Local Fields and Their Extensions

Second Edition

I. B. Fesenko
S. V. Vostokov

American Mathematical Society
Local Fields and Their Extensions
This page intentionally left blank
Translations of

MATHEMATICAL
MONOGRAPHS

Volume 121

Local Fields and
Their Extensions
Second Edition

I. B. Fesenko
S. V. Vostokov

American Mathematical Society
Providence, Rhode Island
Contents

Introduction to the second edition .. vii
Foreword to the first edition by I. R. Shafarevich xi

Chapter I. Complete Discrete Valuation Fields ... 1
 1. Ultrametric Absolute Values .. 1
 2. Valuations and Valuation Fields ... 4
 3. Discrete Valuation Fields ... 6
 4. Completion ... 9
 5. Filtrations of Discrete Valuation Fields ... 12
 6. The Group of Principal Units as a \mathbb{Z}_p-module 17
 7. Set of Multiplicative Representatives ... 22
 8. The Witt ring ... 26
 9. Artin–Hasse Maps .. 29

Chapter II. Extensions of Discrete Valuation Fields 35
 1. The Hensel Lemma and Henselian Fields .. 35
 2. Extensions of Valuation Fields ... 39
 3. Unramified and Ramified Extensions ... 49
 4. Galois Extensions .. 56
 5. Structure Theorems for Complete Fields ... 61

Chapter III. The Norm Map .. 67
 1. Cyclic Extensions of Prime Degree .. 67
 2. Artin–Schreier Extensions ... 74
 3. The Hasse–Herbrand Function .. 79
 4. The Norm and Ramification Groups ... 88
 5. The Field of Norms ... 95

Chapter IV. Local Class Field Theory, I ... 111
 1. Useful Results on Local Fields ... 112
 2. The Neukirch Map .. 123
 3. The Hazewinkel Homomorphism ... 128
 4. The Reciprocity Map .. 139
 5. Pairings of the Multiplicative Group ... 142
 6. The Existence Theorem .. 153
 7. Other Approaches to the Local Reciprocity Map 161
 8. Nonabelian Extensions ... 165
Chapter V. Local Class Field Theory. II ... 171
 1. The Multiplicative Group and Abelian Extensions 171
 2. Additive Polynomials ... 179
 3. Normic Subgroups ... 187
 4. Local p-Class Field Theory .. 196
 5. Generalizations ... 203

Chapter VI. The Group of Units of Local Number Fields 207
 1. Formal Power Series ... 207
 2. The Artin–Hasse–Shafarevich Map .. 214
 3. Series Associated to Roots ... 219
 4. Primary Elements .. 228
 5. The Shafarevich Basis ... 232

Chapter VII. Explicit Formulas for the Hilbert Symbol 235
 1. Origin of Formulas .. 235
 2. The Pairing $\langle \cdot, \cdot \rangle$... 241
 3. Explicit Class Field Theory for Kummer Extensions 250
 4. Explicit Formulas .. 255
 5. Applications and Generalizations ... 258

Chapter VIII. Explicit Formulas for Hilbert Pairings on Formal Groups ... 267
 1. Formal Groups ... 267
 2. Generalized Hilbert Pairing for Lubin–Tate Groups 272
 3. Generalized Hilbert Pairing for Honda Groups 276

Chapter IX. The Milnor K-groups of a Local Field 283
 1. The Milnor Ring of a Field ... 283
 2. The Milnor Ring of a Discrete Valuation Field 286
 3. The Norm Map ... 293
 4. The Milnor Ring of a Local Field ... 304

Bibliography ... 319

List of Notations .. 341
Index .. 343
Introduction to the Second Edition

The class of discrete valuation fields appears to be next in significance and order of complexity to the class of finite fields. Among discrete valuation fields a highly important place, both for themselves and in connection with other theories, is occupied by complete discrete valuation fields.

This book is devoted to local fields, i.e. complete discrete valuation fields with perfect residue field.

The time distance between the second edition of “Local Fields and Their Extensions” and its first edition is ten years. During this period, according to Math Reviews, almost one thousand papers on local fields have been published. Some of them have further developed and clarified various topics described in the first edition of this book. On the other hand, the authors of this book have received a variety of useful suggestions and remarks from several dozen readers of the first edition.

All these have naturally led to the second edition of the book.

This book is aimed to serve as an easy exposition of the arithmetical properties of local fields by using explicit and constructive tools and methods. Almost everywhere it does not require more prerequisites than a standard course in Galois theory and a first course in number theory which includes p-adic numbers.

The book consists of nine chapters which form the following groups:

- group 1: elementary properties of local fields (Chapter I–III)
- group 2: class field theory for various types of local fields and generalizations (Chapter IV–V)
- group 3: explicit formulas for the Hilbert pairing (Chapter VI–VIII)
- group 4: Milnor K-groups of local fields (Chapter IX).

Chapters of the third group were mainly written by S. V. Vostokov and the rest was written by I. B. Fesenko.

The first page of each chapter provides a detailed description of its contents, so here we just emphasize the most important issues and also indicate changes with respect to the first edition.

Chapter I describes the most elementary properties of local fields when one does not look at connections between them, but concentrates on a single field.

Chapter II deals with extensions of discrete valuation fields and already section 1 and 2 introduce a very important class of Henselian fields and describe relations between Henselian and complete fields. We have included more information than in the first edition on ramification subgroups in section 4.
The main object of study in Chapter III is the norm map acting on the multiplicative group and its arithmetical properties. In section 1 we describe its behaviour for cyclic extensions of prime degree. Section 2 shows that almost all cyclic extensions of degree equal to the characteristic of the perfect residue field are generated by roots of Artin–Schreier polynomials. In section 3 we introduce a function which takes into account certain properties of the norm map acting on higher principal units. Our approach to the definition of the Hasse–Herbrand function is different from the approach in other textbooks (where the definition involves ramification groups). Sections 3 and 4 in the second edition now include more applications of our treatment of the Hasse–Herbrand function. Section 5 is devoted to the Fontaine–Wintenberger theory of fields of norms for arithmetically profinite extensions of local fields. This theory links certain infinite extensions of local fields of characteristic zero or \(p \) with local fields of characteristic \(p \). Now the section contains more details on applications of this theory, some of which have been published since 1993.

Chapter IV is on class field theory of local fields with finite residue fields. For this edition we have chosen a slightly different approach from the first edition: for totally ramified extensions we work simultaneously with both the Neukirch map and Hazewinkel homomorphism (which are almost inverse to each other). We hope that this method explains more fully on what is going on behind definitions, constructions and calculations and therefore gives the reader more chances to appreciate the theory. This method is also very useful for applications. Section 1 contains new subsections (1.6)–(1.9) which are required for the study of the reciprocity maps. Sections 2–4 differs significantly from the corresponding parts of the first edition. After proving the main results of local class field theory we review all other approaches to it in the new section 7. The new section 8 presents to the reader a recent noncommutative reciprocity map, which is not a homomorphism but a Galois 1-cycle. This theory is based a generalization of the approach to (abelian) class field theory in this book. We also review results on the absolute Galois group of a local field.

Chapter V studies abelian extensions of local fields with infinite residue field. In the same way as in the first edition, the first three sections discuss in detail class field theory of local fields with quasi-finite residue field. In the new section 4 we describe recent theory of abelian totally ramified \(p \)-extensions of a local field with perfect residue fields of characteristic \(p \) which can be viewed as the largest possible generalization of class field theory of Chapter IV. If a complete discrete valuation field has imperfect residue field, then its class field theory becomes much more difficult. Still, some results on abelian totally ramified \(p \)-extensions of such fields and their norm groups can be established in the framework of this book; we explain some features in the new section 5. The latter also includes a class field theory interpretation of results on some abelian varieties over local fields.

Chapter VI serves as a prerequisite for Chapters VII and VIII. For a finite extension of the field of \(p \)-adic numbers it presents a very useful formal power series method for the study of elements of the fields. The Artin–Hasse–Shafarevich exponential map
is described in section 2 and the Shafarevich basis of the group of principal units in section 5. This Chapter contains many technical results, especially in section 3 and 4, which are of use in Chapter VI.

The aim of Chapter VII is to explain to the reader explicit formulas for the Hilbert symbol. The method is to introduce at first an independent pairing on formal power series and to show that it is well defined and satisfies the Steinberg property (subsection (2.1)). Then a pairing on the multiplicative group of the field induced by the previous pairing is defined. Its properties (independence of a power series presentation and invariance with respect to the choice of a prime element) help one easily show its equality with the Hilbert pairing. The second edition contains many simplifications of the first edition and it also includes more material on interpretations of the explicit formulas and their applications.

Chapter VIII is an exposition of a generalization of the method of Chapter VII to formal groups. The simplest among the groups are Lubin–Tate groups which are introduced in section 1; exercises let the reader see the well known applications of them to local class field theory. Explicit formulas for the generalized Hilbert pairing associated to a Lubin–Tate formal group are presented in section 2. The new section 3 describes a recent generalization to Honda formal groups.

Chapter IX describes the Milnor K-groups of fields. Calculations of the Milnor K-groups of local fields in section 4 shed a new light on the Hilbert symbol of Chapter IV.

The bibliography includes comments on introductory texts on various applications of local fields.

Numerous remarks and exercises often indicate further important results and theories left outside this introductory book. The most challenging exercises are marked by (○).

Those readers who prefer to start with class field theory of local fields with finite residue fields are recommended to read sections 1–7 of Chapter IV and follow the references to the previous Chapters if necessary.

One of more advanced theories closely related to the material of this book and its presentation is higher local class field theory; for an introduction to higher local fields see [FK].

A reference in Chapter n to an assertion in Chapter m does not state the number m explicitly and only if $m = n$. Briefly on notations: For a field F an algebraic closure of F is denoted by F^{alg} and the separable closure of F in F^{alg} is denoted by F^{sep}. Separable and algebraic closures of fields are assumed suitably chosen where it is necessary to make such conventions. $G_F = \text{Gal}(F^{\text{sep}}/F)$ stands for the absolute Galois group of F, μ_n denotes the group of all nth roots of unity in F^{sep}.

The text is typed using AMSTeX and a modified version of osudeG style (written by W. Neumann and L. Siebenmann and available from the public domain of Departm of Mathematics of Ohio State University, pub/osutex).

March 2002 I. B. Fesenko S. V. Vostokov
This page intentionally left blank
Foreword to the First Edition

A. Weil was undoubtedly right when he asserted, in the preface to the Russian edition of his book on number theory, that since class field theory pertains to the foundation of mathematics, every mathematician should be as familiar with it as with Galois theory. Moreover, just like Galois theory before it, class field theory was reputed to be very complicated and accessible only to specialists.

Here, however, the parallels between these two theories come to an end. A mathematician who has decided to become acquainted with Galois theory is not confronted with the problem of choosing a suitable exposition: all expositions of it are essentially equivalent, differing only in didactic details. For class field theory, on the other hand, there is a wide range of essentially different expositions, so that it is not immediately obvious even whether the subject is the same.

In the 1960s, it seemed that a universal Galois cohomology approach to class field theory had been found. What is more, the role of homological algebra as a common language unifying various branches of mathematics was becoming clear. Homological algebra could be likened to medieval Latin that served as the means of communication within educated circles. However, just as Latin could not effectively stand up against the originality of individual national languages, so Galois cohomology theory no longer offers the “only reasonable” understanding of class field theory. The goal of the cohomological method was the formation of class fields in which both number and local fields and their arithmetic properties disappear, the whole theory being formalized as a system of axioms. But other expositions of class field theory reveal remarkable properties of number and local fields, that are ignored in the cohomological approach. It has become evident that class field theory is not just an application of cohomology groups, but that it is also closely related with other profound theories such as the theory of formal groups, K-theory, etc.

The exposition of this book does not use homological algebra. It presents specific realities of local fields as clear as possible. Despite its limited volume, the book contains a vast amount of information on local fields. It offers the reader the possibility to see the beauty and diversity of this subject.

30 June 1992, Moscow

I. R. Shafarevich
Comment

Introductory sources on related subjects.
local fields [Cas];
algebraic number theory [KKS], [M], [N5], [NSchW], [CF], [FT], [BSh], [Iya], [La2],
[IR], [Ko6], [W];
cyclotomic fields [Wa], [La3];
valuation theory [E], [Rib];
formally \(p \)-adic fields [PR];
non-Archimedean analysis [Kob1–2], [vR], [Schf], [T4], [BGR];
embedding problems [ILF];
formal groups [Fr], [CF], [Iw6], [Haz3];
elliptic curves over number fields [Silv];
local zeta function and Fourier analysis [T1], [RV], [Ig], [Den];
\(p \)-adic \(L \)-functions [Wa], [Iw7], [Hi];
local Langlands correspondence [T7], [Bum], [Kudl], [BaK], [Rit2];
pro-\(p \)-groups [DdSMS], [Wi], [dSSS];
\(p \)-adic Hodge theory [T2], [Fo2], [Sen4,7–9];
\(p \)-adic periods [A];
\(p \)-adic differential equations [RC];
non-Archimedean analytic geometry [Ber];
field arithmetic [FJ], [Jar], [Ef4];
characteristic \(p \) [Gos];
Milnor \(K \)-theory [Bas], [Ro], [Silr], [Gr];
higher local fields and higher local class field theory [FK];
power series over local fields, formal groups, and dynamics [Lu1–2], [Li1–4];
non-Archimedean physics [VVZ], [BF], [Chr], [RTVW], [HS], [Kh].

Symbols and explicit formulas (perfect residue field case). [AH1–2], [Has1–11],
[Sha2], [Kn], [Rot], [Bru1–2], [Henn1–2], [Iw3], [Col1,3], [Wil], [CW1], [dSh1–3],
[Sen3], [Hel], [Des], [Shi], [Sue], [Sh1], [V1–7,9], [Fe1–2], [BeV1–2], [Ab5–6], [Kol],
[Kuz], [Kat6–7], [Ku3–4], [GK], [VG], [DV1–2], [Ben1–2].
Ramification theory of local fields (perfect residue field case). [Kaw1], [Sa], [Tam], [Hei], [Mar1], [Mau1–5], [Mik5–6], [T2], [Wy], [Sen1–2], [ST], [Ep], [KZ], [Fo4], [Win1–4], [Lau1–6], [LS], [CG], [Ab2–4,7–8], [Fe8,11–12].

Bibliography

[Ch2] _______, Class field theory, Nagoya University, Nagoya, 1954.

[DSF] Marcus du Sautoy and Ivan Fesenko, Where the wild things are: ramification groups and the Nottingham group, in [dSSS], pp. 287–328.

[Fu] Yasushi Fujiwara, On Galois actions on p-power torsion points of some one-dimensional formal groups over $\mathbb{F}_p[[t]]$, J. Algebra 113 (1988), 491–510.

von Einheitswurzeln allgemeine I-ten n. and
n-Reziprozitätsgesetz, Eisenstein Über extensions Potenzreste Primteiler zu reciprocity Zahlen, p, Une I. reciprocite Das Korpers zur im l Direkter Zum Safarevic der Einheitswurzeln, Local approche Twisted s g o. -ten sur n. r Zum Sur über p. y. [Has4]

[Herr2] ——, $\Phi – \Gamma$-modules and Galois cohomology, in [FK], pp. 263-272.

BIBLIOGRAPHY

[Ko3] ---, Über die Galoissche Gruppe der algebraischen Abschließung eines Poten-

[Ko4] ---, Galoissche Theorie der p-Erweiterungen, Deutscher Verlag Wissens-

[Ko7] ---, Local class field theory for metabelian extensions, Proc. 2nd Gauss Sym-

[Kob2] ---, p-adic numbers, p-adic analysis and zeta-functions, 2nd ed., Springer-

[Kr1] M. Krasner, Sur la representation exponentielle dans les corps relativement ga-
loisiens de nombres p-adiques, Acta Arith. 3 (1939), 133–173.

[Kr2] ---, Rapport sur le prolongement analytique dans les corps values complets
par la méthode des éléments analytiques quasi-connexes, Table Ronde d’Analyse

Amsterdam, 1983, pp. 103–152.

[Ku3] ---, Computation of the syntomic regulator in the cyclotomic case, Appendix to

Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.

S. MacLane, Subfields and automorphism groups of p-adic fields, Ann. of Math. (2) 40 (1939), 423–442.

Yoshimasa Mikasa

John T. Tate, *Fourier analysis in number fields, and Hecke’s zeta-function*, [CF], pp. 305–347.

[Wh5] ______, The generality of local class field theory (Generalized local class field theory. V), Proc. Amer. Math. Soc. 8 (1957), 137–140.

BIBLIOGRAPHY

List of Notations

Chapter I

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>\deg</td>
<td>3</td>
</tr>
<tr>
<td>v</td>
<td>4</td>
</tr>
<tr>
<td>D_v</td>
<td>4</td>
</tr>
<tr>
<td>M_v</td>
<td>4</td>
</tr>
<tr>
<td>F_v</td>
<td>4</td>
</tr>
<tr>
<td>\overline{a}</td>
<td>4</td>
</tr>
<tr>
<td>U_v</td>
<td>4</td>
</tr>
<tr>
<td>π</td>
<td>6</td>
</tr>
<tr>
<td>\bar{F}</td>
<td>9</td>
</tr>
<tr>
<td>\hat{F}_v</td>
<td>10</td>
</tr>
<tr>
<td>\hat{v}</td>
<td>10</td>
</tr>
<tr>
<td>\mathbb{Q}_p</td>
<td>11</td>
</tr>
<tr>
<td>$K((X))$</td>
<td>11</td>
</tr>
<tr>
<td>$\widehat{F}{X}$</td>
<td>11</td>
</tr>
<tr>
<td>R</td>
<td>12</td>
</tr>
<tr>
<td>rep</td>
<td>12</td>
</tr>
<tr>
<td>Rep</td>
<td>12</td>
</tr>
<tr>
<td>$\alpha \equiv \beta \mod \pi^n$</td>
<td>13</td>
</tr>
<tr>
<td>U_i</td>
<td>13</td>
</tr>
<tr>
<td>U_0</td>
<td>13</td>
</tr>
<tr>
<td>λ_i</td>
<td>13</td>
</tr>
<tr>
<td>$e(F)$</td>
<td>14</td>
</tr>
<tr>
<td>φ</td>
<td>21</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>23</td>
</tr>
<tr>
<td>r</td>
<td>23</td>
</tr>
<tr>
<td>$W(B)$</td>
<td>27</td>
</tr>
<tr>
<td>τ_0</td>
<td>27</td>
</tr>
<tr>
<td>\mathcal{V}</td>
<td>27</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>27</td>
</tr>
<tr>
<td>$W_n(B)$</td>
<td>27</td>
</tr>
<tr>
<td>$E(X)$</td>
<td>29</td>
</tr>
<tr>
<td>$E(\cdot, \cdot)$</td>
<td>30</td>
</tr>
<tr>
<td>$\mathcal{E}(\cdot, \cdot)$</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter II

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{f}(X)$</td>
<td>35</td>
</tr>
<tr>
<td>$f(L/F, w)$</td>
<td>39</td>
</tr>
<tr>
<td>$e(L/F, w)$</td>
<td>39</td>
</tr>
</tbody>
</table>

Chapter III

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u</td>
<td>v$</td>
</tr>
<tr>
<td>$f(u</td>
<td>v)$</td>
</tr>
<tr>
<td>$e(u</td>
<td>v)$</td>
</tr>
<tr>
<td>$e(L</td>
<td>F)$</td>
</tr>
<tr>
<td>$f(L</td>
<td>F)$</td>
</tr>
<tr>
<td>\mathcal{O}_F</td>
<td>50</td>
</tr>
<tr>
<td>M_F</td>
<td>50</td>
</tr>
<tr>
<td>U_F</td>
<td>50</td>
</tr>
<tr>
<td>\hat{F}</td>
<td>50</td>
</tr>
<tr>
<td>π_F</td>
<td>50</td>
</tr>
<tr>
<td>\emptyset</td>
<td>50</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>50</td>
</tr>
<tr>
<td>U</td>
<td>50</td>
</tr>
<tr>
<td>F^{ur}</td>
<td>51</td>
</tr>
<tr>
<td>G_1</td>
<td>58</td>
</tr>
<tr>
<td>G_x</td>
<td>57</td>
</tr>
<tr>
<td>ψ_i</td>
<td>58</td>
</tr>
</tbody>
</table>

Chapter IV

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_F</td>
<td>113</td>
</tr>
<tr>
<td>$\mathbb{Q}_p(m)$</td>
<td>114</td>
</tr>
<tr>
<td>\mathcal{F}, \mathcal{L}</td>
<td>117</td>
</tr>
<tr>
<td>$U(\mathcal{L}/\mathcal{F})$</td>
<td>117</td>
</tr>
<tr>
<td>\mathcal{T}_F</td>
<td>119</td>
</tr>
<tr>
<td>φ</td>
<td>119</td>
</tr>
<tr>
<td>$\text{Frob}(L</td>
<td>F)$</td>
</tr>
<tr>
<td>$\widehat{\mathcal{Y}}_{L/F}$</td>
<td>124</td>
</tr>
<tr>
<td>$\mathcal{Y}_{L/F}$</td>
<td>124</td>
</tr>
<tr>
<td>$\text{Gal}(L/F)^{ab}$</td>
<td>125</td>
</tr>
<tr>
<td>$\mathcal{Y}_{L/F}^{ab}$</td>
<td>125</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>$\Psi_{L/F}$</td>
<td>129</td>
</tr>
<tr>
<td>Ver</td>
<td>136</td>
</tr>
<tr>
<td>$(\cdot, L/F)$</td>
<td>139</td>
</tr>
<tr>
<td>Ψ_F</td>
<td>140</td>
</tr>
<tr>
<td>$(\cdot, \cdot)_n$</td>
<td>143</td>
</tr>
<tr>
<td>$c(\cdot, \cdot)$</td>
<td>145</td>
</tr>
<tr>
<td>d_π</td>
<td>146</td>
</tr>
<tr>
<td>res</td>
<td>149</td>
</tr>
<tr>
<td>F_π</td>
<td>157</td>
</tr>
<tr>
<td>Ψ_F</td>
<td>158</td>
</tr>
<tr>
<td>Υ_F</td>
<td>157</td>
</tr>
<tr>
<td>Φ_F</td>
<td>158</td>
</tr>
<tr>
<td>$Br(F)$</td>
<td>162</td>
</tr>
<tr>
<td>X_F</td>
<td>162</td>
</tr>
<tr>
<td>$\Theta_{L/F}$</td>
<td>165</td>
</tr>
<tr>
<td>κ</td>
<td>165</td>
</tr>
</tbody>
</table>

Chapter V

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Page 2</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_F</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Gal(L/F)$</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\hat{F}</td>
<td>198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U(\hat{L}/\hat{F})$</td>
<td>198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter VI

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Page 2</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>res</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f(X) \equiv g(X) \mod \deg m$</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f(X) \equiv g(X) \mod (\pi^n, \deg m)$</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q^c</td>
<td>211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\emptyset</td>
<td>214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_X</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_X</td>
<td>215, 217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_X, Δ</td>
<td>215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z(X)$</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s(X)$</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_m(X)$</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$u(X)$</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\emptyset_0</td>
<td>219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h(X)$</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(X)$</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V(X)$</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tr</td>
<td>228</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter VII

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Page 2</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(a)$</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\omega(a)$</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϖ</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w(X)$</td>
<td>233, 234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter VIII

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Page 2</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(X, Y)$</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\log_F</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\exp_F</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{F}_π</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(M_L)$</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ_n</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\emptyset_T</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\emptyset_0</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ_0</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\cdot, \cdot)_F, (\cdot, \cdot)_F, \kappa_n$</td>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_F</td>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_F</td>
<td>273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z(X)$</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s(X)$</td>
<td>274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r(X)$</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi_{\alpha(X), \beta(X)}$</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi^{(1)}_{\alpha(X), \beta(X)}$</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi^{(2)}_{\alpha(X), \beta(X)}$</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi^{(3)}_{\alpha(X), \beta(X)}$</td>
<td>275</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter IX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Page 2</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_n(F)$</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$J_{F/L}$</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∂_{π}</td>
<td>286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∂_{ν}</td>
<td>289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{ν}</td>
<td>293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{L/F}$</td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

Abrashkin formula 261, 281
Abrashkin theorem 170
absolute ramification index 14
absolute residue degree 112
absolute value 1
additive formal group 267
additive polynomial 179
Approximation theorem 8
arithmetically profinite extensions 96
Artin–Hasse exponential 34
Artin–Hasse formula 263, 264
Artin–Hasse function 29
Artin–Hasse map 31
Artin–Hasse–Iwasawa formula 264
Artin–Hasse–Shafarevich map 215
Artin–Schreier extension 74
Artin–Schreier pairing 148
Bass–Tate theorem 290
Bass–Tate–Kato theorem 300
Bernoulli number 265
Bloch–Kato theorem 315
Bloch–Kato–Gabber theorem 286
Brauer field 177
Brauer group 162
Carroll proposition 308
Chevalley proposition 250
class field 156
coefficient field 61
complete discrete valuation field 9
completion 9
decomposition group 44
deply ramified extension 98
Demchenko theorem 277
discrete valuation 4
discrete valuation field 6
discrete valuation of rank \(n \) 4
discrete valuation topology 7
Dwork theorem 139
Efrat theorem 170
Eisenstein formula 258
Eisenstein polynomial 54
elimination of wild ramification 60
existence theorem 154, 191
explicit formula for generalized Hilbert pairing 275, 281
explicit formula for Hilbert symbol 255
explicit pairing 241, 243, 261, 262, 275, 281
exponential 208
extension of valuation fields 39
field of norms 98
Fontaine method 261
Fontaine theorem 161
Fontaine theory of \(\Phi - \Gamma \)-modules 164
Fontaine–Wintenberger theory 95
formal group 267
Frobenius automorphism 113
Frobenius map for Witt vectors 27
functor of fields of norms 106
Gauss lemma 45
generalized Hilbert pairing 273, 278
geometric class field theory 159
group of units 4
Hasse primary element 229
Hasse–Arf theorem 91, 135, 202
Hasse–Herbrand function 80, 82
Hasse–Iwasawa theorem 168
Hazewinkel homomorphism 129
Hazewinkel theory 202
Henniart polynomial 223
Hensel lemma 36
Hensel proposition 17
Henselian field 37
Henselization 48
Herbrand theorem 85
hereditarily just infinite group 106
Herr theorem 164

343
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>higher group of units</td>
<td>13</td>
</tr>
<tr>
<td>higher local class field theory</td>
<td>316</td>
</tr>
<tr>
<td>Hilbert pairing</td>
<td>142</td>
</tr>
<tr>
<td>Hilbert symbol</td>
<td>142,261,262</td>
</tr>
<tr>
<td>homomorphism of formal groups</td>
<td>267</td>
</tr>
<tr>
<td>Honda formal group</td>
<td>276</td>
</tr>
<tr>
<td>inertia group</td>
<td>58</td>
</tr>
<tr>
<td>inertia subfield</td>
<td>58</td>
</tr>
<tr>
<td>inertia subgroup</td>
<td>157</td>
</tr>
<tr>
<td>Jannsen–Wingberg theorem</td>
<td>169</td>
</tr>
<tr>
<td>Jarden–Ritter theorem</td>
<td>170</td>
</tr>
<tr>
<td>Kato theorem</td>
<td>260</td>
</tr>
<tr>
<td>Kato theory</td>
<td>316</td>
</tr>
<tr>
<td>Koch theorem</td>
<td>168</td>
</tr>
<tr>
<td>Koch–de Shalit theory</td>
<td>167</td>
</tr>
<tr>
<td>Koenigsmann theorem</td>
<td>170</td>
</tr>
<tr>
<td>Kronecker–Weber theorem</td>
<td>122,159</td>
</tr>
<tr>
<td>Kummer formula</td>
<td>258</td>
</tr>
<tr>
<td>Kummer–Takagi formula</td>
<td>264</td>
</tr>
<tr>
<td>Kurihara exponential map</td>
<td>316</td>
</tr>
<tr>
<td>Kurihara theorem</td>
<td>205,260</td>
</tr>
<tr>
<td>Laubie theorem</td>
<td>93</td>
</tr>
<tr>
<td>local field</td>
<td>11</td>
</tr>
<tr>
<td>local functional field</td>
<td>11</td>
</tr>
<tr>
<td>local number field</td>
<td>11</td>
</tr>
<tr>
<td>local (p)-class field theory</td>
<td>196</td>
</tr>
<tr>
<td>logarithm</td>
<td>208</td>
</tr>
<tr>
<td>logarithm of formal group</td>
<td>269</td>
</tr>
<tr>
<td>lower ramification group</td>
<td>57</td>
</tr>
<tr>
<td>lower ramification jump</td>
<td>59</td>
</tr>
<tr>
<td>Lubin–Rosen theorem</td>
<td>206</td>
</tr>
<tr>
<td>Lubin–Tate formal group</td>
<td>270</td>
</tr>
<tr>
<td>Lubin–Tate theorem</td>
<td>270</td>
</tr>
<tr>
<td>maximal ideal</td>
<td>4</td>
</tr>
<tr>
<td>maximal unramified extension</td>
<td>51</td>
</tr>
<tr>
<td>Mazur theorem</td>
<td>206</td>
</tr>
<tr>
<td>Maus–Sen theorem</td>
<td>97</td>
</tr>
<tr>
<td>Merkur’ev theorem</td>
<td>310</td>
</tr>
<tr>
<td>Merkur’ev–Suslin theorem</td>
<td>315</td>
</tr>
<tr>
<td>metabelian local class field theory</td>
<td>166</td>
</tr>
<tr>
<td>Miki theorem</td>
<td>205</td>
</tr>
<tr>
<td>Milnor (K)-group</td>
<td>284</td>
</tr>
<tr>
<td>Milnor (K)-ring</td>
<td>284</td>
</tr>
<tr>
<td>Mochizuki theorem</td>
<td>170</td>
</tr>
<tr>
<td>Moore theorem</td>
<td>306</td>
</tr>
<tr>
<td>multiplicative formal group</td>
<td>267</td>
</tr>
<tr>
<td>multiplicative representative</td>
<td>22</td>
</tr>
<tr>
<td>(n)-dimensional local field</td>
<td>11</td>
</tr>
<tr>
<td>Neukirch homomorphism</td>
<td>130,132</td>
</tr>
<tr>
<td>Neukirch map</td>
<td>124</td>
</tr>
<tr>
<td>Noether theorem</td>
<td>122</td>
</tr>
<tr>
<td>noncommutative reciprocity map</td>
<td>166</td>
</tr>
<tr>
<td>norm residue symbol</td>
<td>143</td>
</tr>
<tr>
<td>normic subgroup</td>
<td>188</td>
</tr>
<tr>
<td>normic topology</td>
<td>189</td>
</tr>
<tr>
<td>Ostrowski theorem</td>
<td>2</td>
</tr>
<tr>
<td>(p)-adic derivation</td>
<td>259</td>
</tr>
<tr>
<td>(p)-adic Lie extension</td>
<td>97</td>
</tr>
<tr>
<td>(p)-adic norm</td>
<td>1</td>
</tr>
<tr>
<td>(p)-adically closed field</td>
<td>170</td>
</tr>
<tr>
<td>(p)-basis</td>
<td>62</td>
</tr>
<tr>
<td>(p)-class local reciprocity map</td>
<td>202</td>
</tr>
<tr>
<td>(p)-division field</td>
<td>270</td>
</tr>
<tr>
<td>(\langle \cdot , \cdot \rangle_X)</td>
<td>241</td>
</tr>
<tr>
<td>(\langle \cdot , \cdot \rangle_{\pi})</td>
<td>243</td>
</tr>
<tr>
<td>Parshin theory</td>
<td>316</td>
</tr>
<tr>
<td>Pop theorem</td>
<td>169</td>
</tr>
<tr>
<td>primary element</td>
<td>228</td>
</tr>
<tr>
<td>principal unit</td>
<td>13</td>
</tr>
<tr>
<td>quasi-finite field</td>
<td>173</td>
</tr>
<tr>
<td>ramification group</td>
<td>57</td>
</tr>
<tr>
<td>ramification index</td>
<td>39</td>
</tr>
<tr>
<td>ramification number</td>
<td>59</td>
</tr>
<tr>
<td>reciprocity map</td>
<td>140</td>
</tr>
<tr>
<td>158,165, 176, 202,206,316</td>
<td></td>
</tr>
<tr>
<td>residue degree</td>
<td>39</td>
</tr>
<tr>
<td>residue field</td>
<td>4</td>
</tr>
<tr>
<td>ring of integers</td>
<td>4</td>
</tr>
<tr>
<td>Satz 90</td>
<td>88</td>
</tr>
<tr>
<td>Sen formula</td>
<td>264</td>
</tr>
<tr>
<td>Serre geometric class field theory</td>
<td>159</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>set of multiplicative representatives</td>
<td>22</td>
</tr>
<tr>
<td>set of representatives</td>
<td>12</td>
</tr>
<tr>
<td>Shafarevich basis</td>
<td>233</td>
</tr>
<tr>
<td>Shafarevich theorem</td>
<td>168,169</td>
</tr>
<tr>
<td>Sivitskii theorem</td>
<td>314</td>
</tr>
<tr>
<td>Steinberg cocycle</td>
<td>283</td>
</tr>
<tr>
<td>Steinberg property</td>
<td>283</td>
</tr>
<tr>
<td>Suslin theorem</td>
<td>309</td>
</tr>
<tr>
<td>symbol</td>
<td>284</td>
</tr>
<tr>
<td>symbolic map</td>
<td>283</td>
</tr>
<tr>
<td>tame symbol</td>
<td>145</td>
</tr>
<tr>
<td>tamely ramified extension</td>
<td>50</td>
</tr>
<tr>
<td>Tate theorem</td>
<td>158,309</td>
</tr>
<tr>
<td>Teichmüller representative</td>
<td>22</td>
</tr>
<tr>
<td>topological basis</td>
<td>21</td>
</tr>
<tr>
<td>totally ramified extension</td>
<td>50</td>
</tr>
<tr>
<td>trivial valuation</td>
<td>4</td>
</tr>
<tr>
<td>twisted reciprocity homomorphism</td>
<td>206</td>
</tr>
<tr>
<td>ultrametric</td>
<td>2</td>
</tr>
<tr>
<td>unramified extension</td>
<td>50,51</td>
</tr>
<tr>
<td>upper ramification filtration</td>
<td>86</td>
</tr>
<tr>
<td>upper ramification jump</td>
<td>86</td>
</tr>
<tr>
<td>upper ramification subgroup</td>
<td>86</td>
</tr>
<tr>
<td>valuation</td>
<td>4</td>
</tr>
<tr>
<td>Verlagerung</td>
<td>136</td>
</tr>
<tr>
<td>Verschiebung</td>
<td>27</td>
</tr>
<tr>
<td>Weierstrass preparation theorem</td>
<td>210</td>
</tr>
<tr>
<td>wild automorphism</td>
<td>106</td>
</tr>
<tr>
<td>wild group</td>
<td>106</td>
</tr>
<tr>
<td>Wintenberger theorem</td>
<td>97, 107</td>
</tr>
<tr>
<td>Witt ring</td>
<td>27</td>
</tr>
<tr>
<td>Witt theory</td>
<td>152</td>
</tr>
<tr>
<td>Witt vector</td>
<td>26</td>
</tr>
<tr>
<td>Yakovlev theorem</td>
<td>169</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Titles in This Series

210 Toshitake Kohno, Conformal field theory and topology, 2002
209 Yasumasa Nishiura, Far-from-equilibrium dynamics, 2002
208 Yukio Matsumoto, An introduction to Morse theory, 2002
207 Ken’ichi Oshika, Discrete groups, 2002
206 Yuji Shimizu and Kenji Ueno, Advances in moduli theory, 2002
205 Seiki Nishikawa, Variational problems in geometry, 2001
204 A. M. Vinogradov, Cohomological analysis of partial differential equations and Secondary Calculus, 2001
203 Te Sun Han and Kingo Kobayashi, Mathematics of information and coding, 2002
201 Shigeyuki Morita, Geometry of differential forms, 2001
200 V. V. Prasolov and V. M. Tikhomirov, Geometry, 2001
199 Shigeyuki Morita, Geometry of characteristic classes, 2001
198 V. A. Smirnov, Simplicial and operad methods in algebraic topology, 2001
197 Kenji Ueno, Algebraic geometry 2: Sheaves and cohomology, 2001
195 Minoru Wakimoto, Infinite-dimensional Lie algebras, 2001
194 Valery B. Nezvgorov, Records: Mathematical theory, 2001
193 Toshio Nishino, Function theory in several complex variables, 2001
192 Yu. P. Solovtsov and E. V. Troitsky, C^*-algebras and elliptic operators in differential topology, 2001
191 Shun-ichi Amari and Hiroshi Nagaoka, Methods of information geometry, 2000
190 Alexander N. Starkov, Dynamical systems on homogeneous spaces, 2000
189 Mitsuru Ikawa, Hyperbolic partial differential equations and wave phenomena, 2000
188 V. V. Buldygin and Yu. V. Kozachenko, Metric characterization of random variables and random processes, 2000
187 A. V. Fursikov, Optimal control of distributed systems. Theory and applications, 2000
186 Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number theory 1: Fermat’s dream, 2000
185 Kenji Ueno, Algebraic Geometry 1: From algebraic varieties to schemes, 1999
184 A. V. Mel’nikov, Financial markets, 1999
183 Hajime Sato, Algebraic topology: an intuitive approach, 1999
182 I. S. Krasil’shchik and A. M. Vinogradov, Editors, Symmetries and conservation laws for differential equations of mathematical physics, 1999
180 A. A. Milyutin and N. P. Osolovskii, Calculus of variations and optimal control, 1998
179 V. E. Voskresenskiì, Algebraic groups and their birational invariants, 1998
178 Mitsuo Morimoto, Analytic functionals on the sphere, 1998
177 Satoru Igari, Real analysis—with an introduction to wavelet theory, 1998
176 L. M. Lerman and Ya. L. Umanskiy, Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects), 1998
175 S. K. Godunov, Modern aspects of linear algebra, 1998
174 Ya-Zhe Chen and Lan-Cheng Wu, Second order elliptic equations and elliptic systems, 1998
171 E. M. Landis, Second order equations of elliptic and parabolic type, 1998
170 Viktor Prasolov and Yuri Solovyev, Elliptic functions and elliptic integrals, 1997
169 S. K. Godunov, Ordinary differential equations with constant coefficient, 1997
168 Junjiro Noguchi, Introduction to complex analysis, 1998
167 Masaya Yamaguti, Masayoshi Hata, and Jun Kitagawa, Mathematics of fractals, 1997
166 Kenji Ueno, An introduction to algebraic geometry, 1997
165 V. V. Ishikhanov, B. B. Lur'e, and D. K. Faddeev, The embedding problem in Galois theory, 1997
164 E. I. Gordon, Nonstandard methods in commutative harmonic analysis, 1997
161 Michael Blank, Discreteness and continuity in problems of chaotic dynamics, 1997
160 V. G. Osmolovskii, Linear and nonlinear perturbations of the operator div, 1997
159 S. Ya. Khavinson, Best approximation by linear superpositions (approximate homography), 1997
158 Hideki Omori, Infinite-dimensional Lie groups, 1997
157 V. B. Kolmanovskii and L. E. Shaikhet, Control of systems with aftereffect, 1996
156 V. N. Shevchenko, Qualitative topics in integer linear programming, 1997
154 V. V. Prasolov and A. B. Sossinsky, Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology, 1997
152 R. S. Ismagilov, Representations of infinite-dimensional groups, 1996
151 S. Yu. Slavyanov, Asymptotic solutions of the one-dimensional Schrödinger equation, 1996
150 B. Ya. Levin, Lectures on entire functions, 1996
149 Takashi Sakai, Riemannian geometry, 1996
148 Vladimir I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, 1996
145 A. N. Andrianov and V. G. Zhuravlev, Modular forms and Hecke operators, 1995
144 O. V. Troshkin, Nontraditional methods in mathematical hydrodynamics, 1995
143 V. A. Malyshev and R. A. Minlos, Linear infinite-particle operators, 1995
142 N. V. Krylov, Introduction to the theory of diffusion processes, 1995
141 A. A. Davydov, Qualitative theory of control systems, 1994
140 Aziz I. Volpert, Vitaly A. Volpert, and Vladimir A. Volpert, Traveling wave solutions of parabolic systems, 1994
139 I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, 1994

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Reviews of the Previous Edition:

Contains an absolute wealth of material ... a copious supply of well-structured exercises ... most certainly a valuable addition to the literature ... carefully written and well-presented state of the art account of local fields, which contains much ... of interest to the expert and non-expert alike ... its appeal should go well beyond the usual public of number theorists.

—Bulletin of the London Mathematical Society

Well written ... A big amount of exercises contribute to the attraction of this highly original book.

—Zentralblatt MATH

Being self-contained, starting from scratch and including plenty of nice and quite feasible exercises, it is a very useful textbook.

—Monatshefte für Mathematik

This book offers a modern presentation of local fields whose spectacular development was initiated almost one hundred years ago by K. Hensel. The volume consists of nine chapters divided into four parts: arithmetic properties of local fields, class field theory for various types of local fields and generalizations, explicit formulas for the Hilbert pairing, and Milnor K-groups of fields and of local fields. The first three parts essentially simplify, revise, and update the first edition.

This second edition contains about sixty additional pages reflecting several aspects of the developments in local number theory in the last ten years. Exercises point to many other paths for exploration.

The book is designed for graduate students and research mathematicians interested in local number theory and its applications in arithmetic algebraic geometry.