9383(76)90037-9
- A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 189–207. With a supplement “On the notion of an automorphic representation” by R. P. Langlands. MR 546598
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251 (French). MR 327923
- James W. Cogdell, Henry H. Kim, and M. Ram Murty, Lectures on automorphic $L$-functions, Fields Institute Monographs, vol. 20, American Mathematical Society, Providence, RI, 2004. MR 2071722, DOI 10.1090/fim/020
- V. G. Drinfel′d, Elliptic modules, Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656 (Russian). MR 384707
- Takako Fukaya, Kazuya Kato, and Romyar Sharifi, Compactifications of $S$-arithmetic quotients for the projective general linear group, Elliptic curves, modular forms and Iwasawa theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 161–223. MR 3629651, DOI 10.1007/978-3-319-45032-2_{5}
- Takako Fukaya, Kazuya Kato, and Romyar Sharifi, Modular symbols in Iwasawa theory, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 177–219. MR 3586813
- Paul Garrett, Buildings and classical groups, Chapman & Hall, London, 1997. MR 1449872, DOI 10.1007/978-94-011-5340-9
- Daniel R. Grayson, Finite generation of $K$-groups of a curve over a finite field (after Daniel Quillen), Algebraic $K$-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 69–90. MR 689367
- A. Haefliger, Introduction to piecewise linear intersection homology, Intersection cohomology (Bern, 1983) Progr. Math., vol. 50, Birkhäuser Boston, Boston, MA, 1984, pp. 1–21. MR 788172, DOI 10.1007/978-0-8176-4765-0_{1}
- G. Harder, Die Kohomologie $S$-arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977), 135–175 (German). MR 473102, DOI 10.1007/BF01389786
- G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248. MR 364254, DOI 10.1007/BF01357141
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Akio Hattori, Iso kikagaku. I–III, 2nd ed., Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], vol. 19, Iwanami Shoten, Tokyo, 1982 (Japanese). Daisū [Algebra], ii. MR 857290
- Birger Iversen, Cohomology of sheaves, Lecture Notes Series, vol. 55, Aarhus Universitet, Matematisk Institut, Aarhus, 1984. MR 755516
- Otto H. Kegel and Bertram A. F. Wehrfritz, Locally finite groups, North-Holland Mathematical Library, Vol. 3, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 470081
- S. Kondo and S. Yasuda, The Borel-Moore homology of an arithmetic quotient of the Bruhat-Tits building of PGL of a non-archimedean local field in positive characteristic and modular symbols, arXiv:1406.7047.
- Satoshi Kondo and Seidai Yasuda, Zeta elements in the $K$-theory of Drinfeld modular varieties, Math. Ann. 354 (2012), no. 2, 529–587. MR 2965253, DOI 10.1007/s00208-011-0735-3
- Stephen S. Kudla, The local Langlands correspondence: the non-Archimedean case, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 365–391. MR 1265559, DOI 10.1090/pspum/055.2/1265559
- Laurent Lafforgue, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Astérisque 243 (1997), ii+329 (French). MR 1600006
- Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241 (French, with English and French summaries). MR 1875184, DOI 10.1007/s002220100174
- Gérard Laumon, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996. Geometry, counting of points and local harmonic analysis. MR 1381898
- Gérard Laumon, Cohomology of Drinfeld modular varieties. Part II, Cambridge Studies in Advanced Mathematics, vol. 56, Cambridge University Press, Cambridge, 1997. Automorphic forms, trace formulas and Langlands correspondence; With an appendix by Jean-Loup Waldspurger. MR 1439250, DOI 10.1017/CBO9780511661969
- Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (Russian). MR 314846
- Yuri I. Manin, Lectures on modular symbols, Arithmetic geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 137–152. MR 2498060
- C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605–674 (French). MR 1026752
- Daniel Quillen, Homotopy properties of the poset of nontrivial $p$-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916, DOI 10.1016/0001-8708(78)90058-0
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504
- Jeremy T. Teitelbaum, Modular symbols for $\textbf {F}_q(T)$, Duke Math. J. 68 (1992), no. 2, 271–295. MR 1191561, DOI 10.1215/S0012-7094-92-06811-6
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- Annette Werner, Compactification of the Bruhat-Tits building of PGL by lattices of smaller rank, Doc. Math. 6 (2001), 315–341. MR 1871666
- Annette Werner, Compactification of the Bruhat-Tits building of PGL by seminorms, Math. Z. 248 (2004), no. 3, 511–526. MR 2097372, DOI 10.1007/s00209-004-0667-7
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084