GEOMETRIC INEQUALITIES NICHOLAS D. KAZARINOFF

An Imprint

GEOMETRIC INEQUALITIES

NEW MATHEMATICAL LIBRARY

published by
The Mathematical Association of America

Editorial Committee
Ivan Niven, Chairman (1981-83)
University of Oregon

W. G. Chinn (1980-82)	City College of San Francisco
Basil Gordon (1980-82)	University of California, Los Angeles
M. M. Schiffer (1979-81)	Stanford University

The New Mathematical Library (NML) was begun in 1961 by the School Mathematics Study Group to make available to high school students short expository books on various topics not usually covered in the high school syllabus. In a decade the NML matured into a steadily growing series of some twenty titles of interest not only to the originally intended audience, but to college students and teachers at all levels. Previously published by Random House and L. W. Singer, the NML became a publication series of the Mathematical Association of America (MAA) in 1975. Under the auspices of the MAA the NML will continue to grow and will remain dedicated to its original and expanded purposes.

GEOMETRIC

INEQUALITIES

by

Nicholas D. Kazarinoff

University of Michigan

4
THE MATHEMATICAL ASSOCIATION OF AMERICA

Illustrations by Florence W. Cochrane
©Copyright 1961 by Yale University
All rights reserved under International and Pan-American Copyright Conventions.

Published in Washington, D.C. by
The Mathematical Association of America
Library of Congress Catalog Card Number: 61-6229
Print ISBN 978-0-88385-604-8
Electronic ISBN 978-0-88385-922-3
Manufactured in the United States of America

IN MEMORY OF
Donat Konstantinovich

ANNELI LAX NEW MATHEMATICAL LIBRARY

1. Numbers: Rational and Irrational by lvan Niven
2. What is Calculus About? by W. W. Sawyer
3. An Introduction to Inequalities by E. F. Beckenbach and R. Bellman
4. Geometric Inequalities by N. D. Kazarinoff
5. The Contest Problem Book I Annual High School Mathematics Examinations 1950-1960. Compiled and with solutions by Charles T. Salkind
6. The Lore of Large Numbers by P. J. Davis
7. Uses of Infinity by Leo Zippin
8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields
9. Continued Fractions by Carl D. Olds
10. Replaced by NML-34
11. Hungarian Problem Books I and II, Based on the Eotvos Competitions
12. 1894-1905 and 1906-1928, translated by E. Rapaport
13. Episodes from the Early History of Mathematics by A. Aaboe
14. Groups and Their Graphs by E. Grossman and W. Magnus
15. The Mathematics of Choice by Ivan Niven
16. From Pythagoras to Einstein by K. O. Friedrichs
17. The Contest Problem Book II Annual High School Mathematics Examinations 1961-1965. Compiled and with solutions by Charles T. Salkind
18. First Concepts of Topology by W. G. Chinn and N. E. Steenrod
19. Geometry Revisited by H. S. M. Coxeter and S. L. Greitzer
20. Invitation to Number Theory by Oystein Ore
21. Geometric Transformations II by I. M. Yaglom, translated by A. Shields
22. Elementary Cryptanalysis-A Mathematical Approach by A. Sinkov
23. Ingenuity in Mathematics by Ross Honsberger
24. Geometric Transformations III by I. M. Yaglom, translated by A. Shenitzer
25. The Contest Problem Book III Annual High School Mathematics Examinations 1966-1972. Compiled and with solutions by C. T. Salkind and J. M. Earl
26. Mathematical Methods in Science by George Polya
27. International Mathematical Olympiads 1959-1977. Compiled and with solutions by S. L. Greitzer
28. The Mathematics of Games and Gambling by Edward W. Packel
29. The Contest Problem Book IV Annual High School Mathematics Examinations 1973-1982. Compiled and with solutions by R. A. Artino, A. M. Gaglione, and N. Shell
30. The Role of Mathematics in Science by M. M. Schiffer and L. Bowden
31. International Mathematical Olympiads 1978-1985 and forty supplementary problems. Compiled and with solutions by Murray S. Klamkin
32. Riddles of the Sphinx by Martin Gardner
33. U.S.A. Mathematical Olympiads 1972-1986. Compiled and with solutions by Murray S. Klamkin
34. Graphs and Their Uses by Oystein Ore. Revised and updated by Robin J. Wilson
35. Exploring Mathematics with Your Computer by Arthur Engel
36. Game Theory and Strategy by Philip D. Struffin, Jr.
37. Episodes in Nineteenth and Twentieth Century Euclidean Geometry by Ross Honsberger
38. The Contest Problem Book V American High School Mathematics Examinations and American Invitational Mathematics Examinations 1983-1988. Compiled and augmented by George Berzsenyi and Stephen B. Maurer
39. Over and Over Again by Gengzhe Chang and Thomas W. Sederberg
40. The Contest Problem Book VI American High School Mathematics Examinations 1989-1994. Compiled and augmented by Leo J. Schneider
41. The Geometry of Numbers by C.D. Olds, Anneli Lax, and Giuliana Davidoff
42. Hungarian Problem Book III Based on the Eotvos Competitions 1929-1943 translated by Andy Liu Other titles in preparation.

Books may be ordered from:
MAA Service Center
P. O. Box 91112

Washington, DC 20090-1112
1-800-331-1622 fax: 301-206-9789

CONTENTS

Preface 3
Chapter 1. Arithmetic and Geometric Means 7
1.1 I'undamentals 7
1.2 The Theorem of Arithmetic and Geometric Means 18
Chapter 2. Isoperimetric Theorems 29
2.1 Maxima and minima 29
2.2 Isoperimetric theorems for triangles 32
2.3 Isoperimetric theorems for polygons 44
2.4 Steiner's attempt 58
Chapter 3. The Reflection Principle 65
3.1 Symmetry 65
3.2 Dido's problem 67
3.3 Steiner symmetrization 68
3.4 Conic sections 71
3.5 Triangles 75
Chapter 4. Hints and Solutions 91
Index of Numbered Theorems 131

INDEX OF NUMBERED THEOREMS

1. If $a>b$ and $b>c$, then $a>c$. 9
2. If $a>b$ and $c \geq d$, then $a+c>b+d$. 10
3. If $a>b>0$ and $c \geq d>0$, then
$\begin{array}{ll}\text { (1) } a c>b d & \text { (2) } a c>b c \quad \text { and (3) } 1 / a<1 / b \text {. }\end{array}$ 10
4. If $a>b>0$ and if $p>0$, then $a^{p}>b^{p}$; if $p<0$, then $a^{p}<b^{p}$. 115. For every positive integer n
$2 \sqrt{n+1}-2 \sqrt{n}<1 / \sqrt{n}<2 \sqrt{n}-2 \sqrt{n-1}$. 14
5. If $a_{i}>0(i=1, \cdots, n)$ and if $a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}=1$, then$\sum_{i}^{n} a_{i} \geq n$, with equality holding if and only if $a_{i}=1$ for each i.19
6. If $a_{i}>0(i=1, \cdots, n)$ and if $\sum_{1}^{n} a_{i}=n A$, then $a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n} \leq A^{n}$ with equality if and only if $a_{1}=a_{2}=\cdots$ 20
$=a_{n}$.
7. If $a_{i}>0 \quad(i=1, \cdots, n)$, then $\sqrt[n]{a_{1} \cdots \cdot a_{n}} \leq \sum_{1}^{n} a_{i} / n$ with equality holding if and only if $a_{1}=a_{2}=\cdots=a_{n}$. 24
8. The Isoperimetric Theorem
(A) Of all plane figures with a given perimeter, the circle has the greatest area. 30
(B) Of all plane figures with a given area, the circle has the least perimeter. 30
For Three-dimensional Space
(A) Of all solids with a given surface area, the sphere has thegreatest volume.30
(B) Of all solids with a given volume, the sphere has the least surface area. 30
9. (A) Of all triangles with a common base and perimeter, the isos- celes triangle has the greatest area. 32
(B) Of all triangles with a common base and area, the isosceles triangle has the smallest perimeter. 32
$10 \mathrm{~A}^{\prime}$ If two triangles have the same base and the same perimeter, the one with the smaller difference in the lengths of its legs has the larger area. 32
11A. Of all triangles with a given perimeter, the equilateral triangle has the greatest area. 38
11B. Of all triangles with a given area, the equilateral triangle has the least perimeter. 42
10. Of all n-gons inscribed in a given circle, the regular n-gon has the greatest area. 44
11. Of all quadrilaterals with a given area, the square has the least perimeter. 48
12. A quadrilateral with given sides has the greatest area when it can be inscribed in a circle. 50
13. Of all quadrilateral prisms with a given volume, the cube has the least surface area. 51
14. Given any n-gon which does not have all its sides of equal length, one can construct another n-gon of a larger area, with the same perimeter and with all sides of equal length. 54
15. Given an acute-angled triangle, the vertices of the inscribed tri- angle with the smallest perimeter are the feet of the altitudes of the given triangle. 77
16. (Erdös-Mordell) If P is any point inside or on the boundary of a triangle $A B C$, and if p_{a}, p_{b}, and p_{c} are the distances from P to the sides of the triangle, then $\overline{P A}+\overline{P B}+\overline{P C} \geq 2\left(p_{a}+p_{b}+p_{c}\right)$, with equality if and only if $\triangle A B C$ is equilateral and the point P is its circumcenter. 7819. (Pappus) Let $A B C$ be any triangle. Let $A A^{\prime} C^{\prime \prime} C$ and $B B^{\prime \prime} C^{\prime \prime} C$ beany two parallelograms constructed on $A C$ and $B C$ respectively,so that either both parallelograms are outside the triangle or bothare not entirely outside the triangle. Prolong their sides $A^{\prime} C^{\prime}$ and$B^{\prime \prime} C^{\prime \prime}$ to meet in P. Construct a third parallelogram $A B P^{\prime \prime} P^{\prime}$ on$A B$ with $A P^{\prime}$ parallel to $C P$ and $\overline{A P^{\prime}}=\overline{C P}$. The area of $A B P^{\prime \prime} P^{\prime}$is equal to the sum of the areas of the parallelograms $A A^{\prime} C^{\prime} C$ and$B B^{\prime \prime} C^{\prime \prime} C$.84

Anybody who liked his first geometry course (and some who did not) will enjoy the simply stated geometric problems about maximum and minimum lengths and areas in this book. Many of these already fascinated the Greeks, for example the problem of enclosing the largest possible area by a fence of given length, and some were solved long ago; but other remain unsolved even today. Some of the solutions of the problems posed in this book, for example the problem of inscribing a triangle of smallest perimeter into a given triangle, were supplied by world famous mathematicians, others by high school students.
NICHOLAS D. KAZARINOFF was born in Ann Arbor, Michigan, in 1929. He received his BA and MA in physics from the University of Michigan, where
his father, Donat K. Kazarinoff, taught mathematics for thirty-five years. He received his PhD in mathematics in 1954 from the University of Wisconsin, and is now Associate Professor of Mathematics at the University of Michigan. During the academic year 1959-60 he was on leave to do research at the Mathematics Research Center, US Army, in Madison, Wisconsin, and during the academic year 1960-61 he was in residence at the Steklov Mathematics Institute of the Academy of Sciences in Moscow, USSR.
The author's scientific interests lie in the fields of differential equations and geometry, especially the geometry of convex sets. Geometric Inequalities is an outcome of an informal evening seminar for high school student in Ann Arbor.

