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INTRODUCTION

The present monograph is devoted to a systematic presentation of the
intrinsic geometry of nonregular surfaces. The work of Gauss on intrinsic
geometry deals only with regular surfaces. The Riemannian geometry of
abstract metrized manifolds is also restricted to those admitting a regularly
defined metric. The construction of the geometry of nonregular convex
surfaces was achieved by A. D. Aleksandrov in [5]. In the concluding
section of that monograph a program was indicated for the construction
of the intrinsic geometry of general surfaces. What was wanted was a
system of concepts and methods which would be applicable equally to
the investigation of the intrinsic geometry of regular surfaces and of two-
dimensional Riemannian manifolds, polyhedra and polyhedral evolutes,
general convex surfaces, and also to the investigation of the widest
possible class of nonconvex nonregular surfaces and metrized two-dimen-
sional manifolds.

In the papers [6], [14], [17], [46], this program was worked out in
more detail. The principal results were communicated without proofs.
Under some additional hypotheses, A. D. Aleksandrov succeeded in in-
vestigating two-dimensional metric spaces by geometric methods, and in
particular in introducing into them the concepts of shortest and geodesic
curves, angles, integral curvature, area, direction and rotation of curves,
and in establishing the most important properties of these concepts.

These spaces have been called “two-dimensional manifolds of bounded
curvature.” They are the natural closure of the class of Riemannian
spaces. This extended class is obtained by adding to the two-dimensional
Riemannian spaces all two-dimensional metrized manifolds whose metric
in the neighborhood of each point may be uniformly approximated by
Riemannian metrics such that the integrals of the absolute values of the
Gaussian curvatures are uniformly bounded.

The types of spaces and surfaces enumerated above belong to this
class. At the same time the above class of surfaces admits common
methods -of investigation. These extend techniques developed by A. D.
Aleksandrov for convex surfaces. Among them are the following.

1. An axiomatic method, starting from the definition of such spaces by
means of a minimal choice of the properties of their metrics.

2. An approximative method, based on approximation by polyhedral
or Riemannian metrics. This method makes use of theorems on the

v



vi INTRODUCTION

possibility of appropriate approximations of the spaces themselves and of
figures in them by simpler spaces and figures, and also of general theorems
on the connection between the numerical characteristics of the converging
figures and of the limiting figure.

3. A synthetic method based on geometric constructions in such spaces
and a study in them of curves, triangles and other figures. This method
makes use in particular, of the comparison of figures in such a space
with similar figures on the plane and of methods such as the cutting and
pasting of new spaces from pieces of existing spaces.

The results obtained, for all their generality, retain their geometric
intuitiveness. The fact that the class of spaces in question is closed makes
it possible to state and solve extremal problems in that class in a natural
way. The basic restriction adopted turns out to be completely natural.
The integral curvature characterizes the deviation of the intrinsic geometry
of the surface from Euclidean geometry, and the restriction on the integral
curvature makes it in fact possible to retain the basic integral concepts
of classical differential geometry.

The actual construction of a theory of two-dimensional manifolds of
bounded curvature is the object of the present work.

An exposition beginning with a small number of initial axioms requires
a gradual accumulation of facts. Analogously, if we make use only of
the possibility of approximation by polyhedral metrics, we need infor-
mation about those polyhedral metrics. Therefore the exposition is carried
out cyelically. Certain results are established at first in less than their
full extent or in special cases, and later they are extended to more
general, definite results.

A large number of later papers by Soviet geometers deal with the
material of this monograph. The authors intend to prepare for publication
a collection of papers in the directions indicated in §6 of Chapter L.
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On Various Definitions of the Angle

We consider a series of possible definitions of angle. All of them charac-
terize the rapidity of departure from one another of curves issuing from
a common point, and in the case of regular curves in Euclidean (or Rie-
mannian) space lead, as a rule, to the usual values of the angle. The
situation is different in more complicated spaces. In Chapter II we needed
only two concepts, the upper angle and the lower strong angle between
shortest arcs. The material presented below will show why preference
was given to these two definitions. Further, these materials may be used
for other kinds of generalized expositions of the theory.

1. Triangle on a K-plane. Suppose in an arbitrary metric space that
there issue from the point O two curves L = X(¢) and M= Y(s). We select
points X and Y on them distinct from O. Suppose further that
1) pO, X)=2x p0O,Y)=y, pXY) =z

In subsection 4 of Chapter I, in introducing the concept of the angle
between L and M, we made use of the auxiliary angle y(X, Y), constructing
on the plane a triangle T, with sides x,y and z and considering in it the
angle y opposite the side z. But we could have constructed instead of T; a
triangle Tx with the sides x,9,z on a surface with an arbitrarily fixed con-
stant curvature K. We shall call such a surface a K-plane.! Here the angle
7x(X, Y) opposite the side z will be quite different from y(X, Y) = yo(X, Y).

As is known from differential geometry, for the angles ax, Bx, yx and
ao, Po, 70 of the triangles Tx and T, there is the equation
(2) (ax - ao) + (,31( - ,30) + (TK - 7’0) = oK,
where ¢ is the area of the triangle Tx. We need to add to this that all
three differences in parentheses on the left side of (2) are either simul-
taneously equal to zero (for K=0 or ¢ =0), or have the same sign as the
quantity K. This last elementary assertion may be verified on the example
of the angles yx and 7o, starting from the explicit expressions for the

1If K< 0 the triangle Tx exists, since x,y, and z satisfy the triangle inequality. If K =
k2> 0 it may be constructed under the conditions kx, ky, kz <=, kx + ky+ kz < 2x. These
conditions will be supposed satisfied when we speak of constructing a triangle on the
corresponding K-plane.

310



ON VARIOUS DEFINITIONS OF THE ANGLE 311

cosines of these angles. If K = — k<0 and x and y are fixed and arbitrary,
then for all z in the interval |x—y| <z < x-+y we have

cosh kx coshky — coshkz _ 2+ 3" — 2" 0
sinh kx sinh &y o 2xy =

For K= k>0 and arbitrary fixed 0 <kx, &y <=z, for all z in the
interval [x ~y| =<z =< x-+y we have

cos kz.— cos kxcosky £ +y -2 <o
sin kx sin ky 2xy -

Equality here is attained only at the endpoints of the interval of variation
of z. Therefore

(3) 7k — el =l K.
Thus it follows that if we are interested in the limiting values of the
angles 7x(X, Y) for sequences of points X, Y for which the area ¢(Tx)—0,

then it makes no difference whether we consider the angles 7x(X, Y) or
TO (Xv Y)

ReEMARK. Lemma 1 of Chapter I remains valid for the angles 74:

(4) coer:y;z—i—a,

where ¢ =0 as x/y — 0, with the additional requirement that ¢(T%) — O.
For K> 0 the condition ¢ — 0 follows from x/y — 0, since in this case ¥
is supposed bounded (y vK < r). For K< 0, for ¢ — 0 it suffices that not
only x/y but also x—0.

2. Upper and lower angles. The lower, upper and ordinary angles a._,@
and a between L and M were defined in Chapter II respectively as the
lower, upper and ordinary limits of the angles y(X, Y) as X, Y—0, X& L,
YeM, X0, YxO0. Evidently 0= a_ =<a =r. The angle a exists
when a. = a.

The properties of the angle & were considered in § 1, Chapter I.

The essential difference between the lower angle a_ and the upper angle
@ is connected with the asymmetry of the basic triangle inequality. For
lower angles assertions of the type of the theorems of Chapter II do not
hold. In connection with this, in Chapter II the more complicated concept
ac-ys was investigated. We restrict ourselves to an example connected
with Theorems 5 and 6.

EXAMPLE. Suppose that in the plane curvilinear triangle depicted in
Figure 127 the lengths of the convex curves AB, AC and of the straight
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side BC are equal to /, and angle ¢ <n/3. We 8
construct an abstract space, consisting of the

three threads AB=BC =CA =1 and an infinite

number of other threads joining pairwise the X
points X& AB and Y& AC and having the

same lengths as the corresponding shortest 4

arc XY in Figure 127. Along the lengths of

the curves in this abstract space we introduce

an intrinsic metric. We may vertify that in the

resulting space ABC is a triangle. In it at the Y
vertex A c
_ _ = _
a-=¢, a = 3 AT <O. Figure 127.

At the same time for any triangle AXY
0-(AXY)=(@p+r+n)—na=xn+¢.
Thus for the quantity

vz = inf 6_(AXY)

we do not have a relation of the type of Theorem 6.%
a_ — ay E v;.

3. Angle in the weak sense. The limit of the angles 7(X,Y) may be
considered under additional restrictions of the possible situations of the
points X, Y. Sometimes it is comparatively easy to follows the value of
7(X,Y) under the condition that the ratio of the distances x and y of the
points X and Y from O remains within limits:

0<a§—;—§b<oo.

We shall call the upper weak angle and the lower weak angle the follow-
ing limits, which always exist and do not depend on @ and &:

(5) daw = lim lim sup 7(X,Y),
a—0 X, Y—0
b—oo  0<e<x/y<b<oo

(6) Aooyw = lirgl lim inf 7(X, Y).

X, Y--0
b—oo  0<a=x/y==b<lo0

As before we consider only points XL, YeM, X0, YxO.

2 This example answers the question set in [13], the footnote on page 8. However it is
not clear whether one can find an analogous example in a space which is a two-dimen-
sional manifold.
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Suppose that ac_yw = @w, t.e. for any 0 < @ = b<co there exists the limit
(7) aw = lim 7(X,Y),

which thus will not depend on the choice of @ and 4. Then its value
aw = Qcyw = @y is called the weak angle, or the angle in the weak sense.

We may further consider, so to speak, the “weakest” upper, lower, and
simple angles @ww, ®ww, @ww, imposing the more rigid condition x =y.
Evidently

I=a-ESaw=a o w=aww=aw=0a = .

THEOREM 1. If each of two curves has a definite direction, then the weak

upper angle between them is equal to the upper angle:
aw = Q.

Proor. Since always aw=a, it suffices to show that under the conditions
of the theorem a=ay.

We choose on the curves L and M in question points X, Y, with (X, Y,)
—a and converging to O. If in addition 0<<e=x,/y,= b<co, then
a=aw. Suppose that X,/Y,—0O (if X,/Y,— oo, we change the names of
x and y). On M we mark points Y, for which x,/y,=a, where ¢ >0

vy is an arbitrarily small number. We construct on
the plane the corresponding triangle OXY' with
sides x,, 9., z.. To its side OY' we adjoin another
triangle OY'Y with the sides y),v,, Y.Y,, as in
Figure 128.

Now it is easy to explain why a<ay. The
angle at the vertex O in the plane triangle OXY"'
cannot for large » essentially exceed aw. The
angle Y'OY is small, since the curve M has a
direction. Finally, z,= X,Y, =< X,Y,/+ Y)Y,. But
because of the smallness of ¢ =x,/y. even on
rectification of the side YY'X in the plane quadri-
lateral OYY'X the angle at the vertex O cannot

Figure 128. essentially increase, i.e., 7(X,, Y,), and therefore
also @& cannot essentially exceed ay.

Let us make this more precise. By the choice of X,, Y, and Lemma
1 of Chapter II,

cosa@ = lim u

n—00 Xy
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Since M has a direction, the angle 7(Y,, Y))—0, ie., (y.,— YY) /y,—1
or Y.Y,=y,—y)+e,y,, where ¢,—0. Finally,
L =XY, + Y)Y, =z, + 7y, — .+ e(x/a),
so that

Yn =2 ~ Yn— 2% _ En

Xy X a’

Thus again using Lemma 1 of Chapter II, this time with the sharpening
(6) of subsection 3 of Chapter II, we have:

I /
cos & = lim sup Lii = lim sup [cos r(X, Y)— % ;;’ ]

= lin‘)l(jtl)lf cos7(X, Y)— % = cos [lirrxljup 7 (X, Y):l — —%.

a<z/y<b a=x/y<b

But @ > 0 may be taken arbitrarily small and & arbitrarily large. There-
fore cos @ = cos ay and @ <ay. The theorem is proved.

REeMARKS. 1) Theorem 1 essentially complements Theorem 4 of Chapter
II, establishing the still greater stability of the upper angle.

2) For the lower angle an assertion analogous to the theorem just
proved does not hold. Example. Compare the plane sector bounded by
the arcs L and M with the
acute angle ¢ in a conical M & &
trough (Fig. 129). We join indi-
vidual points of its boundary
in space by segments A,B,
A;B,,--+, and suppose that
the angle of inclination of these Figure 129.
segments to the straight line L tends to zero as they approach the vertex
O. In the metric space which the cone along with the adjoined threads
A,B; represents, the arcs L and M are shortest arcs. The weak angle
between them exists and is equal to the complete angle ¢ of the sector,
and the lower angle may be obtained starting from the sequence of points
A;B;. It is equal to the space angle between L and M, which is less than
¢. In this example a_.<acw=aw=a =4¢.

3) If the ordinary angle exists, then the weak angle exists and coincides
with it. But curves may form a weak angle but not an ordinary one.
This is shown by the last example. Here are other examples. Suppose
that the plane spiral L (Figure 130) forms infinitely many loops as it
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approaches the center O. Each
ith loop is a piece of a logar-
ithmic spiral on which the
segment OX forms with L the
angle a,. If a;—0 as i— oo,
then as is easily verified, the
spiral L forms at O with itself
the weak angle awy = 0. But in
the ordinary sense L does not
have a direction at O. The
curve given on the plane by
the equation y = x sin In |Inx|
has the same property at the
Figure 130. point (0,0).

4) The concept of weak angle is used for example in the paper [31].

5) Theorem 1 generally speaking ceases to be true if one of the curves
does not have a definite direction. Example. We erect perpendiculars at
the points of the plane spiral L of Figure 130. In the metric space con-
sisting of the plane in which the spiral L lies and the resulting cylindrical
surface, we consider the angle at the point O between L and the perpen-
dicular M. In this example, as is easily verified,

71'/2:“_ :a(_)w:aw<d =

4. Extended angle. One may consider the limit of the angles 7(X,Y)
under widened possibilities for the positions of X and Y. Suppose that X
and Y do not necessarily lie on the curves L and M, but rather that as
they approach zero the distances from X and Y to L and M respectively
go down faster than the distance from O:

p(X, L) plY, M)
p(X, 0) p(Y,0)

The upper and lower limits of the angles 7(X, Y) for all possible such
sequences X, Y—O will be called the upper and lower extended angles
Qg, . If @ = @p, their common value is called the extended angle
between L and M. Obviously, it is always true that

— 0, 0.

Oéa(_)géa_éﬁéﬁgén.

ReEMARK. We give examples when ayx < a- or a < as.
1) Suppose that L and M are rays issuing from O on the plane, forming
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an acute angle ¢, and N is a curve lying in the same plane tangent to
M from within at the point O. From the point Y; on the curve N we
drop a perpendicular Y;A; onto M. We
choose XL so that XY+ YA, =
X0+ 0OA,. Then we choose the point
Y. & N very much closer to O than X
and Y. We repeat this construction as
in Figure 131. In the intrinsic geometry
of the figure consisting only of the
threads L, M, N, A\Y;, A.Y;, -+ -we will
have acx=¢<wr=a_ for the angle
between L and M.

2) Consider the plane sector LOM
with acute angle ¢ and a convex arc Figure 131.

N lying in the same plane and tangent to M
from outside at the point O, as in Figure 132.
From the point Y; & N we drop a perpendicular
YA, onto M. On L we choose a point X, so
close to O that YA, + A,X, > V,0+0X, This
is possible since by the convexity of the arc
171\0< YA, + AO. Then we choose a point Y,
& N very much closer to O, and repeat the
construction, and so forth. In the intrinsic
geometry of the figure made up of the plane
sector LOM and the threads N, A,Y,, A.Y,, for
the angle between L and M we will have
Figure 132. a=ao < T = Qg

5. Nonmlocal characteristics of the angle between shortest arcs. In the
definition of the angle in the strong sense (§2 of Chapter II), we con-
sidered, for the shortest arcs L =0X,, M =0Y, the lower and upper limits
ac_y, @s of the angles y(X, Y), taken for all possible sequences of points
X,, Y, for which

ay X, L, Y,eM X,x0, Y,XxX0, X,—~0 or Y,— O;

b) if X, — O there exist shortest arcs X,Y, converging to a piece of the
shortest arc M, and if Y,—O to a piece of L (we suppose that at least
one such sequence X,, Y, exists).

The upper weak angle coincides with @, and the lower a(_s is a nonlocal
characteristic of the angle.
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This last insufficiency is also suffered by the always existing quantity
a.-, defined as the lower limit of the angles 7(X, Y), taken over all possible
sequences X,, Y, satisfying condition a) without condition b).

To a certain extent the abovementioned insufficiency is excluded if one
turns from ac_ys to the characteristic @y, defined as the greatest lower
bound of the values of ac_ys for all possible pairs of shortest arcs, which
on arbitrarily small initial segments coincide with L and M. This char-
acteristic was used in [5].

Analogously one may define a- as the lower bound of a. for various
extensions of the initial segments of L and M.

The definitions of the quantities &, &, & are obtained by a replacement
of the lower limit by the upper limit and of the greatest lower bound
by the least upper bound. But by Theorem 3 of Chapter II all these
coincide with a.

REMARKS. 1) For the angle a- an assertion holds which is similar to
Lemma 3 of Chapter II. In fact,

0z
9) ( ox ) = cosa-.

2) Assertions of the type of Lemmas 5,6 and 7 of Chapter II and
Theorem 6 of Chapter II are also valid. But this time

(10) a- — Qg % l«’(;),qY

where

(11) wa = inf [supd. (AXY)).
xeaB Lxy

YeAC

3) All these assertions are proved analogously, and even somewhat more
simply than the corresponding theorems of Chapter II. However, the angle
a- cannot replace the angle ac_y in the construction of the theory of
two-dimensional manifolds of bounded curvature. In these spaces there
exists an angle in the strong sense between shortest arcs, but the charac-
teristic - may fail to coincide with this angle.

4) We give a simple example when a. < ac_y. Consider on the sphere
two shortest arcs L and M issuing from the point O. Suppose that they
form at O an acute angle ¢, with the opposite ends of the shortest arcs
coinciding and lying at a point diametrically opposite to O. For such
shortest arcs a- = 0 <¢=ac .

If in this last example we somewhat shorten L and M, we will have
an example in which a: =0<¢ = a..
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5) In the case of the so-called manifolds of nonpositive curvature, in
which all the excess 0=0 or of “negative curvature not greater than
K” (see [13], §4) for shortest arcs always a-=a, so that there exists
an angle in this more extended sense.

6. Relations of the various definitions of angle.

LEMMA. For the shortest arcs L and M in a locally compact space with
intrinsic metric, always acyy= a .

Proor. Consider a sequence X,, Y, for which 7(X,, Y.)—acxs, p(0,X,)
= x,—0, X,Y,—O0YC M. If moreover p(O, Y,)= y,—0 then evidently acx
=ac s Suppose that y,=¢>0. Then on the shortest arcs X,Y, one may
select respectively points Y, such that p(Y,, M) and x, decrease faster than
y»=p(0,Y,). From the triangle OY,Y, we have

ynl + (Z,, - znl) é Yns
where z,=p(X,, Y.), 2.=p(X,, Y,). Therefore

! !
— 2z . —_ 2z
L__L < llm sup y"__ﬂ.. < cos Qg
X

n n

COS a¢->s — llm

This proves the lemma in question. Analogously one may verify that
ac_yx =ac.ys. Directly from the definitions and also from Theorem 3 of
Chapter II and Theorem 1 of this supplement and the last lemma it results
that the following theorem is valid.

THEOREM 2. In a locally compact space with an intrinsic metric, for the
various characteristics of the angle between two shortest arcs the following
relations are valid:

0=a:- <a-

0= acx=acs

(12)

fIA
QA

} =S aes = a- = aw = Geoww = Aww W

[l
Ql
Ql
lIA

= =0as = Qs

lIA

g = .

For each sign “=<” in the chain of relations (12) one may present an
example in which the strict inequality is realized. In subsection 3 the
example for a. < a(_yw was given, in subsection 4 examples for acy
<a_, a<ag, and in subsection 5 a. <@y, a- < a.. We shall give
further an example in which as<a-.

In the plane sector LOM with acute angle ¢ we mark points A,—O
which approach the side L faster than O, as in Figure 133. Along cuts
along the segments YA, we paste high, twice-covered partitions. On the
resulting surface the-angle at the point O between L and M will satisfy
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p=acxs<a-=m.

The construction of the missing examples is left to the reader.

7. Comparison with a triangle on a K-
plane. The excess of a triangle may be
measured by the difference of the sum of
its angles (in one or another of the defini-
tions) from the sum of the angles of the
triangle with sides of the same length on
a K-plane. For such “relative” excesses
0k(T), 0c_ysx(T), 6c->x(T) it is possible to
define the corresponding quantities v anal-
ogously to the definitions (20), (27) of Chap-
ter II or (12) of this supplement. We shall
denote them by the supplementary index K.

For angles 7x on a K-plane Lemmas 4,
5 and 6 of Chapter II are valid with the

Figure 133. following alterations.
1. In Lemma 4 formula (12) is replaced by the following:
dz x drx
(13) —A—;_cosfx-i— 27‘751nfx+e,
where
kx . _ 2
sin kx K= k>0,
(14) i={ 1 ifK=0,

kx .
Snhkx if K=— k<0
For the proof it suffices only in the infinitesimal discussion of Chapter
IT to have in mind a construction on a K-plane and to replace formula
(13) of Chapter II by the law of sines on a K-plane, i.e., one of the
three expressions

kl = sin kx sin dyx, 1 = xsin dyx, kI = sinh kx sin dyx
We note that it follows from (14) that for any x, if K< 0 and all 0 <«
< =/k the quantity 1 has a positive minimum for K= —k* < 0.
2. In Lemma 5 inequalities (14) and (15) are replaced by

%) ~ cos§ —coséx | A
(15) ox /Ju — sin &x x

>
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Ork — cosécys—coséx | A
(16) ( ox )LUS = sin &k x’

Orxk\ —cosé. —cosék A
(17) ( 0x )LU = sin &k x’

where A is determined by (14).

3. In Lemma 6 of Chapter II the angles y and & are replaced by rx
and & Moreover, the constant M depends this time not only on & but
also on the minimal value of 4, which in its turn depends on K and the
upper estimate of the diameter of the triangle.

4. Theorems 4 and 5 of Chapter II take this time the following form:

X — ag _§ 17145,4,
a- — ax = Yyka,
Qs — Ak = Y yska

The proofs remain as before.
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SUBJECT INDEX

Additivity
of angle, 22
of area, complete, 261
of curvature, 154
of curvature, complete, 154
of length, 2
of rotation, 187
of rotation, complete, 272-273
of sector, 117
Adjacent angles, 22
Angle, 4-5, 20
and direction, 23-24, 178
and distance up to a shortest arc, 27, 29
and distance up to a curve, 129
complete around a point, 45-46, 67, 117-
118
extended, 313
in the strong sense, 28, 127-128, 314
in the weak sense, 310-311
its existence, 34-39, 42, 113-116
lower, 20, 249
lower, strong, 28-29, 33, 314
of a sector, 45, 116-117
of a sector, its finiteness, 122
on the side of the sector, 126
upper, 5, 20-27, 309
upper, strong, 314
Approximation
by polygonal curves, 276
by polyhedra, 9, 79
by Riemann metrics, 9
by shortest arcs, 190
Area, 11, 15-16, 260-261, 263
of a point, polygon, 261
of a polygon, 258-259
of a spherical representation, 17
of a triangle, 11, 255, 258

Boundedness of the absolute curvature of
approximating metrics, 122

Carathéodory measure, 146
Charges, 231-232

their positive and negative parts, 232
Circumference, 16

Compactness

of a set of curves, 3

weak, 233
Comparison with the angle of a plane

triangle, 11, 31-32, 71-72, 176, 214, 218
Comparison with the area of a plane

triangle, 11, 255, 258
Completion of a space, 201-203
Condition of bounded curvature, 6
Connectedness, metric, 3
Convergence

of angles, 251-252

of areas of polygons, 265

of curves, 3, 220, 224, 294-304

of figures in converging spaces, 223

of induced metrics, 227

of length, 283

of metrics, 9, 222

of metrics, locally uniform, 222

of metrics, nonuniform, 91

of points, 1

of polygons, 220, 223, 225

of sector angles, 237, 248-249

of sectors, 221, 223

of spaces, 222

weak, 232-233

weak, local, 234

weak, of areas, 267

weak, of the curvature, 238-239

weak, regular, 242, 244
Convexity, 48

absolute, 49

fully, 49

relative, 76

relative to the boundary, 6, 48
Covering by triangles, 59
Curvature, 145, 154

absolute, 154, 160

absolute, of converging polyhedral met-

rics, 122
and excess of a polygon, 166-175, 212-
213

and excess of a triangle, 213

as a charge, 234-235

extrinsic, 17
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in a polyhedral metric, 8
its positive and negative parts, 151-152
of a one-point set, 10, 130, 163
specific, 15, 17
various definitions, 154-155
Curve, 2
parametrized, 2
simple, 2
with rotation of bounded variation, 270,
304-305
Cautting, 12

Decomposition into triangles, 61
regular and nonregular, 145
Decomposition of a sector, 121
Density of shortest arcs, 119
Development
constructed with respect to a triangula-
tion, 69, 243-244
multidimensional, 19
of a polyhedron, 8
Diameter of a triangle, 253
Direction, 23
and angle, 178
in the intrinsic sense, 23
in the extrinsic sense, 17
its existence, 273, 297
Disc, 16
Distance, 1
up to a curve, 129
up to a shortest arc, 27, 29

Euler’s theorem, 63
Excess
of a polygon, 174, 212-213
of a triangle, 31
of a triangle and its curvature, 212-213
of a triangle with respect to the sector
angles, 65
relative, of a triangle, 317
Excesses of nonoverlapping triangles, 132-
133
reduced, 142
Excesses of triangles of a triangulation, 63
Excision of a polygon, 200
Extremal problems, 15

Gauss’ theorem, 17
Gauss-Bonnet theorem, 8-9, 190

SUBJECT INDEX

Geodesics, 4, 16

Identity of topologies, 91
Isothermal coordinates, 14-15

K-plane, 308
Kolmogorov test for weak convergence,
233, 234

Length of a curve, 2, 15-16

of a curve and chord length, 76, 279-
280

Lengths of converging curves, 3, 96, 223,
283

Linear element, 14-15

Load, escaping or fleeing, 233-234

Loop
enclosing a singular point, 125
shortest, 51

Manifold
two-dimensional, of bounded curvature,
6
two-dimensional, with an edge, 16-17,
202
two-dimensional with bounded specific
curvature, 17
Metric, 1
approximated by a polyhedron, 90
complete, 92
induced, 3
intrinsic, 3-4

polyhedral, 7-8

Neighborhood
absolutely convex, 51
of a polygon, 51, 122
with small perimeter, 53
Nonlocal characteristics of the angle, 314-
315
Nonlocalness of the condition of bounded-
ness of the curvature, 65
Nonoverlapping, 145
of triangles, 6, 50

Parallel translation, 19
Parametrization of a curve, 2
Pasting, 13, 205-206, 286

of polygons, 200



SUBJECT INDEX

Point
cusp, 306
of a triangle, interior, 50
singular, 118, 281-282, 305
through which there pass shortest arcs,
46-47
Polygon, 12, 201
with cuts, 12,13

Quasigeodesic, 16
Quadrilateral, deformation, 34-36

Realization of a metric, 18
Rectifiability of a curve, 283
Rotation
of a curve, 184, 270
of a curve and the curvature of the
curve, 186
of a curve and the curvature of the
region, 190
of a curve in polyhedral metric, 8
of a curve in space, 17
of a curve, its existence, 184-185
of a curve, its positive and negative
parts, 8, 271-272
of a curve, left and right, 184
of a curve, proper, 16
of shortest arcs, 10, 197

Sector, 39-40, 116
Semineighborhood of a curve, 17
Semitangent, 17
Shortest arc, 4
leftmost, 40
relative, 76
Shortest arcs without superfluous intersec-
tions, 51
Side of a curve, 181-184, 188-189, 306
Space
boundedly compact, 93
compact, 1-2

327

complete, 92-93

fully normal, 231

locally compact, 2

metric, 1

of directions, 23

with curvature less than K, 19
Surfaces

convex

generalized convex, 17-18

metric disconnected, 7

of bounded extrinsic curvature, 18

represented by the difference of convex

surfaces, 17
with generalized second derivatives, 18

Tangent cone, 16

Triangle, 5, 49-50
convex relative to the boundary, 6
geodesic, 154
homeomorphic to a disk, 5-6
inflatable, 49
normal, 214
on a K-plane, 308
simple, 6
with exterior tails, 43, 50
with interior tails, 50

Triangle inequality, 1

for upper angles, 20
Triangulation, 58
Twist, 16

Uniform closeness of r to «a, 124-125

Variation
farther from a vertex, 106-113, 248-249
of the angle 7, 29, 96-106, 246-248, 317
of the charge, 232
of the rotation of a curve, 301
of the rotation of converging curves,
301, 303
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