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APPENDIX

UNSOLVED PROBLEMS

Young geometers often experience difficulties in choosing problems
for research. We therefore present a few unsolved problems in this
Appendix, most of them with hints for solution.

1. Prove the following assertion: The spherical image of a geodesic
on a convex surface is a rectifiable curve, i.e. every interior point of
the geodesic has a neighborhood whose spherical image has finite length.

We suggest the following approach. First note that it is sufficient to
prove rectifiability for the spherical image of a small arc of the geodesic.
We may therefore assume that the convex surface is closed. It can always
be completed to a complete surface, in such a way that a small arc of
a segment (shortest join) remains a segment. Moreover, we may assume
that the segment under consideration can be continued as a segment
beyond at least one of its endpoints. This is true for any arc of a segment.
Thus we may confine attention to a segment v on a closed convex surface
F, which can be continued as a segment beyond one of its endpoints.

Construct a sequence of polyhedra P, converging to the surface F.
Without loss of generality we may assume that the endpoints A and B
of the segment lie on all polyhedra P,. Let v, be the segment on P,
connecting A and B. By the inclusion property for segments (Chapter I,
§3) the sequence v, converges to y. The spherical images v, of the
segments v, converge to the spherical image v* of y. To prove that
v* is rectifiable, it now suffices to show that the lengths of the curves
v are uniformly bounded.

Let a),a;, --- be the faces of the polyhedron P, through which the
segment v, passes, E,, E,, --- the halfspaces defined by the planes of
the faces aj,as, ---. The intersection of the halfspaces E, is a solid
polyhedron P;. Let T be a cube containing all the polyhedra P,. The
intersection of the cube T and the polyhedron P; is a certain polyhedron
Q. contained in T. The segment v, of P, lies on the polyhedron @Q,.
Since P, is contained in Q,, it follows that v, is also a segment on @,
(by Busemann’s theorem).

652
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Let &k, k,, - - - be the edges of the polyhedron @, which cut the segment
Yn, 01,00, --+ their lengths and 9,,9,, --- the exterior angles at the
edges ky, ks, - --. Then the length of the spherical image of v,, i.e. the
length of v, is equal to s, = ¥; + 9, + - - -. The quantity 9,8, + 9202 + - - -
can be estimated in terms of the integral mean curvature of the poly-
hedron @,, hence in terms of the edge of the cube T containing @,.
It follows that if 6, > c, > 0 for all k, then s, < C(T)/c,.

Now assume that the polyhedron @, has edges k; of length less than
e, and the sum of exterior angles J, over these edges is greater than
on, Where ¢,—0 and ¢,— » as n— . One proves that for sufficiently
large n the curve v, cannot be a segment on @,. The reason is that for
small ¢, and large o, a ‘“‘large amount of curvature’ is concentrated
near v,. Therefore the length of v, cannot be the absolute minimum
of the lengths of curves connecting A and B on the polyhedron @,.

2. Prove the following theorem.

A convex surface, homeomorphic to a disk, with nonnegative (non-
positive) integral geodesic curvature (i.g.c.) along the boundary, can be
applied to any isometric surface (i.e. continuously bent into it).

We indicate an approach to the proof. First consider a polyhedron.
Let P, be a convex polyhedron homeomorphic to a disk, whose angles
at the boundary vertices are = = (the i.g.c. along the boundary is non-
positive). Let P, be a convex polyhedron isometric to P;. We must
show that P, can be applied to P,. Let @, and @, be the convex hulls
of P, and P,. They are closed polyhedra. The polyhedron @; is the
union of P; and some polyhedron P/ isometric to a convex plane polygon.
Let A and B be two vertices of the polyhedron @; on the boundary of the
polyhedron P;, « and 8 the curvature at these vertices. Connect A and
B by a segment y within the domain P/. (This is possible, since P/ is
a convex domain.) Now take two plane triangles with base [ equal to
the length of v, and angles o’ <, 8/ <8 at the base. Glue these tri-
angles together along their lateral sides, and glue the bases to the poly-
hedron Q; cut along the segment y. By the Gluing Theorem there exists
a closed polyhedron @/ which realizes the polyhedral metric obtained
by gluing the triangles to the cut. Subjecting the angles o’ and g’ to a
continuous variation from zero to a« and B, respectively, we get a
continuous deformation of @/ (because of monotypy). The domain on €
corresponding under isometry to P; then undergoes a continuous bending.

Now take two other vertices on the boundary of P;, or one vertex on
the boundary and a new vertex generated by the above gluing procedure.
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Connect these vertices by a segment, cut the polyhedron along the
segment, and glue two new triangles to the cut. A finite number of
repetitions of this procedure transforms the original polyhedron @;
into a polyhedron @; _which is the union of a polyhedron isometric to
P; and a polyhedron P; isometric to a cone. The boundaries of P, and
P, have equal i.g.c. It follows easily that they are isometric. The
monotypy theorem for polyhedra then implies that @, and Q, are
congruent, and hence so are the domains on them isometric to P; and P,.
We have thus transformed the original polyhedra P, and P, by a
continuous bending into congruent polyhedra. Hence each can be
applied to the other.

In order to proceed now from polyhedra to general convex surfaces,
one uses simultaneous approximation of isometric convex surfaces by
isometric polyhedra and the monotopy theorem for general convex
surfaces.

Now assume that the angles at the boundary vertices of the polyhedra
P; do not exceed . We again consider the convex hulls ;. Let P; be
the polyhedron completing P; to the closed polyhedron ;. To prove
that P, can be applied to P,, it suffices to show that P, can be applied
to E, with the conditions governing its contact with P; observed at
each stage of the deformation. This is the purpose of the following
constructions.

By cutting and gluing triangles, one
transforms the polyhedron Q; into a poly-
hedron @; containing a domain ﬁ isometric
to P;; the remainder of @; is a surface V;
isometric to a cone (Figure 35). Now flatten
out the ‘“leaves” of the polyhedron V,,
preserving their convexity. This transforms
the domain P; completing the polyhedron
V; to the convex hull into some domain
P/, while the polyhedron V; becomes a
domain on some polyhedral angle V/. Now FicurE 35
apply the angle V{ to the angle V;. When this is done, the domain ﬁ{
is applied to Pj. The result is a continuous deformation of P; into P,
with the conditions governing its contact with P, observed at each stage
of the deformation. One now proceeds as before to general convex
surfaces.

3. In §4 of Chapter IV we derived formulas associating with any
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pair of isometric surfaces in elliptic space a pair of isometric surfaces
in euclidean space. Conversely, each pair of isometric surfaces in
euclidean space goes into a pair of isometric surfaces in elliptic space.
These formulas involve a vector parameter ¢,. Let F; and F, be two
isometric surfaces in euclidean space. Determine the corresponding
surfaces ®, and &, in elliptic space with parameter e, =¢;. Now proceed
from the surfaces ®, and &, to a pair of isometric surfaces F; and Fj
in euclidean space, using the formulas with parameter e, =e{. Derive
formulas setting up the correspondence between the isometric surfaces
F, and F, and the surfaces F{ and Fj. Find conditions under which
the convexity of the surfaces F; and F, implies that of F{ and Fj.
Varying the parameters e; and ej, and also the relative position of the
surfaces F; and F,, consider the problem of transforming a pair of un-
bounded isometric convex surfaces into a pair of bounded isometric
surfaces. In particular, determine whether the monotypy problem for
unbounded convex surfaces can be reduced in this way to the monotypy
problem for closed convex surfaces or for convex surfaces with fixed
boundary.

4. As in the elliptic case, studied in §4 of Chapter IV, formulas can
be determined which associate with each pair of isometric surfaces in
hyperbolic space a pair of isometric surfaces in euclidean space. Study
this correspondence. In particular, find conditions under which convexity
of the surfaces in hyperbolic space implies convexity of the corresponding
surfaces in euclidean space. Can the monotypy problem for surfaces in
hyperbolic space be reduced to the monotypy problem for euclidean
space? Some partial results in this direction have been obtained by
Gajubov [34], but they are far from complete.

5. An incomplete convex metric defined in a domain G is in general
not realizable as a convex surface, for the simple reason that the total
(integral) curvature of the manifold G with this metric may exceed
47, while the curvature of a convex surface is always =< 4r. However,
there are grounds for the assertion that, under very broad assumptions,
this metric is realizable as a locally convex surface, i.e. a surface each
point of which has a neighborhood which is a convex surface.

Here are some considerations on this problem. Let G be a doubly
connected domain (homeomorphic to a circular annulus). Assume that
the contours v, and v, bounding the domain are geodesic polygons in
the given metric. Divide each side 6, of the polygon v, into two by
its midpoint P;, and identify points on v, equidistant from P;. Do the
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same for the sides é; of vy,. The result is a closed manifold R whose
curvature is nonnegative everywhere except for two points A; and A,,
at which the vertices of the polygons v, and v, are identified.

The manifold R is isometrically embeddable into the locally euclidean
space considered in §11 of Chapter VI, with the points A; and A, on
the z-axis. The required realization of R as a locally convex surface is
now obtained by mapping the locally euclidean space into euclidean
space, identifying geometrically identical points of these spaces.

6. A convex metric M defined in a domain G, homeomorphic to a disk,
with boundary vy of nonnegative i.g.c. in the metric M, is realizable
as a certain convex cap F. Consider the problem of realizability of a
convex metric M defined in a domain G homeomorphic to a disk, whose
boundary v lies on a given surface &.

One attack on this problem is as follows. To simplify matters, assume
that & is an unbounded surface which can be projected in one-to-one
fashion onto the entire xy-plane. Let E* denote the region of space
lying above the surface ®. Construct a Riemannian space R from two
mirror-symmetric copies of the euclidean region E* and a regular
intermediate layer 6, such that when the thickness of the layer § tends
to zero the space R becomes a metric space R, consisting of the two
copies of E* glued together along the boundary surface . The con-
structed space R must be symmetric with respect to some totally geodesic
surface ¢ within the layer 6, and the regions E* must be symmetric to
each other with respect to o.

Now form a closed manifold M’ homeomorphic to a sphere, from
two oppositely oriented copies of the manifold M and a regular layer h
separating them in such a way that M’ admits an inner symmetry with
respect to a closed geodesic ¥ within the layer A, and moreover the two
copies of M correspond by symmetry.

The manifold M’ is now realized in the space R as a closed surface
F’ (it is assumed that this can be done). In view of the symmetry of
the manifold M’ and the space R, this realization can be so constructed
that the geodesic v lies in the surface ¢ and the surface F’ is symmetric
with respect to o. Now letting the thickness of the layers é and 2 tend
to zero, we get a closed surface F, in the space R,. The domain on this
surface lying in the region E* furnishes the required realization of the
manifold M as a convex surface with boundary on the surface &.

7. Complete the proof of the rigidity of multiply-connected locally
convex surfaces in a Riemannian space, as indicated in §12 of Chapter VI.
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8. Let F, and F; be two isometric, identically oriented convex surfaces.
Assume that corresponding unit vectors on the surfaces satisfy the
relation 7, +7,#0. Then the vector valued function r=31(r,+ry)),
where r; and r; are the radius vectors of corresponding points on F; and
F,, defines a convex surface F. Under certain additional assumptions
this was proved in Chapters I and II.

The vector field 2 =r; —r; is a bending field for the surface F. Using
this relation between a pair of isometric surfaces and the infinitesimal
bendings of the mean surface F, many monotypy problems for convex
surfaces can be reduced to the problem of the rigidity of the mean surface.

The following question is natural in this context. Can the surfaces
F, and F; always be so placed that 7, + 75 = 0 for directions corresponding
under the isometry? This is apparently the case for almost all (in
measure) relative positions. Prove this assertion.

9. Consider the problem of the existence of a closed convex surface
satisfying the equation f(R,, R,,n) = ¢(n), where R;, R, are the principal
radii of curvature and n the unit normal to the surface.

This problem can be attacked by the methods of §5 of Chapter VII.

10. Consider the existence problem for a convex surface F whose
spherical image coincides with a given convex domain «w on the unit
sphere, whose supporting function H(n) coincides with a given continuous
function on the boundary of the spherical image, and whose principal
radii of curvature at each interior point of the surface satisfy the
equation f(R;, R;) =¢(n), where f(R,, R;) =g(R,R,, R, + R;) is strictly
monotone in R; and R,, i.e. 3f/0R, >0 and df/dR, > 0.

Suppose that the domain w is in the upper hemisphere x*+y? 422 =1,
2>0. Set h(x,y) =H(x,y,1), where H is the supporting function of
the required surface. The function h satisfies an elliptic equation

®(hyy, b1, hog, x,5) =0

(see §4, Chapter VII). The existence problem for F reduces to the
solvability of the equation ® =0. This can be treated on the basis of
Bernitein’s theorem, first deriving a priori estimates for the posited
solution and its first and second derivatives. One first considers the
case of analytic functions f, ¢ and a domain « bounded by an analytic
contour.

For considerations relating to the derivation of a priori estimates,
see §§3 and 5 of Chapter VII. We remark that if h, and A, are solutions
of the equations f = ¢, and f = ¢,, then h, — h, cannot assume a maximum
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in the interior ot w if ¢; < ¢,. To proceed from analytic to regular data,
it suffices to establish a priori estimates for the second derivatives at
interior points (see §3 of Chapter VII).

11. It is well known that metric duality can be defined in elliptic
space. Let & be a convex surface in elliptic space and &’ the surface
polar to ® (the surface &’ is the envelope of the polars of the points of
®). There is a natural correspondence between the points of ¢ and &’:
any point P on & is associated with the point at which the surface ¢’
is tangent to the polar of P. If the curvature K of the space is unity,
the extrinsic curvature of ® on an arbitrary set M is equal to the area
of the corresponding set M’ on the surface &’.

Delete some plane from the elliptic space, and interpret the remaining
region on the three-dimensional hemisphere

X +aixi+x5=1, x%>0.

Let & be a closed convex surface in the spherical zone 0 < xy <e. The
polar surface &’ lies in the e-neighborhood of the pole P(0,0,0,1).
The line element of the surface ® can be expressed as

ds? =ds2 + \dd?,

where ds? is the line element of the unit sphere and A—0 as ¢ —0. The
extrinsic curvature of the surface ® is K. = g, + O(\%), where ¢, depends
on the quadratic form o.

Project a neighborhood of the pole P of the hemisphere onto the
tangent hyperplane E of the hemisphere at P. Let " be the projection
of the surface &’ onto the euclidean space E. Subject the surface &’
to a similarity mapping with ratio of similitude 1/X and let ¢—0. The
curvature of the limit surface is 1/¢,.

Using this construction, derive a new solution of Minkowski’s problem,
based on the theorem which states that a given metric ds*> can be
realized on a convex surface in elliptic space.

12. In §7 of Chapter VIII we considered the existence of a closed
convex surface with given generalized curvature. Analytic interpretation
of the result leads to a theorem on the solvability of a certain equation
of a very general type defined on the sphere.

Consider the one-dimensional analog of this problem, relaxing the
requirement that the curvature be positive. This yields a certain theorem
on the existence of a closed curve with given generalized curvature.
Analytically speaking, this implies the existence of a periodic solution
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of an equation y” =¢(%,y,y’), where the function ¢ is periodic in x.
For what classes of equations, i.e. for what functions ¢, does the geometric
theorem guarantee the existence of periodic solutions? Generalize the
result to systems of equations

yf’ =¢’(x,y1, ""yn’yiy "'1yr/l), i‘=1727 e,

The one-dimensional analog of Minkowski’s problem is this: Prove
that there exists a closed curve with given radius of curvature R(9),
as a function of the angle of rotation ¢ of the tangent. The problem has

a solution if
27

R (0) a0 =0,
0
This condition always holds if R(¢ +x) = R(3). The supporting func-
tion p(d) of the required curve has a simple expression:
)
p@)=[ eV R@ar.
0
Using Schauder’s fixed-point principle, as in the existence proof for
solutions of strongly elliptic Monge-Ampére equations (§8 of Chapter
VIII), prove the most general possible theorem on the existence of a
closed curve with given generalized length. Interpret the result in terms
of the existence of periodic solutions of the equation y” =¢(x,y,y’),
where ¢ is periodic in x. Employing geometric ideas, study the problem
analytically, under the broadest possible assumptions on the equation.
Consider the case of systems of equations.
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convexity condition, 13
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convex, 7
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variation of i.g.c. of, 120, 123, 126

Darboux equation, 84, 332, 333
Dirichlet problem for, 106, 109, 110
Dirichlet problem
for the Monge-Ampére equation, 523,
526, 527
for the strongly elliptic Monge-Ampére
equation, 553, 556

elliptic space, 36, 271
equation of infinitesimal bending in, 309
infinitesimal bending of a convex space
in, 365

infinitesimal bending of a convex surface

in, 309
monotypy of closed convex surfaces
in, 321
projective model, 275, 327
regularity of a convex surface with
regular metric in, 329
rigidity of surfaces in, 312
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Weierstrass coordinates in, 274
embedding in a continuous family, 21, 95,
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estimates, see a priori estimates
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Gauss-Bonnet Theorem, 27, 42
Gluing Theorem, 33, 44
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hyperbolic space (Lobadevskii space), 36

index of a point relative to a mapping, 583
i.g.c. (integral geodesic curvature) of a
curve on a surface 26, 27, 42
infinitesimal bending (see also bending
field)
equation of, 203, 209, 211
equation of, in Riemannian space, 366,
367
of a convex surface, 201, 204
of a convex surface in elliptic space, 309
of a convex surface in Riemannian
space, 365
intrinsic geometry, 6

K-concavity condition, 32
K-convexity condition, 32

Liebmann, 1, 44, 119

mapping
degree of a point relative to, 582, 583
multiplicity function of, 576
metric, 10
convex polyhedral, 20
of a convex surface, 12, 13, 14
of nonnegative curvature, 23
intrinsic, 10
K-concave, 32
K-convex, 32
space, 10
Minding, 1, 119
mixture of surfaces. 137
Minkowski’s problem, 1, 4, 442, 498, 499
stability of solution to, 498, 499
mixed volume, 500
Monge-Ampére, equation, 521, 522
Dirichlet problem for, 523, 526, 527
Dirichlet problem for the strongly
elliptic, 553, 556
generalized solution of, 522
regularity of generalized solutions of, 547
regularity of generalized solutions of
the strongly elliptic, 569
second boundary-value problem for,
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strongly elliptic, 547
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of closed convex surfaces in elliptic
space, 321

of closed convex surfaces in Riemannian
space, 397, 418

of convex caps, 78, 178

of convex surfaces with boundary, 178,
181

of surfaces (definition), 119

of unbounded convex surfaces, 182, 190

parametrization, isothermal-conjugate, 368
plane, convex domain in, 7
polygon on a surface, 12
polyhedron
convex, 9
generalized area of, 504
limit angle of, 482
with given generalized area, 506
with given generalized curvature, 507,
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point
conic, 9
flat, 593
hyperbolic, 593
normal neighborhood of, 583
parabolic, 593
regular, relative to a mapping, 583
ridge, 9
smooth, 9
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Riemannian space

continuous bending of a convex surface
in, 399, 418

equation of infinitesimal bending in,
366, 367

infinitesimal bending of a convex surface
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monotypy of closed convex surfaces in,
397, 418

regularity of a convex surface with
regular metric in, 400, 413, 418
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regular metric in Riemannian space,
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rigid surface (definition) , 260
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segments, inclusion property of, 11
spherical image, 18
convex surface with given metric and,
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generalized, 513
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function, 427
line, 7
plane, 8
surface,
convex domain on, 27
exterior normal to, 8
function, 498
generalized area of, 513, 521
of bounded extrinsic curvature, 576, 590
of nonnegative extrinsic curvature, 611
of zero extrinsic curvature, 603
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rigidity of, in Riemannian space, 369,
426
smooth, 572
threaded, 620
with given function of principal radii
of curvature, 475
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absolute, of a mapping, 572
of the i.g.c. (integral geodesic curva-
ture) of a curve, 120, 123, 126
of a mapping, negative, 586
of a mapping, positive, 586
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Weierstrass coordinates in elliptic space,
274
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Weingarten, 1, 502
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