Conformal Mappings and Boundary Value Problems

Guo-Chun Wen
Recent Titles in This Series

106 G.-C. Wen, Conformal mappings and boundary value problems, 1992
105 D. R. Vafaev, Mathematical scattering theory: General theory, 1992
104 R. I. Dobrushin, R. Kotecký, and S. Shlosman, Wulff construction: A global shape from local interaction, 1992
103 A. K. Tsikh, Multidimensional residues and their applications, 1992
102 A. M. Il’in, Matching of asymptotic expansions of solutions of boundary value problems, 1992
101 Zhang Zhi-fen, Ding Tong-ren, Huang Wen-zao, and Dong Zhen-xi, Qualitative theory of differential equations, 1992
100 V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, 1992
99 Norio Shimakura, Partial differential operators of elliptic type, 1992
98 V. A. Vassiliev, Complements of discriminants of smooth maps: Topology and applications, 1992
97 Itiro Tamura, Topology of foliations: An introduction, 1992
96 A. I. Markushevich, Introduction to the classical theory of Abelian functions, 1992
95 Guangchang Dong, Nonlinear partial differential equations of second order, 1991
94 Yu. S. Il’yashenko, Finiteness theorems for limit cycles, 1991
93 A. T. Fomenko and A. A. Tuzhilin, Elements of the geometry and topology of minimal surfaces in three-dimensional space, 1991
92 E. M. Nikishin and V. N. Sorokin, Rational approximations and orthogonality, 1991
91 Mamoru Mimura and Hirosi Toda, Topology of Lie groups, I and II, 1991
89 Valerii V. Kozlov and Dmitrii V. Treshchëv, Billiards: A genetic introduction to the dynamics of systems with impacts, 1991
88 A. G. Khovanskii, Fewnomials, 1991
87 Aleksandr Robertovich Kemer, Ideals of identities of associative algebras, 1991
86 V. M. Kadets and M. I. Kadets, Rearrangements of series in Banach spaces, 1991
85 Mikio Ise and Masaru Takeuchi, Lie groups I, II, 1991
83 N. I. Portenko, Generalized diffusion processes, 1990
82 Yasutaka Sibuya, Linear differential equations in the complex domain: Problems of analytic continuation, 1990
81 I. M. Gelfand and S. G. Gindikin, Editors, Mathematical problems of tomography, 1990
80 Junjiro Noguchi and Takahiro Ochiai, Geometric function theory in several complex variables, 1990
79 N. I. Akhiezer, Elements of the theory of elliptic functions, 1990
77 V. M. Filippov, Variational principles for nonpotential operators, 1989
76 Phillip A. Griffiths, Introduction to algebraic curves, 1989
75 B. S. Khashin and A. A. Saakyan, Orthogonal series, 1989
74 V. I. Yudovich, The linearization method in hydrodynamical stability theory, 1989
73 Yu. G. Reshetnyak, Space mappings with bounded distortion, 1989
72 A. V. Pogorelev, Bending of surfaces and stability of shells, 1988
71 A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, 1988

(Continued in the back of this publication)
Conformal Mappings and Boundary Value Problems
Translations of
MATHEMATICAL MONOGRAPHS

Volume 106

Conformal Mappings and Boundary Value Problems

Guo-Chun Wen
共形映射与边值问题

闻国樑 编著

Translated from the Chinese by Kuniko Weltin

1991 Mathematics Subject Classification. Primary 30C35, 30E25, 30D99; Secondary 30C20, 30C60, 30C7S.

Library of Congress Cataloging-in-Publication Data

Wen, Guo Chun.

[Kung hsing ying she yü pien chih wen t’ i. English]
Conformal mappings and boundary value problems/Guo-Chun Wen.
p. cm.—(Translations of mathematical monographs; v. 106)
Translation of: Kung hsing ying she yü pien chih wen t’ i.
Includes bibliographical references and index.
ISBN 0-8218-4562-4
1. Conformal mapping. 2. Boundary value problems. I. Title. II. Series.
QA360.W4613 1992 92-14225
515'.9—dc20 CIP

COPYING AND REPRINTING. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0065-9282/92 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Copyright ©1992 by the American Mathematical Society. All rights reserved.

The Higher Education Press and the American Mathematical Society
agree that an English translation of the book entitled
Conformal Mappings and Boundary Value Problems
will be published by the AMS, with the consent of Higher Education Press.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

This publication was typeset using \texttt{AMSTeX},
the American Mathematical Society’s \TeX macro system.

10987654321 979695949392
Contents

Preface vii

CHAPTER 1. Some Properties of Analytic and Harmonic Functions 1
§1. The convergence of sequences of analytic functions 1
§2. The convergence of sequences of harmonic functions 6
§3. Some properties of subharmonic functions 12
§4. The Dirichlet problem for analytic and harmonic functions 15

CHAPTER 2. Conformal Mappings of Simply Connected Domains 25
§1. The fundamental theorem for conformal mappings on simply connected domains 25
§2. Boundary correspondence theorems for conformal mappings 32
§3. The distortion theorem and estimates of coefficients for univalent functions 41
§4. The convergence of conformal mappings for sequences of simply connected domains 57
§5. The representations of conformal mappings on polygonal domains 65
§6. The representations of conformal mappings with orthogonal polynomials 80

CHAPTER 3. Conformal Mappings of Multiply Connected Domains 95
§1. A general discussion of conformal mappings between multiply connected domains 95
§2. Conformal mappings for domains with parallel slits 102
§3. Conformal mappings for domains with spiral slits 108
§4. The convergence of conformal mappings of sequences of multiply connected domains 112
§5. Conformal mappings from multiply connected domains onto circular domains 118
§6. Mappings from multiply connected domains onto strips 128

CHAPTER 4. Applications of Integrals of the Cauchy Type to Boundary Value Problems 137
§1. Integrals of the Cauchy type and their limiting values 137
§2. The Riemann boundary value problem for analytic functions 149
§3. The Hilbert boundary value problem for analytic functions on simply connected domains 154
§4. Piecewise continuous boundary value problems for analytic functions 162
§5. Mixed boundary value problems for analytic and harmonic functions 174

CHAPTER 5. The Hilbert Boundary Value Problem for Analytic Functions on Multiply Connected Domains 189
§1. Formulation of the Hilbert boundary value problem on multiply connected domains 189
§2. Uniqueness of the solution to the Hilbert boundary value problem 192
§3. A priori estimates of solutions to the Hilbert problem for analytic functions 195
§4. Solvability of the Hilbert boundary value problem for analytic functions 204
§5. Integral representations of solutions to the Hilbert boundary value problem for analytic functions 211
§6. Composite boundary value problems for analytic functions on multiply connected domains 216

CHAPTER 6. Basic Boundary Value Problems for Harmonic Functions 231
§1. Uniqueness of solutions to boundary value problems for harmonic functions 231
§2. The first and second boundary value problems for harmonic functions 237
§3. The third boundary value problem for harmonic functions and its generalizations 247
§4. Irregular oblique derivative boundary value problems for harmonic functions 254
§5. Properties of biharmonic functions and the basic boundary value problem 265

APPENDIX 1. A Brief Introduction to Quasiconformal Mappings 273
§1. Continuously differentiable transformations and K-quasi-mappings 273
§2. The relationship between quasiconformal mappings and partial differential equations 278

APPENDIX 2. Some Connections between Integral Equations and Boundary Value Problems 285
§1. The relationship between characteristic equations and Riemann boundary value problems 285
§2. Solving the Dirichlet problem by the method of integral equations 291
§3. The regularization and fundamental theorem of singular integral equations 293

References 299
Subject Index 301
Preface

Conformal mapping and boundary value problems are two major branches of complex function theory. The former is the geometric theory of analytic functions and the latter is the analytic theory governing the close relationship between the abstract theory and many concrete problems. Moreover, there is also an intimate relationship between conformal mappings and boundary value problems.

The first three chapters of this book deal with the existence and uniqueness of conformal mappings from multiply connected domains to various canonical domains, as well as certain properties of univalent functions and explicit representation formulas of conformal mappings. The methods used to arrive at these results are diverse. For example, to get the existence of conformal mappings from multiply connected domains to canonical domains, we use the method of locating extrema, the continuity method, and the modified Dirichlet problem for analytic functions. To get the explicit representation formulas of the conformal mappings from polygons bounded by straight lines or circular arcs to the upper half-plane or unit disc, we use the method of analytic continuation. In addition, the use of the convergence properties of sequences of analytic functions is among the main ingredients in the proof of many theorems concerning conformal mappings.

The remaining three chapters give a fairly detailed introductory account of the basic boundary value problems for analytic functions on multiply connected domains (the Riemannian boundary value problem, the Hilbert boundary value problem, etc.), as well as those for harmonic functions (the first, second, and third mixed boundary value problems and the irregular oblique derivative boundary value problem). Here, we have not used the method of integral equations which is common in the study of these problems. Rather, we first use subharmonic functions of conformal mappings to prove the existence of solutions for the harmonic function Dirichlet boundary value problem on multiply connected domains. Then, on the basis of a priori estimates for the solutions of these boundary value problems, we use the continuity method and related methods to prove the solvability of the aforementioned analytic function Hilbert boundary value problem. We
also give the integral representation formulas for the solutions of these problems. As for the Riemann boundary value problem for analytic functions, we have followed the usual method of using integrals of the Cauchy type. The existence of solutions for certain boundary value problems for harmonic functions is based on the solvability of these problems for analytic functions. We also discuss a new kind of mixed boundary value problem which consists of generalizing, in the third boundary value problem, the boundary condition involving the directional derivative.

In order to make clear the connection between the theory of conformal mappings and certain boundary value problems, we have included a discussion of this connection in all the chapters. Moreover, we have written two appendices to give a brief introduction to the theory of quasiconformal mappings and the connection between boundaries and singular integral equations. We have also included some exercises for the benefit of the readers.

The writing of this book was based on the author's many years of experience in teaching and scientific research. Its content has been used many times as a text for upper division undergraduate courses as well as elementary and advanced graduate courses at Peking University. The constructive suggestions and valuable advice that the author has received over the years have resulted in many revisions. He should especially thank the following individuals for significant improvements in both content and exposition of the present text: Professors Zhuang Zi-Tai and Lu Jian-Ke, and Messieurs Dai Zhong-Wei, Chen Fang-Quan, Huang Sha, Tian Mao-Ying, and Wu Zhi-Jian. Due to the author's limitations, there are bound to be many defects in the book, and the author would welcome the criticisms of the readers.

Guo-Chun Wen
Peking University
May, 1984
References

20. L. I. Volkovyskii, Quasiconformal mappings, L’vov, 1955. (Russian)
22. G.-C. Wen, Linear and nonlinear elliptic equations, Shanghai Science and Technology Press, Shanghai, 1985. (Chinese)
Subject Index

Adjoint equation, 288
Adjoint operators, 286
Analytic arc, 35
Area theorem, 41

Bieberbach conjecture, 52
Biharmonic
 equation, 265
 function, 265
Boundary value problems
 for harmonic functions, 231
 for integrals of the Cauchy type, 137

Carathéodory’s theorem, 58
Cauchy kernel, 285
Characteristic
 characteristic equation, 285
Characteristics
 continuously distributed, 280
 of a quasiconformal mapping, 280
 of an ellipse, 265
Circular domain, 118
Circular-arc polygon, 74
Component
 of a set, 25
Composite boundary value problems, 216
Conformal mapping, 25
 between doubly-connected domains, 97
 on polygonal domains, 65
 onto circular domains, existence, 124
 onto circular domains, uniqueness, 123
 onto domains with parallel slits, 102
 onto domains with slits, 127
 onto domains with spiral slits, 108, 127
 onto n-sheeted discs, 134
 onto n-sheeted strips, 130
 representation with orthogonal polynomials, 80
Connected set, 25
Connectivity
 preserved by conformal maps, 96
Continuity method, 118, 127
Convergence
 of a sequence of domains, 57
de Branges’ theorem, 54
Dirichlet boundary value problem, 6, 232
 for analytic functions, 15, 19
 for harmonic functions, 15
 for simply connected domains, 39
Dirichlet boundary value problem for bi-
 harmonic functions, 267
Dirichlet problem, 291
Distortion theorem
 for functions in S, 47
 for univalent functions, 50
Domain
 n-connected, 25
 simply connected, 25
Domain with parallel slits, 102
Domain with spiral slits, 108

Family of functions S, 41
First boundary value problem, 232
Fredholm integral equation, 291
Fredholm’s theorem, 291

Green’s function, 39, 238
Green’s identities, 239

Harmonic measure, 19, 238
Harnack theorem for harmonic functions, 10
Hilbert boundary value problem, 137, 154
 piecewise continuous boundary, 169
Hilbert boundary value problem problem
 on multiply connected domains, 189

Index, 260
 of boundary value problem, 150
 of Problem R*, 164
 of Problem R0*, 164
 of Problem H, 155
Integral equations, 285
 singular, 293
Integrals of the Cauchy type, 137
 density of, 137
 Hölder continuity of boundary values, 143
limiting values of, 142

Jordan arc, 33
Jordan curve, 32

K-quasiconformal mappings, 277
Keldyš-Sedov formula, 177
Kernel
of a sequence of domains, 57, 113
Koebe’s constant, 45

Laplacian, 265
Lindelöf’s lemma, 61
Linear fractional transformation, 26

m-harmonic equation, 271
m-harmonic function, 271
Mapping radius, 30
Mixed boundary value problems, 175

Neumann boundary value problem, 232
n-sheeted strip, 128

Plemelj formulas, 137, 142, 178
Poisson formula, 6
Poisson kernel for Problem I, 243
Principal value, 138
Privalov’s Theorem, 198
Problem A, 190
index of, 190
Problem A_0, 190
existence of solutions, 208
Problem B, 191
a priori estimates, 199
existence of solutions, 206
integral form for solution, 213, 215
uniqueness of solution, 194
Problem B_0, 191
Problem C, 192
Problem C_0, 192
Problem D, 20, 191, 292
a priori estimates, 198
existence and uniqueness of solution, 22
Problem D^*, 204
Problem F, 216
Problem F^*, 220
index of, 221
Problem F_0^*, 220
Problem F^*
existence of solutions, 227
Problem F_0, 216
Problem G, 218
Problem G^*
existence, uniqueness of solutions, 224
Problem H, 155, 156, 224
canonical boundary condition for, 160
index of, 155
Problem H^*, 169

general solution, 172
Problem H_5^*, 169
Problem H_6, 155, 157
index of, 170
Problem L, 252
Problem M, 175, 252
for harmonic functions, 182
general solution, 185
integral representation of solution, 177
solution for analytic functions, 179, 181
Problem N, 252
Problem P_1, 255
Problem P_2, 260
Problem P_3, 262
existence and uniqueness of solution, 264
Problem Q_1, 258
Problem Q_2, 260
Problem Q_3, 262
Problem R, 150, 153, 156
Problem R', 289
Problem R_0, 289
Problem R^*, 163
general solution, 166
index of, 164, 168
Problem R_0^*, 163
index of, 164
Problem R_0, 150
canonical solution, 152
general solution, 152
Problem I, 16, 232
existence and uniqueness of solution, 17
for biharmonic functions, 267
integral representation of solution, 241
Problem II, 232
existence of a solution, 244
integral representation of solution, 245
Problem III, 232
existence of a solution, 249
Problem IV, 235
existence of a solution, 254
Product operator, 295

Quasiconformal mappings, 273

Rado’s theorem, 62
Regular oblique derivative boundary value problem, 232
Regularizing operator, 295
Riemann boundary value problem, 137, 142, 149, 285
nonclosed boundary, 166
piecewise continuous boundary, 162
Riemann’s theorem, 26
Runge’s approximation theorem, 80

Schwarz differential operator, 76
Schwarz integral representation, 9
Schwarz kernel, 211
 for Problem C, 211, 212
Schwarz’s formula
 for analytic functions, 183
Schwarz’s lemma, 26
Schwarz-Christoffel formula, 66
Second boundary value problem, 232
Sequences of multiply connected domains, 112
Sequentially compact
 family of functions, 1
Singular integral equation, 285
 solvability of, 297
Star domain, 271
Subharmonic function, 12
Superharmonic function, 23
System of orthogonal polynomials, 85

Third boundary value problem, 232

Uniform convergence
 of sequences of harmonic functions, 9
 of sequences of univalent functions, 5
Uniform convergence on closed sets, 1
Uniformly bounded
 family of functions, 1
Uniformly bounded
 on closed sets, 1
Univalent analytic functions, 41

Vitali’s theorem, 5, 115

Walsh’s approximation theorem for analytic functions, 84
Recent Titles in This Series

(Continued from the front of this publication)

70 N. I. Akhiezer, Lectures on integral transforms, 1988
69 V. N. Salii, Lattices with unique complements, 1988
68 A. G. Postnikov, Introduction to analytic number theory, 1988
67 A. G. Dragalin, Mathematical intuitionism: Introduction to proof theory, 1988
66 Ye Yan-Qian, Theory of limit cycles, 1986
65 V. M. Zolotarev, One-dimensional stable distributions, 1986
63 Yu. M. Berezanskii, Selfadjoint operators in spaces of functions of infinitely many variables, 1986
62 S. L. Krushkal’, B. N. Apanasov, and N. A. Gusevskii, Kleinian groups and uniformization in examples and problems, 1986
61 B. V. Shabat, Distribution of values of holomorphic mappings, 1985
60 B. A. Kushner, Lectures on constructive mathematical analysis, 1984
59 G. P. Egorychev, Integral representation and the computation of combinatorial sums, 1984
58 L. A. Aizenberg and A. P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, 1983
57 V. N. Monakhov, Boundary-value problems with free boundaries for elliptic systems of equations, 1983
56 L. A. Aizenberg and Sh. A. Dautov, Differential forms orthogonal to holomorphic functions or forms, and their properties, 1983
55 B. L. Roždestvenskii and N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, 1983
54 S. G. Krein, Ju. I. Petunin, and E. M. Semenov, Interpolation of linear operators, 1982
53 N. N. Čencov, Statistical decision rules and optimal inference, 1981
52 G. I. Éskin, Boundary value problems for elliptic pseudodifferential equations, 1981
51 M. M. Smirnov, Equations of mixed type, 1978
50 M. G. Krein and A. A. Nudel’man, The Markov moment problem and extremal problems, 1977
49 I. M. Milin, Univalent functions and orthonormal systems, 1977
48 Ju. V. Linnik and I. V. Ostrovskii, Decomposition of random variables and vectors, 1977
47 M. B. Nevel’son and R. Z. Has’minskii, Stochastic approximation and recursive estimation, 1976
45 D. A. Suprunenko, Matrix groups, 1976
44 L. I. Ronkin, Introduction to the theory of entire functions of several variables, 1974
42 L. D. Kudrjavcev, Direct and inverse imbedding theorems, 1974
41 I. C. Gohberg and I. A. Fel’dman, Convolution equations and projection methods for their solution, 1974
40 D. P. Želobenko, Compact Lie groups and their representations, 1973
38 A. N. Širjaev, Statistical sequential analysis, 1973

(See the AMS catalog for earlier titles)