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I N D E X  O F  N U M B E R E D  T H E O R E M S  

1. If a > b and b > c, then a > c. 

2. I f u > b a n d c 1 d , t h e n a + c > b + d .  

3. If a > b > 0 and c 2 d > 0, then 
(2) ac > bc 

4. If u > b > Oandifp > 0, then ap > bP;  if p < 0,thenaP < &. 

5. For every positive integer n 

2 4 T i - 2 g n  < I/& < 2 c n - 2 4 F i .  

6. If ai > 0 (i = 1, - - .  , n) and if al-al- - -  - .an - 1, then 
C; ai 2 n, with equality holding if and 6nly if ai 1 for each i. 

7. If ai > 0 (i = 1, , n) and if C: ai = nA, then 
a1.a2- -.. .an 5 An with equality if and only if al - R = -. - - a,, . 

8. If ai > 0 I c; ai/n 
with equality holding if and only if a1 - az - * * * = an . 

9. The Isoperimetric Theorem 
(A) Of all plane figures with a given perimeter, the circle has the 

(B) Of all plane figures with a given area, the circle has the least 

For Threedimensional Space 
(A) Of all solids with a given surface area, the sphere has the 

(1) ac > bd and (3) l/u < l/b. 

(i = 1, ... , n), then v m  

greatest area. 

perimeter. 

greatest volume. 
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(B) Of all solids with a given volume, the sphere has the least 

10. (A) Of all triangles with a common base and perimeter, the isos- 

(B) Of all triangles with a common base and area, the isosceles 

1OA' If two triangles have the same base and the same perimeter, the 
one with the smaller difference in the lengths of its legs has the 
larger area. 

11A. Of all triangles with a given perimeter, the equilateral triangle 
has the greatest area. 

11B. Of all triangles with a given area, the equilateral triangle has the 
least perimeter. 

12. Of all n-gons inscribed in a given circle, the regular n-gon has the 
greatest area. 

13. Of all quadrilaterals with a given area, the square has the least 
perimeter. 

14. A quadrilateral with given sides has the greatest area when it can 
be inscribed in a circle. 

15. Of all quadrilateral prisms with a given volume, the cube has the 
least surface area. 

16. Given any n-gon which does not have all its sides of equal length, 
one can construct another n-gon of a larger area, with the same 
perimeter and with all sides of equal length. 

17. Given an acute-angled triangle, the vertices of the inscribed tri- 
angle with the smallest perimeter are the feet of the altitudes of 
the given triangle. 

18. (Erdos-Mordell) If P is any point inside or on the boundary of a 
triangle ABC, and if pa, p a ,  and p, are the distances from P to the 

sides of the triangle, then PA + PB + pc 2(pa + pa + p,),  
with equality if and only if A ABC is equilateral and the point P 
is its circumcenter. 

19. (Pappus) Let ABC be any triangle. Let AA'C'C and BB"C"C be 
any two parallelograms constructed on AC and BC respectively, 
so that either both parallelograms are outside the triangle or both 
are not entirely outside the triangle. Prolong their sides A'C' and 
B"C" to meet in P. Construct a third parallelogram ABP"P' on 
AB with AP' parallel to CP and m' = m. The area of ABP"P' 
is equal to the sum of the areas of the parallelograms AA'C'C and 
BB"C"C. 
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celes triangle has the greatest area. 
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Anybody who liked his first geometry 

course (and some who did not) will 

enjoy the simply stated geometric prob-

lems about maximum and minimum 

lengths and areas in this book. Many of 

these already fascinated the Greeks, 

for example the problem of enclosing 

the largest possible area by a fence 

of given length, and some were solved 

long ago; but other remain unsolved 

even today. Some of the solutions of 

the problems posed in this book, for 

example the problem of inscribing a 

triangle of smallest perimeter into a 

given triangle, were supplied by world 

famous mathematicians, others by 

high school students.
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