AMS / MAA $\operatorname{ANNELI~LAX~NEW~MATHEMATICAL~LIBRARY~VOL~} 7$

USES OF INFINITY

NEW MATHEMATICAL LIBRARY

published by
The Mathematical Association of America

Editorial Committee

Ivan Niven, Chairman (1976-77)
Anneli Lax, Editor
University of Oregon
New York University
Basil Gordon (1975-76) University of California, Los Angeles
M. M. Shiffer (1976-78) Stanford University

The New Mathematical Library (NML) was begun in 1961 by the School Mathematics Study Group to make available to high school students short expository books on various topics not usually covered in the high school syllabus. In a decade the NML matured into a steadily growing series of some twenty titles of interest not only to the originally intended audience, but to college students and teachers at all levels. Previously published by Random House and L. W. Singer, the NML became a publication series of the Mathematical Association of America (MAA) in 1975. Under the auspices of the MAA the NML will continue to grow and will remain dedicated to its original and expanded purposes.

USES OF INFINITY

by
Leo Zippin
Queens College

7

THE MATHEMATICAL ASSOCIATION OF AMERICA

Illustrations by Carl Bass

©Copyright 1962 by Yale University
All rights reserved under International and Pan-American Copyright Conventions.

Published in Washington, D.C. by
The Mathematical Association of America
Library of Congress Catalog Card Number: 61-12187
Print ISBN 978-0-88385-607-9
Electronic ISBN 978-0-88385-924-7
Manufactured in the United States of America

Note to the Reader

This book is one of a series written by professional mathematicians in order to make some important mathematical ideas interesting and understandable to a large audience of high school students and laymen. Most of the volumes in the New Mathematical Library cover topics not usually included in the high school curriculum; they vary in difficulty, and, even within a single book, some parts require a greater degree of concentration than others. Thus, while the reader needs little technical knowledge to understand most of these books, he will have to make an intellectual effort.

If the reader has so far encountered mathematics only in classroom work, he should keep in mind that a book on mathematics cannot be read quickly. Nor must he expect to understand all parts of the book on first reading. He should feel free to skip complicated parts and return to them later; often an argument will be clarified by a subsequent remark. On the other hand, sections containing thoroughly familiar material may be read very quickly.

The best way to learn mathematics is to do mathematics, and each book includes problems, some of which may require considerable thought. The reader is urged to acquire the habit of reading with paper and pencil in hand; in this way mathematics will become increasingly meaningful to him.

The authors and editorial committee are interested in reactions to the books in this series and hope that readers will write to: Anneli Lax, Editor, New Mathematical Library, New York University, The Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, N. Y. 10012.

The Editors

NEW MATHEMATICAL LIBRARY

1 Numbers: Rational and Irrational by Ivan Niven
2 What is Calculus About? by W. W. Sawyer
3 An Introduction to Inequalities by E. F. Beckenbach and R. Bellman
4 Geometric Inequalities by N. D. Kazarinoff
5 The Contest Problem Book I Annual High School Mathematics Examinations 1950-1960. Compiled and with solutions by Charles T. Salkind
6 The Lore of Large Numbers, by P. J. Dauis
7 Uses of Infinity by Leo Zippin
8 Geometric Transformations I by I. M. Yaglom, translated by A. Shields
9 Continued Fractions by Carl D. Olds
10 Graphs and Their Uses by Oystein Ore
11 Hungarian Problem Books I and II, Based on the Eötvös
12) Competitions 1894-1905 and 1906-1928, translated by E. Rapaport

13 Episodes from the Early History of Mathematics by A. Aaboe
14 Groups and Their Graphs by I. Grossman and W. Magnus
15 The Mathematics of Choice by Ivan Niven
16 From Pythagoras to Einstein by K. O. Friedrichs
17 The Contest Problem Book II Annual High School Mathematics Examinations 1961-1965. Compiled and with solutions by Charles T. Salkind
18 First Concepts of Topology by W. G. Chinn and N. E. Steenrod
19 Geometry Revisited by H. S. M. Coxeter and S. L. Greitzer
20 Invitation to Number Theory by Oystein Ore
21 Geometric Transformations II by I. M. Yaglom, translated by A. Shields
22 Elementary Cryptanalysis-A Mathematical Approach by A. Sinkov
23 Ingenuity in Mathematics by Ross Honsberger
24 Geometric Transformations III by I. M. Yaglom, translated by A. Shenitzer
25 The Contest Problem Book III Annual High School Mathematics Examinations 1966-1972. Compiled and with solutions by C. T. Salkind and J. M. Earl
26 Mathematical Methods in Science by George Pólya
27 International Mathematical Olympiads-1959-1977. Compiled and with solutions by S. L. Greitzer
28 The Mathematics of Games and Gambling by Edward W. Packel
29 The Contest Problem Book IV Annual High School Mathematics Examinations 1973-1982. Compiled and with solutions by R. A. Artino, A. M. Gaglione and N. Shell

30 The Role of Mathematics in Science by M. M. Schiffer and L. Bowden
31 International Mathematical Olympiads 1978-1985 and forty supplementary problems. Compiled and with solutions by Murray S. Klamkin.

Other titles in preparation.

Contents

Preface 3
Chapter 1 Popular and Mathematical Infinities 5
Chapter 2 From Natural Numbers to $\sqrt{2}$ 14
Chapter 3 From $\sqrt{2}$ to the Transfinite 38
Chapter 4 Zig-Zags: To the Limit if the Limit Exists 59
Chapter 5 The Self Perpetuating Golden Rectangle 75
Chapter 6 Constructions and Proofs 96
Solutions to Problems 121
Bibliography 150

USES OF INFINITY

Preface

Most of this book is designed so as to make little demand on the reader's technical competence in mathematics; he may be a high school student beginning his mathematics now or one who has put away and forgotten much of what he once knew. On the other hand, the book is mathematical except for the first chapter-that is to say, it is a carefully reasoned presentation of somewhat abstract ideas. The reader who finds the material interesting must be prepared, therefore, to work for it a little, usually by thinking things through for himself now and then and occasionally by doing some of the problems listed. Solutions to some of these are given at the end of the book. But it will not pay the reader to stop too long at any one place; many of the ideas are repeated later on, and he may find that a second view of them leads to understanding where a first view was baffling. This style of presentation is imposed upon an author by the nature of mathematics. It is not possible to say at once all of the key remarks which explain a mathematical idea.

Many a reader is perhaps wondering whether it is possible for fellow human beings to communicate upon a topic as remote-sounding as "uses of infinity"; but, as we shall see, any two people who know the whole numbers,

$$
1,2,3,4,5, \cdots,
$$

can talk to each other about "infinities" and have a great deal to say.
I have written this book from a point of view voiced in a remark by David Hilbert when he defined mathematics as "the science of infinity". An interesting theorem of mathematics differs from interesting results in other fields because over and above the surprise and beauty of what it says, it has "an aspect of eternity"; it is always part of an infinite chain of results. The following illustrates what I mean: the fact that $1+3+5+7+9$, the sum of the first five odd integers, is equal to 5 times 5 is an interesting oddity; but the
theorem that for all n the sum of the first n odd integers is n^{2} is mathematics.

I hope that the reader will believe me when I say that professional mathematicians do not profess to understand better than anybody else what, from a philosophical point of view, may be called "the meaning of infinity." This is proved, I think, by the fact that most mathematicians do not talk about this kind of question, and that those who do do not agree.

Finally, I wish to express my especial thanks to Mrs. Henrietta Mazen, a teacher of mathematics at the Bronx High School of Science, who selected and edited the material in this monograph from a larger body of material that I had prepared. The reader who enjoys this book should know that in this way a considerable role was played in it by Mrs. Mazen. I am also indebted to Miss Arlys Stritzel who supplied most of the solutions to the problems posed in the book.

Solutions to Problems

CHAPTER TWO

2.1 This is a non-terminating sequence of sets of musical compositions, the first set consisting of compositions for one voice part or instrument, the second set of pieces for two performers, the third of pieces for three performers, and so on. \dagger
2.2 This is a periodic sequence of the four classes of hits in baseball. The iteration dots indicate that we are to repeat the same sequence of classes again and again.
2.3 Collections of siblings born on the same day make up the terms of this sequence. The first term is the collection of all individuals with one such sibling, the second is the set of individuals with two such siblings, etc. The terms which occur beyond a certain point in this infinite sequence are empty sets.
2.4 Here we have a list of the names of the days of the week. In this case the iteration dots represent an abbreviation for the days Saturday and Sunday.
2.5 This is a periodic sequence, the terms of which are the first letters in the names of the days of the week, in the order of the days, beginning with the letter M corresponding to Monday. The first term occurs again after six more terms, and from then on the entire period is repeated over and over.
2.6 The first of these three sets is the collection of all integers n of the form $n=3 q$ where q is an integer. It is easily seen that this set consists of the numbers $0,3,6,9, \cdots$.

The second set is composed of all integers n of the form $n=1+3 q$. Since each such number has the remainder 1 when divided by 3 , the numbers of the infinite sequence $1,4,7,10, \cdots$ belong to the second set.
\dagger Remark added by the author: I can see "quintet", "sextet", "septet", "octet", but there I get stuck. In the absence of a clear-cut rule as to just how to continue, I would agree with a student who called the question unclear and would count all answers correct.

The numbers in the third set are each of the form $2+3 q$, where q is an integer, and hence each has remainder 2 when divided by 3 . Thus, the third set has the elements $2,5,8,11, \cdots$.
Inasmuch as every integer when divided by 3 has one and only one of the remainders $0,1,2$, we know that these three nonoverlapping infinite sets together comprise the entire set of integers.
2.7 If q divides n, then $n=q b$ and $n+1=q b+1$, where b is an integer. In other words, if n is divisible by $q, n+1$ has the remainder 1 when divided by q, and hence n and $n+1$ have no common factor.
2.8 The general principle which is suggested by an examination of these tables is that for every k by k multiplication table, where k is any positive whole number, the sum of the numbers in the table is the square of the sum of the first k positive integers. The sum of the integers in any lower gnomon-figure is the cube of the smallest integer in that gnomon.

$$
\begin{aligned}
2.9 \frac{1}{7} & =1 \cdot 10^{-1}+4 \cdot 10^{-2}+2 \cdot 10^{-3}+8 \cdot 10^{-4}+5 \cdot 10^{-5}+7 \cdot 10^{-6}+\frac{1}{7} \cdot 10^{-7} \\
& =.142857+\cdot .000000142857+\frac{1}{7} \cdot 10^{-14}=.142857142857 \cdots
\end{aligned}
$$

$$
\text { Similarly, } \frac{1}{9}=1 \cdot 10^{-1}+\frac{1}{9} \cdot 10^{-2}=.111111 \ldots
$$

$$
\frac{1}{11}=0 \cdot 10^{-1}+9 \cdot 10^{-2}+\frac{1}{11} \cdot 10^{-3}=.090909 \cdots
$$

$$
\frac{1}{99}=0 \cdot 10^{-1}+1 \cdot 10^{-2}+\frac{1}{99} \cdot 10^{-3}=.010101 \cdots
$$

Every terminating decimal may be written in the form $a / 10^{k}$. where a is an integer; for example,

$$
3.572=\frac{3572}{10^{3}}
$$

If a contains factors 2^{\prime} and/or 5^{t} with $0<s, t \leq k$, then $a / 10^{k}$ is not in lowest terms and may be reduced as follows:

$$
\frac{a}{10^{k}}=\frac{2^{2} \cdot 5^{t} \cdot b}{2^{k} \cdot 5^{k}}=\frac{b}{2^{k-1} \cdot 5^{k-t}}=\frac{b}{2^{n} \cdot 5^{m}}
$$

2.10 The symbols $0.0090909090 \cdots$ and $0.0909090909 \cdots$ are the non-terminating decimal ropresentations of if and 1 1, respectively. When we "add" these expressions the resulting symbol is $.9999999999 \cdots$, whereas the sum of 19 and $\mathrm{I}^{1} \mathrm{is}$ is $\mathrm{A}=1$.

2.11 Since

$$
n \div m=n \times \frac{1}{m}
$$

the method is clear. For example, to divide 7 by 9 we look up the reciprocal of 9 in the table of Figure 2.4 and write

$$
7 \div 9=7 \times \frac{1}{9}=7 \times .111 \cdots=.777 \cdots
$$

2.12 Construct the circle of radius $P Q$ with center Q; sce Figure 2.7. Using P as center, and the same radius, swing the compass to find the points P_{1} and Q_{1} of intersection of this circle with the first circle.

Next, open the compass to the width $P_{1} Q_{1}$; draw circles with center P_{1} and Q_{1} respectively. One of their intersections (the one to the right of P and Q) is the desired point R.

To see that P, Q, R are collinear and $P Q=Q R=d$, observe that $P_{1} P Q$ and $Q_{1} P Q$ are two equilateral triangles with common base $P Q$ which is bisected by the segment $P_{1} Q_{1}$ in the point M (see Figure 2.7), and that $P_{1} Q_{1} R$ is an equilateral triangle with base $P_{1} Q_{1}$ and whose altitude $M R$ lies on the line through P and Q.

Moreover, if $P Q=d$, then

$$
\begin{gathered}
P_{1} Q_{1}=2 P_{1} M=d \sqrt{3} \quad \text { and } \quad M R=\frac{1}{2} P_{1} Q_{1} \sqrt{3}=\frac{3 d}{2} ; \\
Q R=M R-M Q=\frac{3 d}{2}-\frac{d}{2}=d .
\end{gathered}
$$

This method shows us how to construct an infinite sequence of points on a line. Simply pick two points, call them P and Q, get R, and repeat the above construction on Q and R, getting R^{\prime}, etc.
2.13 Suppose P is to the left of Q. Line up the ruler with P and Q so that its right end is at Q and make a mark on the ruler at the place where P falls. This mark divides the ruler into two parts, one of length $P Q=d$ on the right, and one of smaller length d^{\prime} on the left. After drawing the segment $P Q$, line up the ruler with the segment $P Q$ so that the division mark on the ruler falls on Q. Then the right end of the ruler will be at a distance d from Q, on $P Q$ extended. Denote the endpoint of this extension by Q_{1}. Next move the ruler in the direction from Q to Q_{1} along the line until the division mark is on the new point Q_{1}. The right endpoint of the ruler will be at a point Q_{2} on the line through P and Q, at a distance $2 d$ from Q. Continue this process indefinitely in order to extend the line through P and Q indefinitely to the right.

In order to extend the line through P and Q to the left, we just reflect the method just described.

If d^{\prime} were longer than d, the same method would work but it would be more economical to interchange the roles of d and d^{\prime}.
2.14 Once the direction of the road and the point at which it is to enter the mountain are determined, it is only necessary to line up every three consecutive guide-posts. This can be checked at each advance.
2.15 The successive midpoints approach the point which is at a distance from A equal to $\frac{2}{3}$ of the length of $A B$.
2.20 (a) Divide a segment into 5 equal parts, hold one part, and give 3 pieces away. Then one part remains and we hold \div of the amount which has been distributed. If we repeat the same process over and over, each time dividing the one remaining part into 5 equal pieces, we shall continue to hold $\frac{1}{}$ of the total amount distributed and a smaller and smaller amount of the original segment will remain to be distributed.

Thus

$$
\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+\cdots=\frac{1}{4}
$$

Similarly,
(b)

$$
\frac{1}{8}+\frac{1}{64}+\frac{1}{512}+\cdots=\frac{1}{7}
$$

(c)

$$
\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots=\frac{1}{9}
$$

2.21 Divide the segment into n equal parts, hold m of them, leave m of them to work on and give away the remaining $n-2 m$ parts. Thus $m+(n-2 m)=n-m$ parts have been distributed, and we hold m parts; hence we hold $m /(n-m)$ of the distributed amount.

We treat the remaining part in the same way, dividing it into n equal pieces, holding m, giving away $n-2 m$ and keeping m to be worked on. Continuing in this way, we shall always hold $m /(n-m)$ of the distributed part while the part to be worked on gets smaller and smaller.
2.22 It follows from $4=2 \cdot 2$ that $\sqrt{4}=2$, so that $\sqrt{4}$ is rational. To prove that $\sqrt{3}$ and $\sqrt{5}$ are irrational, we need only consider the following: (a) If we assume that $\sqrt{3}=p / q$, where p / q is that fraction (among all equivalent fractions) which has the smallest denominator, then we have

$$
\begin{aligned}
& 1<\frac{p}{q} \quad<2 \\
& q<p \\
& 0<p-q<2 \\
& 0<q
\end{aligned}
$$

and

$$
\begin{aligned}
3 q^{2} & =p^{2}, \\
3 q^{2}-p q & =p^{2}-p q, \\
q(3 q-p) & =p(p-q),
\end{aligned}
$$

which implies, in contradiction to our initial assumption, that

$$
\frac{p}{q}=\frac{3 q-p}{p-q}
$$

(b) Assume that $p / q=\sqrt{5}, p / q$ the fraction with smallest denominator. Then $p=\sqrt{5} q$ and $2<p / q<3$ give us

$$
\begin{gathered}
2 q<p<3 q \\
0<p-2 q<q
\end{gathered}
$$

and

$$
\begin{aligned}
p^{2} & =5 q^{2} \\
p^{2}-2 p q & =5 q^{2}-2 p q, \\
p(p-2 q) & =q(5 q-2 p),
\end{aligned}
$$

so that

$$
\frac{p}{q}=\frac{5 q-2 p}{p-2 q}
$$

where $p-2 q<q$.
2.23 From $p=\sqrt{7} q$ and $2<p / q<3$ we get

$$
\begin{gathered}
2 q<p \quad<3 q, \\
0<p-2 q<q ; \\
p^{2}=7 q^{2}, \\
p^{2}-2 p q=7 q^{2}-2 p q, \\
p(p-2 q)=q(7 q-2 p) .
\end{gathered}
$$

Then

$$
\frac{p}{q}=\frac{7 q-2 p}{p-2 q}
$$

contradicts the assumption that $\sqrt{7}$ can be represented as a ratio of two integers, p and q, where q is the smallest possible denominator.
$2.24 \sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \cdot \sqrt{2}=2 \sqrt{2}$. If $\sqrt{8}=p / q$, then $2 \sqrt{2}=p / q$, or $\sqrt{2}=p / 2 q$ (a contradiction since $\sqrt{2}$ is irrational).
$2.25 p=\sqrt{n} q$ and $k^{2}<n<(k+1)^{2}$ imply that

$$
\begin{aligned}
& k^{2}<\left(\frac{p}{q}\right)^{2}<(k+1)^{2}, \\
& k<\frac{p}{q}<k+1, \\
& k q<p<(k+1) q, \\
& 0<p-k q<q .
\end{aligned}
$$

Since $p^{2}=n q^{2}$,

$$
\begin{aligned}
p^{2}-k p q & =n q^{2}-k p q \\
p(p-k q) & =q(n q-k p), \\
\frac{p}{q} & =\frac{n q-k p}{p-k q} \quad \text { where } p-k q<q .
\end{aligned}
$$

If there were a fraction whose square is the integer N, we would write it with as small a denominator as possible, say $p / q=\sqrt{N}$, and $q \neq 1$ by assumption, so $q^{2} \neq 1$. Hence the fraction p^{2} / q^{2} would lie between consecutive integers k and $k+1$ and we can produce the above contradiction.
2.26 If $\sqrt{\bar{s}}$ is not an integer, then, by problem 2.25, s is not the square of a fraction. But if $2 \sqrt{s}=n$, where n is an integer, then s is equal to the fraction $(n / 2)^{2}$. Hence, unless $\sqrt{3}$ is an integer, we are involved in a contradiction.
2.27 To prove that $12.5 \times a=100 a / 8$ we need only note that

$$
12.5=12+\frac{1}{2}=\frac{24+1}{2}=\frac{25}{2}=\frac{100}{8}
$$

2.28 Let a be any integer with digits $a_{k} a_{k-1} \cdots a_{0}$. Then we may write

$$
\begin{aligned}
a= & a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} \cdot 10+a_{0} \\
= & a_{k}\left(10^{k}-1+1\right)+a_{k-1}\left(10^{k-1}-1+1\right)+\cdots+a_{1}(10-1+1)+a_{0} \\
= & a_{k} 99 \cdots 9+a_{k}+a_{k-1} 99 \cdots 9+a_{k-1}+\cdots+a_{1} \cdot 9+a_{1}+a_{0} \\
= & 3\left[a_{k}(33 \cdots 3)+a_{k-1}(33 \cdots 3)+\cdots+a_{1} \cdot 3\right] \\
& \quad+a_{k}+a_{k-1}+a_{k-2}+\cdots+a_{1}+a_{0} .
\end{aligned}
$$

Since the first expression on the right is a multiple of $3, a$ has the same remainder upon division by 3 as the second term on the right, i.e. the sum of the digits of a. Another way of saying this is that a and the sum of its digits belong to the same residue class $(\bmod 3)$.

If $a_{k}+a_{k-1}+\cdots+a_{0}<10$, the proof is complete. If not, let
$a_{k}+a_{k-1}+\cdots+a_{0}=b=b_{i} 10^{i}+b_{i-1} 10^{i-1}+\cdots+b_{1} \cdot 10+b_{0}$,
and proceed in the same manner as above; eventually the sum of digits will be less than 10 , and we shall have reached the root number $r(a)$. This shows that a and the sum b of its digits and the sum c of the digits of b etc. down to $r(a)$ are all in the same residue class modulo 3.
2.29 (a) and (b) Let us consider the infinite sequence of decimals

$$
\begin{aligned}
& a_{1}=.1111 \cdots \\
& a_{2}=.101010 \cdots \\
& a_{3}=.100100100 \cdots \\
& a_{4}=.1000100010001 \cdots \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& a_{k}=.1000 \cdots 1000 \cdots 1000 \cdots
\end{aligned}
$$

and note that the period of a_{k} is k.
(c) $.1010010001000010000010000001 \cdots$.

CHAPTERTHREE

3.1 The proof of this theorem for the case $A B^{\prime}: B^{\prime} B=m: n$, where m and n are positive integers, is essentially the same as the proof given in Chapter 6, Section 6.2(a). For $m=\sqrt{2}, n=1$, the theorem can be proved by the methods used in Sections 6.2(b) and 6.2(c) for the incommensurable case.
3.2 Such a rectangle does not exist because it would lead to the equation $1=0 \cdot x$, where x is the length of the other side. But this contradiets the rule of arithmetic: $x \cdot 0=0$ for all x whatsoever.
3.3 Construct the right triangle $A D C$ (see Figure 3.6) with legs of lengths x and 1. Draw the perpendicular to the hypotenuse $A C$ through C. Extend line $A D$ to meet this perpendicular at B. The segment $D B$ then has the desired length $y=1 / x$ because the length of the altitude $C D$ of right triangle $A C B$ is the mean proportional between the lengths of $A D=x$ and $D B=y:$

$$
\frac{y}{1}=\frac{1}{x} .
$$

3.4 The parabola $y=x^{2}$ is the locus of points (x, y) such that, for every abscissa x, the ordinate y satisfies the relation

$$
\frac{y}{x}=\frac{x}{1} .
$$

This relation suggests again the construction of a right triangle so that the altitude to the hypotenuse has length x and divides the hypotenuse into segments of lengths 1 and y. In Figure 3.7 this construction was carried out for two given values of x, x_{1} and x_{2}, and the corresponding values of y are y_{1} and y_{2}. (The details of this construction are left to the reader.)

The parabola shown in Figure 3.8 may now be plotted cither by using values (x, y) obtained from the construction of Figure 3.7 as coordinates for points of the graph, or it may be plotted directly by carrying out the construction in the coordinate plane as indicated: For each abscissa x, find the point $Z:(x,-1)$, connect it to the origin O, draw a perpendicular to the resulting segment at O and locate the point $W:(x, y)$ at which this perpendicular intersects the vertical line x units away from the y-axis. In the right triangle $O W Z$ the altitude to the hypotenuse has length x and divides $Z W$ into segments of length 1 and y so that the relation

$$
\frac{1}{x}=\frac{x}{y} \quad \text { or } \quad y=x^{2}
$$

is satisfied for each W so constructed.
3.5 If x is a given length then \sqrt{x} can always be constructed by virtue of the relation

$$
\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x} .
$$

For example, in Figure 3.7, let $A E=1$ as before, extend $A E$ to B so that $E B$ has the given length x, and draw the semicircle with $A B$ as diameter. The perpendicular to $A B$ at E will intersect this semicircle at a point O, and $E O$, the altitude of right triangle $A O B$, will have length \sqrt{x}.

The length \sqrt{x} can also be read off the parabola of Figure 3.8: just find a point whose distance from the horizontal axis is x; its distance from the vertical axis is \sqrt{x}.
3.6 To find approximately the cube root $\sqrt[3]{a}$ of a number a one determines the point of intersection P of the graph of $y=x^{3}$ with the horizontal line $y=a$ and measures the abscissa of P. The coordinates of P are $(\sqrt[3]{a}, a)$.
3.8 A careful construction will show that as n gets larger and larger, the quantity $\sqrt{n+1}-\sqrt{n}$ becomes smaller and smaller.
3.9 Let $a=\sqrt{n+1}, b=\sqrt{n}$. Then

$$
(\sqrt{n+1}+\sqrt{n}) \cdot(\sqrt{n+1}-\sqrt{n})=1
$$

or

$$
\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} .
$$

Clearly, as n gets larger and larger the denominator $\sqrt{n+1}+\sqrt{n}$ increases, and it follows from the above identity that the quantity $\sqrt{n+1}-\sqrt{n}$ becomes smaller and smaller; that is, the difference between $\sqrt{n+1}$ and \sqrt{n} can be made as small as we wish (it is always greater than 0) by taking n large enough.
3.10 We multiply the expression by

$$
\frac{\sqrt{2 n+1}+\sqrt{2 n}}{\sqrt{2 n+1}+\sqrt{2 n}}
$$

and obtain
$\sqrt{n} \frac{2 n+1-2 n}{\sqrt{2 n+1}+\sqrt{2 n}}=\frac{\sqrt{n}}{\sqrt{2 n+1}+\sqrt{2 n}}=\frac{1}{\sqrt{2+\frac{1}{n}}+\sqrt{2}}$.
As n gets larger and larger, $1 / n$ becomes smaller and smaller so that this expression approaches

$$
\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4}
$$

3.11 If $0<y<\frac{3}{3} \pi$, then
(see Figure 3.15), $\sin y<y<\tan y$; dividing
by $\tan y$, we obtain

$$
\cos y<\frac{y}{\tan y}<1
$$

As y decreases, cos y approaches 1 so that $y / \tan y$ is squeezed between 1 and a number close to 1 .
3.12 (a) Proof of Theorem 3.1. Let S be the sequence x_{1}, x_{2}, x_{3}, \ldots having the limit L, and suppose that $y_{1}, y_{2}, y_{3}, \cdots$ is any subsequence S^{\prime} of S (i.e., S^{\prime} is an infinite sequence whose terms are some or all of the terms of S, arranged in the order in which they occur in S).

Now S has the limit L means that the sequence $\left(x_{1}-L\right)$, $\left(x_{2}-L\right), \quad\left(x_{3}-L\right), \cdots$ approaches 0 ; that is, for every integer n, there are at most a finite number (depending on n) of terms $x_{k}-L$, $k=1,2,3, \cdots$, which are numerically larger than $1 / n$. But if S^{\prime} is a subsequence of S, then every term of the sequence ($y_{1}-L$), $\left(y_{2}-L\right), \cdots$ is identical to some term $x_{k}-L$, so that, for every integer n, there can be at most a finite number of terms $y_{k^{\prime}}-L$, $k^{\prime}=1,2,3, \cdots$, numerically larger than $1 / n$.

Thus, every subsequence of an infinite sequence with limit L also has the limit L.
(b) Proof of Theorem 3.2. $a+x-(a+L)=x-L$, so that if $\left(x_{1}-L\right),\left(x_{2}-L\right),\left(x_{3}-L\right), \cdots$ approaches zero, then $\left[a+x_{1}-(a+L)\right], \quad\left[a+x_{2}-(a+L)\right], \quad \cdots$ also approaches zero; therefore $a+x_{1}, a+x_{2}, a+x_{3}, \cdots$ has the limit $a+L$.
(c) Proof of Theorem 3.3. We wish to show that, for every integer m, all but a finite number of terms $k x_{i}$ satisfy

$$
\left|k x_{i}-k L\right|<\frac{1}{m}
$$

provided that the sequence x_{i} has L as limit. In other words we know that for every n, all but a finite number of x_{i} satisfy

$$
\left|x_{i}-L\right|<\frac{1}{n}
$$

In particular, take n to be the nearest integer greater than or equal to $|k| m$. Then
$\left|k x_{i}-k L\right|=|k|\left|x_{i}-L\right|<|k| \frac{1}{n} \leq|k| \frac{1}{|k| m}=\frac{1}{m}$
for all but a finite number of terms. This argument holds for every integer m.
(d) We prove first: if $x_{1}, x_{2}, x_{3}, \cdots$ has the limit L and y_{1}, y_{2}, y_{3}, \cdots has the limit M, then $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, \cdots$ has the limit $L M$.

Following the hint, we write

$$
\begin{aligned}
x_{i} y_{i}-L M & =x_{i} y_{i}-x_{i} M+x_{i} M-L M \\
& =x_{i}\left(y_{i}-M\right)+M\left(x_{i}-L\right) .
\end{aligned}
$$

By assumption, for every integer n.

$$
\left|x_{i}-L\right|<\frac{1}{n} \quad \text { and } \quad\left|y_{i}-M\right|<\frac{1}{n}
$$

for all but a finite number of x_{i}, y_{i}. Moreover, since the x_{i} have a limit, all but a finite number are certainly bounded by some constant, say C. Thus

$$
\begin{aligned}
\left|x_{i} y_{i}-L M\right| & \leq\left|x_{i}\right|\left|y_{i}-M\right|+M\left|x_{i}-L\right| \\
& \leq C \frac{1}{n}+M \frac{1}{n}=(C+M) \frac{1}{n}
\end{aligned}
$$

Now, given any integer m, we can achieve

$$
\left|x_{i} y_{i}-L M\right| \leq \frac{1}{m}
$$

merely by choosing the integer n so that

$$
\frac{C+M}{n}<\frac{1}{m}
$$

thus establishing, for every integer m,

$$
\left|x_{i} y_{i}-L M\right|<\frac{1}{m}
$$

for all but a finite number of terms $x_{i} y_{i}$.
To prove Theorem 3.4, that the limit of $x_{1}^{2}, x_{2}^{2}, \cdots$ is L^{2}, use the above result with $y_{i}=x_{i}$ and $L=M$. To prove that the limit of $x_{1}^{k}, x_{2}^{k}, \cdots$ is L^{k}, we simply repeat the argument $k-1$ times.
3.13 (a) This problem is not at all easy. Take the case $0<r<1$. One standard proof runs as follows:

Since $1 / r>1,1 / r=1+h, h>0$. Now

$$
\left(\frac{1}{r}\right)^{n}=(1+h)^{n}>1+n h
$$

for every n, and so $(1+h)^{n}$ increases without limit as n increases. Therefore the reciprocal, r^{n}, goes to zero.

The assertion that $(1+h)^{n}$ increases without limit as $n \rightarrow \infty$ can also be proved by appeal to the Bolzano-Weierstrass principle described in the next section. For if L is any number such that

$$
(1+h)^{n} \leq L
$$

for all n, then

$$
(1+h)^{n-1} \leq \frac{L}{1+h}=L^{\prime}<L
$$

for all n; and so, given any upper bound L to this sequence, there would exist a smaller upper bound L^{\prime}. Such a sequence is incompatible with the Bolzano-Weierstrass principle.

Let us suppose now that $r=1$. Then $r^{2}=1, r^{3}=1, r^{4}=1, \quad \cdots$ and each number of the sequence $(r-1),\left(r^{2}-1\right), \cdots$ equals 0 . Since no term of this sequence exceeds $1 / n, n>0$, the sequence approaches 0 and r, r^{2}, r^{3}, \cdots has the limit 1 when $r=1$.
(b) From the identity

$$
a(1-x)\left(1+x+x^{2}+\cdots+x^{n-1}\right)=a\left(1-x^{n}\right)
$$

we get

$$
a \cdot 1+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r} ;
$$

then, since r^{n} approaches 0 if $|r|<1$, we have

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{1-r^{n}}{1-r}=\frac{1}{1-r}, \quad-1<r<1
$$

Hence, the sum of any infinite geometric series $a+a r+a r^{2}+\cdots$ with ratio r numerically smaller than 1 is $a /(1-r)$.
3.14 The sequence of rational numbers constructed in the text, in decimal form, is

$$
\begin{array}{r}
1.0000000000 \cdots \text {, } \\
.5000000000 \cdots \text {, } \\
2.0000000000 \cdots \text {, } \\
.3333333333 \cdots \text {, } \\
3.0000000000 \cdots \text {, } \\
.2500000000 \cdots \text {, } \\
.6666666666 \cdots \\
1.50000000000 \cdots \\
4.0000000000 \cdots \text {, } \\
.2000000000 \cdots \text {, }
\end{array}
$$

We shall construct a number whose k th decimal is always one or the other of the digits 2 or 3 but differs from the k th decimal of the k th number in this list.

Let us choose 3 as its first decimal since 3 is different from the first decimal of the first number. Let us choose 3 for the second decimal of the number we are constructing because 3 is different from the second decimal of the second number in the list. Similarly, let us choose $3(\neq 0)$ for the third decimal, $2(\neq 3)$ for the fourth decimal, $3(\neq 0)$ for the fifth, $3(\neq 0)$ for the sixth, $3(\neq 6)$ for the seventh, etc., until we come to a k th number with 3 in the k th place; then we will choose 2.
3.15 Before classifying the letters of the alphabet, we shall consider, for the sake of definiteness, the letter T. We shall simplify the situation by considering an uncountable set of identical (i.e. congruent) letters T (e.g. with a stem of one inch and a top bar of one inch) whose vertices are labelled A, B, C, see Figure 3.18(a).

On any piece of paper of finite dimensions, an uncountable set of such T 's must contain an uncountable subset of T 's such that the vertices labelled A are within t, say, inch of each other. In this set, there is an uncountable subset such that the vertices labelled B are within t inch of each other. And in this set, there is an uncountable subset such that the vertices labelled C are within $\frac{1}{8}$ inch of each other.

Now then, let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ [see Figure 3.18(b)] be two T 's of the kind described. They cross. This can be proved by elementary geometry from the fact that a straight line divides the plane into two regions (called the two sides of the line), and segments connecting points on opposite sides of the line must cross the line. This establishes the impossibility of writing an uncountable number of congruent non-crossing t's on a page. Note that if we merely required the distances $A A^{\prime}$ and $B B^{\prime}$ to be small, then the T's could possibly stand as they do in Figure 3.19, and not cross. We shall not treat the case of T 's of varying sizes here, but the same result can be proved.

All letters of the alphabet that contain a configuration such as we encountered in the letter T (i.e. an intersection of two segments or curves where at least one of the segments extends beyond the point of intersection) are in the same class as T . They are A, B, E, F, H, K, P, Q, R, T, X, Y.

For all other letters, it is possible to scribble an uncountable set of them on a page. Figures 3.20 (a), (b) illustrate this fact for the letters L, O respectively. In each case, the fact that a line segment contains an uncountable number of points gives the clue.

CHAPTER FOUR

4.1 The phrase "if this limit exists" has been omitted. The statement $L=\lim _{n \rightarrow \infty} L_{n}$ makes sense only if the L_{n} have a limit, and in this case it asserts that L is the value of this limit.
4.2 The direct computation of the lengths S_{1}, S_{2}, \cdots of the sides of equilateral triangles whose bases are on the x-axis and whose vertices lie on the curve $y=x^{2}$ is somewhat awkward; fortunately the question posed in the problem can easily be answered without such a computation: The length of the resulting zig-zag is again 2 because, as in Example 2, it is twice as long as the distance from $(1,0)$ to the origin.
4.3 We calculate the distances
$B_{1} T=1, \quad B_{2} T=\frac{1}{2}, \quad B_{6} T=\frac{1}{4}, \quad \cdots, \quad B_{2 n+1} T=\frac{1}{2^{n}}, \quad \cdots$
which approach zero. Hence T is the limit of the sequence

$$
B_{1}, \quad B_{3}, \quad \cdots \quad B_{2 n+1}, \cdots
$$

The distances $B_{2 n} R_{2 n-1}$ can be represented as sides of equilateral triangles of lengths $1 / 2^{n-1}$ and so these distances also approach 0 .

By virtue of the triangle inequality, we have the following relations between lengths:

$$
B_{2 n} T \leq B_{2 n} B_{2 n-1}+B_{2 n-1} T
$$

As n increases each term on the right approaches zero (by what we showed above) and hence their sum approaches zero. Therefore T is also the limit of points with even subscripts.
4.4 The point $Z:(\sqrt{2}, \sqrt{2} / 3)$ is the limit of the sequence of points D_{1}, D_{2}, \cdots. The abscissas of D_{1}, D_{2}, \cdots are

$$
\begin{array}{r}
x_{1}=\frac{\sqrt{2}}{2}, \quad x_{2}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}, \quad x_{3}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{2}}{8}, \cdots, \\
x_{n}=\frac{\sqrt{2}}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-1}}\right), \cdots
\end{array}
$$

When these finite geometric progressions are summed, they have the form

$$
\begin{aligned}
x_{1}=\sqrt{2}\left(1-\frac{1}{2}\right), \quad x_{2}=\sqrt{2}\left(1-\frac{1}{4}\right), \\
x_{3}=\sqrt{2}\left(1-\frac{1}{8}\right), \cdots, \quad x_{n}=\sqrt{2}\left[1-\left(\frac{1}{2}\right)^{n}\right], \cdots ;
\end{aligned}
$$

these numbers come arbitrarily close to $\sqrt{2}$ since the sequence $\frac{1}{2}, \frac{1}{4}$ $\frac{1}{8}, \cdots$ approaches zero. This shows that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$, and this is the meaning of the phrase "the abscissa of Z is the limit oi the abscissas of $D_{1}, D_{2}, \ldots "$.

To prove that the ordinates

$$
\begin{aligned}
y_{1}=\frac{\sqrt{2}}{2}, \quad y_{2} & =\frac{\sqrt{2}}{2}\left(1-\frac{1}{2}\right), \quad y_{3}=\frac{\sqrt{2}}{2}\left(1-\frac{1}{2}+\frac{1}{4}\right), \\
\cdots, y_{n} & =\frac{\sqrt{2}}{2}\left[1-\frac{1}{2}+\frac{1}{4}-\cdots+\left(-\frac{1}{2}\right)^{n-1}\right], \cdots
\end{aligned}
$$

of D_{1}, D_{2}, \cdots have the limit $\sqrt{2} / 3$, we sum these finite geo ${ }^{-}$ metric series and find that

$$
y_{n}=\frac{\sqrt{2}}{2}\left[\frac{1-\left(-\frac{1}{3}\right)^{n}}{1+\frac{1}{2}}\right]=\frac{\sqrt{2}}{3}\left[1-\left(-\frac{1}{2}\right)^{n}\right]
$$

As $n \rightarrow \infty,\left(-\frac{1}{2}\right)^{n}$ approaches zero so that the y_{n} have the limit $\sqrt{2} / 3$.
From the fact that the abscissas have the limit $\sqrt{2}$ and the ordinates have the limit $\sqrt{2} / 3$, we can prove that the sequence D_{1}, D_{2}, \cdots has the limit $Z:(\sqrt{2}, \sqrt{2} / 3)$ by the Pythagorean Theorem. We express the distance $D_{n} Z$ by

$$
\left(D_{n} Z\right)^{2}=\left(\sqrt{2}-x_{n}\right)^{2}+\left(\frac{\sqrt{2}}{3}-y_{n}\right)^{2}
$$

The terms on the right approach zero as $n \rightarrow \infty$, hence their squares approach zero, and so does the sum of their squares. Therefore the distances $D_{n} Z$ approach zero and Z is indeed the limit of the sequence D_{1}, D_{2}, \cdots.
4.5 Denote the abscissas and ordinates of $D_{1}^{\prime}, D_{2}^{\prime}, \cdots$ by x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \cdots respectively. It is clear from the construction of Example 4' and our knowledge of Example 4 that

$$
\begin{aligned}
x_{1}= & \frac{\sqrt{2}}{2}, \quad x_{2}=\frac{\sqrt{2}}{2}\left(1+\frac{1}{2}\right), \quad x_{3}=\frac{\sqrt{2}}{2}\left(1+\frac{1}{2}-\frac{1}{4}\right), \cdots, \\
x_{n}= & \frac{\sqrt{2}}{2}\left(1+\frac{1}{2}-\frac{1}{4}-\frac{1}{8}+\cdots \pm \frac{1}{2^{n-1}}\right) \\
= & \frac{\sqrt{2}}{2}\left[\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}+\cdots \pm \frac{1}{2^{n-2}}\right)\right. \\
& \left.\quad+\frac{1}{2}\left(1-\frac{1}{4}+\frac{1}{10}-\frac{1}{64}+\cdots \pm \frac{1}{2^{n-2}}\right)\right] \\
= & \frac{\sqrt{2}}{2}\left[\frac{1-\left(-\frac{1}{4}\right)^{n / 2}}{\frac{5}{4}}+\frac{1-\left(-\frac{1}{4}\right)^{n / 2}}{2 \cdot\left(\frac{(5)}{4}\right)}\right] \quad \text { for } n \geq 2, n \text { even, } \\
= & \frac{3 \sqrt{2}}{5}\left[1-\left(-\frac{1}{4}\right)^{n / 2}\right],
\end{aligned}
$$

and

$$
x_{n+1}=x_{n} \pm \frac{\sqrt{2}}{2}\left(\frac{1}{4}\right)^{n / 2}, \quad \text { so that } \quad \lim _{n \rightarrow \infty} x_{n}=\frac{3 \sqrt{2}}{5},
$$

and

$$
\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n} \pm \lim _{n \rightarrow \infty} \frac{\sqrt{2}}{2}\left(\frac{1}{4}\right)^{n / 2}=\frac{3 \sqrt{2}}{5} .
$$

For the ordinates, we have

$$
\begin{aligned}
y_{1} & =\frac{\sqrt{2}}{2}, \quad y_{2}=\frac{\sqrt{2}}{2}\left(1-\frac{1}{2}\right), \quad y_{s}=\frac{\sqrt{2}}{2}\left(1-\frac{1}{2}-\frac{1}{4}\right), \cdots, \\
y_{n} & =\frac{\sqrt{2}}{2}\left(1-\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{10}-\cdots \pm \frac{1}{2^{n-1}}\right) \\
= & \frac{\sqrt{2}}{2}\left[\left(1-\frac{1}{4}+\frac{1}{16}-\cdots \pm \frac{1}{2^{n-2}}\right)\right. \\
& \left.-\frac{1}{2}\left(1-\frac{1}{4}+\frac{1}{16}-\cdots \pm \frac{1}{2^{n-2}}\right)\right] \\
= & \frac{\sqrt{2}}{2}\left[\frac{1-\left(-\frac{1}{4}\right)^{n / 2}}{\frac{5}{4}}-\frac{1-\left(-\frac{1}{4}\right)^{n / 2}}{2 \cdot\left(\frac{(4)}{4}\right.}\right] \quad \\
& =\frac{\sqrt{2}}{5}\left[1-\left(-\frac{1}{4}\right)^{n / 2}\right], \quad \text { for } n \geq 2, n \text { even, }
\end{aligned}
$$

and

$$
y_{n+1}=y_{n} \pm \frac{\sqrt{2}}{2}\left(\frac{1}{4}\right)^{n / 2}
$$

so that

$$
\lim _{n \rightarrow \infty} y_{n}=\frac{\sqrt{2}}{5}=\lim _{n \rightarrow \infty} y_{n+1}
$$

As we have seen in the solution to Problem 4.4, this implies that the point $(3 \sqrt{2} / 5, \sqrt{2} / 5)$ is the limit point of the sequence $D_{1}^{\prime}, D_{2}^{\prime}, \cdots$.
4.6 Project each point $E_{1}, E_{2}, E_{\mathrm{a}}$, and so on, perpendicularly onto the y-axis (this is what we do, essentially, when we calculate the ordinate of a point). Call these points F_{1}, F_{2}, F_{3}, and so on. Now if we let f_{n} denote the ordinate of E_{n}, then f_{n} is also the length of $O F_{n}$. Notice that the sequence of numbers $f_{2}, f_{4}, f_{6}, \cdots$ is constantly increasing and is bounded above. By the Bolzano-Weierstrass principle this sequence has a limit f^{*}. We shall show in a moment, but the reader may prefer to prove it himself, that f^{*} is also the limit of the sequence of odd-numbered f^{\prime} 's, $f_{1}, f_{3}, f_{b}, \cdots$, which approach it from above. Thus the entire sequence has f^{*} as a limit, but the approach to this limit is two-sided. To f^{*} there corresponds a point F^{*} (on the y-axis) which ought to be the projection of the limit of the points $E_{1}, E_{2}, E_{3}, \cdots$; but as we have seen, the points E_{1}, E_{2}, \cdots have no limit.

A proof that the sequence of odd-numbered $f^{\prime \prime}$ s has f^{*} as a limit follows. For every n,

$$
f_{2 n-1}-f^{*}=\left(f_{2 n-1}-f_{2 n}\right)+\left(f_{2 n}-f^{*}\right)
$$

the second term in parentheses being negative (see Figure 4.10). The first term on the right is precisely $\sqrt{2} /(2 n)$. We have no formula for the second term; but since the sequence $f_{2 n}(n=1,2,3, \cdots)$ converges to f^{*}, we know that all such terms are small when n is large enough, by the very definition of limit. Thus we can be sure that when n is large enough, the right hand side is the difference of two small numbers and is small. This shows that $f_{2 n-1}$ is near to f^{*} (for large n) and concludes the proof.
4.7 Example 5 showed (see solution to previous problem) that a sequence of points in the plane may have no limit point although the sequence of their projections has a limit point. Assertion (a) would be correct if one added "if the given sequence of points has a limit"; we shall demonstrate this in a moment.

Assertion (b) is true. Let Q_{n} be the points in the given sequence, Q its limit point, P_{n} the projections of Q_{n}, and P the projection of Q. Then $P_{n} P=Q_{n} Q \cos \alpha_{n}$ where α_{n} is the angle between the segment $Q_{n} Q$ and the line which carries the projections. Since $\left|\cos \alpha_{n}\right| \leq 1$ it follows that $\left|P_{n} P\right| \leq\left|Q_{n} Q\right|$ and since $\lim _{n \rightarrow \infty} Q_{n} Q=0$, it follows that $\lim _{n-\infty}\left|P_{n} P\right|=0$ so that P, the projection of Q, is indeed the limit point of the sequence P_{n}.

This also proves that the limit of the projections is the projection of the limit of a sequence of points, provided they have a limit. If P^{*} is the limit of the projections, P the projection of the limit Q, then $\lim _{n \rightarrow \infty} P_{n} P^{*}=0$ and $\lim _{n \rightarrow \infty} P_{n} P=0$ imply that P and P^{*} coincide.
4.8 Let

$$
S_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} .
$$

Since for $k>1$ we have $k>k-1$, it follows that

$$
\frac{1}{k}<\frac{1}{k-1} \quad \text { and } \quad \frac{1}{k^{2}}<\frac{1}{k(k-1)} \quad \text { for all } k>1
$$

Therefore

$$
\begin{equation*}
S_{n}<1+\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n} . \tag{1}
\end{equation*}
$$

Now we observe that

$$
\frac{1}{(k-1) k}=\frac{1}{k-1}-\frac{1}{k} \quad \text { for } k=2,3, \cdots
$$

and re-write the right member of (1) in the form

$$
\begin{aligned}
S_{n} & <1+\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =2-\frac{1}{n} .
\end{aligned}
$$

This proves that $S_{n}<2$, for $n=1,2, \cdots$.
4.9 By Pythagoras' theorem, we may express any segment $O P_{k}$ in terms of the previous one:

$$
\begin{equation*}
O P_{k}^{2}=O P_{k-1}^{2}+\frac{1}{(k-1)^{2}} . \tag{1}
\end{equation*}
$$

Next, we express $O P_{k-1}$ in terms of the previous one and substitute in (1):

$$
O P_{k}^{2}=O P_{k-2}^{2}+\frac{1}{(k-2)^{2}}+\frac{1}{(k-1)^{2}} .
$$

Continuing in this manner we find that

$$
O P_{k}^{2}=O P_{1}^{2}+1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{(k-1)^{2}},
$$

and, since $O P_{1}=1$, we have (in the notation used in the solution to the previous problem)

$$
O P_{k}^{2}=1+S_{k-1}
$$

We have seen that $S_{n}<2$ for all n. Hence $O P_{n}^{2}<1+2=3$ and

$$
\begin{equation*}
O P_{n}<\sqrt{3} \tag{2}
\end{equation*}
$$

$$
\text { for all } n \text {. }
$$

The length of the zig-zag $P_{1} P_{2} \cdots P_{n}$ is

$$
L_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

and we have already seen (page 65) that the harmonic series $1+\frac{1}{2}+\frac{1}{1}+\cdots$ has no limit.

To prove that the projections Q_{k} (on a circle of radius 3 and center O) of our points P_{k} wind around indefinitely often, it suffices to show that the sum of the angles α_{n} between $O P_{n}$ and $O P_{n+1}$ becomes arbitrarily large. To see this, consider

$$
\sin \alpha_{n}=\frac{\frac{1}{n}}{O P_{n+1}}=\frac{1}{n O P_{n+1}}
$$

By our result (2), we see that

$$
\frac{1}{n O P_{n+1}}>\frac{1}{n \sqrt{3}}, \quad \text { for } n=1,2, \cdots ;
$$

Moreover, for any acute angle α, we have $\sin \alpha<\alpha$ (see Figure 3.15). Thus

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}+\cdots & >\sin \alpha_{1}+\sin \alpha_{2}+\cdots>\frac{1}{\sqrt{3}}+\frac{1}{2 \sqrt{3}}+\cdots \\
& =\frac{1}{\sqrt{3}}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots\right)
\end{aligned}
$$

so that the sum of the angles exceeds the harmonic series (multiplied by the constant factor $1 / \sqrt{3}$) and hence is infinite.

The sequence P_{1}, P_{2}, \cdots clearly cannot have a limit point for, if it did, all points after a certain point (say P_{N}) on would have to be in some small sector of the circle, and this is clearly not the case.
4.10 (a)

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots=\frac{1}{2}\left[1+\frac{1}{2}+\frac{1}{3}+\cdots\right]
$$

The quantity in brackets is the harmonic series treated earlier. It was found to be infinite. Hence, a constant times the harmonic series is infinite, and the series (a) diverges.
(b) $\frac{1}{3}+\frac{1}{7}+\frac{1}{11}+\cdots=\frac{1}{4 \cdot 1-1}+\frac{1}{4 \cdot 2-1}+\frac{1}{4 \cdot 3-1}$

$$
+\cdots+\frac{1}{4 n-1}+\cdots
$$

since

$$
\frac{1}{4 n-1} \geq \frac{1}{4 n} \quad \text { for } n=1,2, \cdots
$$

each term of the series (b) is greater than the corresponding term in the diverging series
$\frac{1}{4}+\frac{1}{8}+\frac{1}{12}+\cdots \frac{1}{4 n}+\cdots=\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{3}+\cdots\right]$, and hence the series (b) diverges.
(c) Since for $n>1, n>\sqrt{n}$, we have

$$
\frac{1}{\sqrt{n}}>\frac{1}{n}
$$

and

$$
\begin{aligned}
\frac{1}{1}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots & +\frac{1}{\sqrt{n}}+\cdots \\
& >\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots
\end{aligned}
$$

Hence the sequence (c) diverges.
(d) The terms of this sequence are even larger than the corresponding terms of (c) and therefore (d) certainly diverges.
4.11 (a) If for every line in the plane the projection of P is the limit of the projections of P_{n}, then this is true, in particular, for the two perpendicular axes of a coordinate system. Denote the projections of P_{n} on the x-axis and on the y-axis by x_{n}, y_{n} respectively, and those of P by x and y. Then, see Figure 4.15(a),

$$
\left(P_{n} P\right)^{2}=\left(x_{n}-x\right)^{2}+\left(y_{n}-y\right)^{2}
$$

and since the x_{n} approach x and the y_{n} approach y,

$$
\lim _{n \rightarrow \infty}\left(P_{n} P\right)^{2}=0
$$

and the P_{n} approach P.
(b) Clearly, this result cannot be deduced from the fact that the given data are true for just one line, as Example 5 (page 68) shows.
(c) If the given data are true for any two non-parallel lines, say l_{1} and l_{2}, take one (say l_{1}) to be the x-axis. It can be shown (by methods of analytic geometry or linear algebra) that any line in the plane, for example the y-axis, can be expressed as a linear combination of two given non-parallel lines. Moreover, the projections y_{n} of P_{n} on the y-axis can be expressed in terms of the x_{n} and the projections z_{n} of P_{n} on the line l_{2} [see Figure 4.15(b)], and the y_{n} have a limit y if the x_{n} and the z_{n} have limits. Thus the problem that P is the limit of the P_{n} can be reduced to the problem solved in (a).

CHAPTER FIVE

5.1 Assume that $\sqrt{2}$ is rational, i.e. that the diagonal of a unit square has length p_{1} / q_{1} where p_{1} and q_{1} are integers. Then a square whose sides are q_{1} units long has a diagonal of length p_{1}.

Now construct the following sequence of right isosceles triangles: The first has legs of length q_{1} and a hypotenuse of length p_{1}, see Figure 5.4 (b). Erect a perpendicular to the hypotenuse at a point which divides it into segments of lengths q_{1} and $p_{1}-q_{1}$. This perpendicular cuts off a corner of the first triangle, and this corner is our second triangle, clearly similar to the first, with leg of length q_{2} and hypotenuse of length p_{2}. We observe [sec Figure 5.4(b)] that

$$
q_{2}=p_{1}-q_{1} \quad \text { and } \quad p_{2}=q_{1}-q_{2}=q_{1}-\left(p_{1}-q_{1}\right)=2 q_{1}-p_{1}
$$

Now we repeat the construction and cut off the next corner triangle Its legs have length

$$
q_{3}=p_{2}-q_{2}=2 q_{1}-p_{1}-\left(p_{1}-q_{1}\right)=3 q_{1}-2 p_{1}
$$

and its hypotenuse has length

$$
p_{3}=q_{2}-q_{3}=p_{1}-q_{1}-\left(3 q_{1}-2 p_{1}\right)=3 p_{1}-4 q_{1}
$$

We continue cutting off corners, always obtaining an isosceles right triangle similar to all the previous ones. The leg of the nth triangle has length q_{n}, its hypotenuse has length p_{n}, and these lengths satify the relations

$$
q_{n}=p_{n-1}-q_{n-1}, \quad p_{n}=q_{n-1}-q_{n}
$$

Since $p_{n-1}=q_{n-2}-q_{n-1}$ we may express the length q_{n} of the nth leg by

$$
q_{n}=q_{n-2}-2 q_{n-1}, \quad n>2
$$

that is, in terms of the lengths of the legs of the previous two triangles.
Now consider the sequence $q_{1}, q_{2}, q_{3}, \cdots$. Since p_{1} and q_{1} are integers, $q_{2}=p_{1}-q_{1}$ is an integer, $q_{3}=q_{1}-2 q_{2}$ is an integer and, in general, $q_{n}=q_{n-2}-2 q_{n-1}$ is an integer for all $n>2$. It is clear from our construction that the legs of subsequent triangles decrease in length, i.e. that

$$
q_{1}>q_{2}>q_{3}>\cdots .
$$

Thus thè assumption that $\sqrt{2}=p_{t} / q_{1}$ is rational has led to an infinite decreasing sequence of positive integers, and no such sequence exists. We conclude that $\sqrt{2}$ is irrational.

In order to apply this method to $\sqrt{5}$, assume that $\sqrt{5}=r_{1} / s_{1}$ where r_{1} and s_{1} are integers. Blow up the rectangle of Figure 5.5 so that its sides are $s_{1}, 2 s_{1}$; then its diagonal is r_{1}. Our construction will lead to similar right triangles with legs $s_{n}, 2 s_{n}$ and hypotenuse r_{n}. The recursion relations will be

$$
s_{n}=r_{n-1}-2 s_{n-1}, \quad r_{n}=s_{n-1}-2 s_{n},
$$

so that

$$
s_{n}=s_{n-2}-2 s_{n-1}-2 s_{n-1}=s_{n-2}-4 s_{n-1}
$$

and the sequence $s_{1}, s_{2}, s_{3}, \cdots$ of lengths of shorter legs of the similar triangles is again a decreasing infinite sequence of integers.

These examples show how this method can be used to prove the irrationality of \sqrt{k} for any integer k which can be written as the sum of
the squares of two integers: $k=a^{2}+b^{2}$. We have used it for $k=1^{1}+1^{2}$, and for $k=2^{2}+1^{2}$. The details of this generalization are left to the reader.
5.3 The k th fraction, F_{k}, is formed from the previous fraction, F_{k-1}, as follows:

If $\quad F_{k-1}=\frac{p}{q}, \quad$ then $\quad F_{k}=\frac{1}{1+\frac{p}{q}}=\frac{q}{p+q}$.
5.4 (a) A sequence of finite parts of the expression $\sqrt{1-\sqrt{1-\sqrt{1-\cdots}}}$ is formed in the following manner:

$$
\sqrt{1}, \quad \sqrt{1-\sqrt{1}}, \quad \sqrt{1-\sqrt{1-\sqrt{1}}}, \cdots
$$

When we compute these numbers we see that this is the sequence $1,0,1,0, \cdots$, which has no limit.
(b) Since m satisfies $m^{2}+m=1$, its reciprocal satisfies

$$
\frac{1}{r^{2}}+\frac{1}{\tau}=1 \quad \text { or } \quad 1+\tau=r^{2}
$$

The terms a_{i} of the sequence of finite parts

$$
\sqrt{1}, \quad \sqrt{1+\sqrt{1}}, \quad \sqrt{1+\sqrt{1+\sqrt{1}}}, \quad \cdots
$$

obey the recursion formula

$$
\begin{equation*}
a_{1}=\sqrt{1}, \quad a_{n}=\sqrt{1+a_{n-1}}, \quad \text { for } n=2,3, \cdots \tag{1}
\end{equation*}
$$

We shall show that the increasing sequence a_{1}, a_{2}, \cdots has a limit by applying the Bolzano-Weierstrass Theorem, see Section 3.8. In order to do this, we must find a bound B such that $a_{1}<a_{2}<\cdots<B$.

The fact that the a_{i} increase implies that $a_{n+1}-a_{n}>0$ for $n=1,2, \cdots$. From (1) we have

$$
a_{n+1}-a_{n}
$$

$$
=\left[\sqrt{1+a_{n}}-\sqrt{1+a_{n-1}}\right] \frac{\sqrt{1+a_{n}}+\sqrt{1+a_{n-1}}}{\sqrt{1+a_{n}}+\sqrt{1+a_{n-1}}}
$$

$$
=\frac{\left(1+a_{n}\right)-\left(1+a_{n-1}\right)}{\sqrt{1+a_{n}}+\sqrt{1+a_{n-1}}}=\frac{a_{n}-a_{n-1}}{\sqrt{1+a_{n}}+\sqrt{1+a_{n-1}}} .
$$

Since $a_{i}>0$ for all i, the denominator in the last expression is greater than 2. Therefore

$$
a_{n+1}-a_{n}<\frac{1}{2}\left(a_{n}-a_{n-1}\right) \quad \text { for all } n
$$

and
(2)

$$
\begin{aligned}
a_{n+1}-a_{n}<\frac{1}{2}\left(a_{n}-a_{n-1}\right) & <\frac{1}{2}\left[\frac{1}{2}\left(a_{n-1}-a_{n-2}\right)\right] \\
& <\cdots<\frac{1}{2^{n-1}}\left(a_{2}-a_{1}\right)
\end{aligned}
$$

Next we write a_{n+1} in the form

$$
a_{n+1}=\left(a_{n+1}-a_{n}\right)+\left(a_{n}-a_{n-1}\right)+\cdots+\left(a_{2}-a_{1}\right)+a_{1}
$$

and apply inequality (2) to each expression in parentheses:

$$
\begin{aligned}
a_{n+1}< & \frac{1}{2^{n-1}}\left(a_{2}-a_{1}\right)+\frac{1}{2^{n-2}}\left(a_{2}-a_{1}\right) \\
& +\cdots+\left(a_{2}-a_{1}\right)+a_{1} \\
= & \left(a_{2}-a_{1}\right)\left[1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}\right]+a_{1} .
\end{aligned}
$$

The expression in brackets never exceeds 2, so

$$
a_{n+1}<2\left(a_{2}-a_{1}\right)+a_{1}=2(\sqrt{2}-1)+1=2 \sqrt{2}-1,
$$

and this number bounds all terms of our sequence.
Observe that we did not make use of the fact that the limit of this sequence is $\tau=1 / m=1+m=1.618 \cdots$. The bound

$$
B=2 \sqrt{2}-1=1.828 \cdots
$$

which we constructed is somewhat larger than this limit.
5.5 The values of these ratios, calculated to six decimal places, are

$$
\begin{aligned}
\frac{5}{8} \approx .625000 ; & \frac{8}{13} \approx .615385 ;
\end{aligned} \quad \frac{13}{21} \approx .619048 ;
$$

The fractions

$$
\frac{377}{610} \approx .618033 \quad \text { and } \quad \frac{610}{987} \approx .618034
$$

are the 17 th and 18 th terms of the sequence.
5.6 Each successive fraction in the sequence is numerically closer to m. The approximate differences between m and the fractions $\frac{1}{3}, \frac{7}{3}$, ${ }^{3}$, $5, y^{3}$ are, respectively, $.118034, .048633, .018034, .006966$, and .002649. For a general proof of the fact that each convergent to an infinite continued fraction is closer to it than the previous convergent, see for example Chapter 3 (particularly Theorem 3.7) of the book by C. D. Olds, Continued Fractions, to appear in this series.

$$
\begin{aligned}
m^{5}=2 m-3 m^{2}=5 m-3 ; & m^{6}=5 m^{2}-3 m=5-8 m ; \\
m^{7}=5 m-8 m^{2}=13 m-8 ; & m^{8}=13 m^{2}-8 m=13-21 m ; \cdots
\end{aligned}
$$

If f_{n} is the nth term of the Fibonacci Sequence, the formula for the nth power of m is

$$
m^{n}=(-1)^{n}\left(f_{n-1}-f_{n} m\right) .
$$

The corresponding situation for τ is

$$
\tau^{4}=3 \tau+2 ; \quad \tau^{b}=5 \tau+3 ; \quad \tau^{6}=8 \tau+5 ; \cdots ; \quad \tau^{n}=f_{n} \tau+f_{n-1} .
$$

5.8 A complete solution to Problem 5.8 is given in Chapter 6, pp. 114-117.
5.9 The way the vertices are ordered in successive rectangles reflects the fact that the shorter side of each rectangle (i.e. the line joining the 2 vertices named last in the ordering) is the longer side of the next one (i.e. the line between the vertices listed in the middle position). In each case the vertex named first is the one from which the 45° line is drawn to the point that is the first named vertex of the next rectangle.
5.10 The length of each successive segment of this zig-zag is the length of the preceding segment reduced by the factor $m<1$. Hence, the length of the zig-zag is the sum of the infinite geometric series

$$
\begin{aligned}
\sqrt{2}+\sqrt{2} \cdot m+\sqrt{2} \cdot m^{2}+\sqrt{2} \cdot m^{2} & +\cdots \\
& =\frac{\sqrt{2}}{1-m}=\frac{\sqrt{2}}{m^{2}} .
\end{aligned}
$$

The solution to Problem 3.13 (p. 52) proves that the formula for the sum of any infinite geometric series with first term a and ratio $r<1$ is $a /(1-r)$.
5.11

Number of quarter-turns (degrees) about T		Distance from T to point on the spiral
1/6	(15)	$A T \cdot m^{1 / 6}$
1/3	$\left(30^{\circ}\right)$	$A T \cdot m^{1 / 3}$
1/2	(45 ${ }^{\circ}$)	$A T \cdot m^{1 / 2}$
5/6	$\left(75^{\circ}\right)$	$A T \cdot m^{5 / 6}$
4/3	$\left(120^{\circ}\right)$	$A T \cdot m^{4 / 3}$
3/2	$\left(135{ }^{\circ}\right.$)	$A T \cdot m^{8 / 2}$
5/3	$\left(150^{\circ}\right)$	$A T \cdot m^{\text {b/8 }}$
5/2	(225 ${ }^{\circ}$)	$A T \cdot m^{5 / 2}$
$2 \mathrm{n}+1$	\cdots	
$\frac{2 n+1}{2}$	$\left(\frac{2 n+1}{2} \cdot 90^{\circ}\right)$	$A T \cdot m^{(2 n+1) / 2}$

5.12 If t takes on negative values, we get a continuation of the spiral in a counter-clockwise direction from $A T$. As the values of t become smaller and smaller (i.e. as t approaches $-\infty$), R increases without limit.
5.13 To multiply a number R_{1} by a number R_{2} by means of the spiral in Figure 5.11 (where the distance $A T$ is now taken to be the unit of measurement) we use the ruler to locate those points P_{1} and P_{2} on the spiral which have distances R_{1} and R_{2} from T :

$$
P_{1} T=R_{1}, \quad P_{2} T=R_{2}
$$

Now we follow the spiral from the point A to the point P_{1} and denote by α_{1} the angle through which the radius vector to the spiral must rotate to get from $T A$ to $T P_{1}$. (Observe that if $R_{1}<1$, then we reach P_{1} by going in the clockwise direction and α_{1} will be taken to be positive; if $R_{1}>1$, then we reach P_{1} by going counter-clockwise and α_{1} will be taken negative.) Next, we follow the spiral from A to P_{2} and measure the angle α_{2} by which the radius vector must be rotated to get from $T A$ to $T P_{2}$. Now we add the angles α_{1} and α_{2}, and rotate the line $A T$ through the angle $\alpha_{1}+\alpha_{2}$ always following the spiral from the point A on. This will lead to a point P_{3} on the spiral whose distance from T is

$$
P_{3} T=R_{1} \cdot R_{2}
$$

This method is just a geometric interpretation of the law of exponents: Given

$$
R_{1}=m^{\alpha_{1}}, \quad R_{2}=m^{\alpha_{2}}
$$

we have found

$$
R_{1} \cdot R_{2}=m^{\alpha_{1}+\alpha_{2}}
$$

5.14 If the radius vectors $T P_{1}, T P_{2}, \cdots, T P_{n}$ have the same direction but different magnitudes $R_{1}, R_{2}, \cdots, R_{n}$, then the angles of rotation $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$, measured from the line through T and A as this line passes through each point of the curve from A to P_{1}, to P_{2}, \cdots, to P_{n}, differ only by multiples of 2π radians (one full turn about T, i.e. 4 quarter-turns). This property corresponds to the fact that the logarithms of the numbers represented by the lengths $R_{1}, R_{2}, \cdots, R_{n}$ would differ only in their characteristics, i.e. in the integer part of the logarithm. (If α is measured in quarter-turns, these logarithms would differ by multiples of 4 .) If α is between $4 k$ and $4(k+1)$ quarter-turns, $\alpha-4 k$ would correspond to the mantissa and would determine the direction of the line $T P$, while the characteristic $4 k$ would determine on which "ring" of the spiral the point P lies.

CHAPTERSIX

6.1 Assume to the contrary that there exist integers a and b such that

$$
\frac{a}{b} \cdot(1+\sqrt{2})=1
$$

Then

$$
1+\sqrt{2}=\frac{b}{a}
$$

or

$$
\sqrt{2}=\frac{b}{a}-1=\frac{b-a}{a}
$$

But if b and a are integers, $b-a$ is also an integer, and the last equality states that $\sqrt{2}$ is rational, which is false. Therefore the reciprocal of $1+\sqrt{2}$ is not rational.
6.2 Let d be the highest common factor of a and b, and let x and y be integers. Then the integer

$$
a x+b y=c=a^{\prime} d x+b^{\prime} d y=d\left(a^{\prime} x+b^{\prime} y\right)
$$

is clearly divisible by d.
Conversely, if c is divisible by d, the highest common factor of a and b, then we can find integers x and y such that

$$
a x+b y=c
$$

in the following way. We divide the equation by d obtaining

$$
a^{\prime} x+b^{\prime} y=c^{\prime}
$$

where a^{\prime} and b^{\prime} are relatively prime. In this case it is known (see e.g. the discussion of Euclid's algorithm in Continued Fractions by C. D. Olds, to appear in this series) that there exist integers x_{1} and y_{1} such that

$$
a^{\prime} x_{1}+b^{\prime} y_{1}=1
$$

then the integers $x=c^{\prime} x_{1}, \quad y=c^{\prime} y_{1}$ will satisfy

$$
a^{\prime} x+b^{\prime} y=c^{\prime}
$$

and hence also $a x+b y=c$.
$6.32^{2^{n-1}}, \quad n=1,2,3, \cdots$.
6.4 When $N=1, N$ and the sum of its digits clearly have the same residue modulo 3. This proves the irst step in the induction.

Suppose that k is an integer such that k and the sum of its digits have the same residue modulo 3 , i.e. such that

$$
k=3 q+r, \quad 0 \leq r<3
$$

and the sum of the digits of k is given by

$$
3 s+r, \quad 0 \leq r<3
$$

To prove the inductive step, we must show that $k+1$ and the sum of its digits have the same remainder when divided by 3 . When $0 \leq r+1<3$, we have

$$
k+1=3 q+(r+1)
$$

otherwise

$$
k+1=3(q+1)
$$

If the last $m(m \geq 0)$ digits of a number k are all 9 's, these 9 's will become 0 's when 1 is added to k, but the first digit which is not a 9 will be increased by 1 . Since the sum of the digits of k is $3 s+r$, we may write the sum of the digits of $k+1$ in the form

$$
(3 s+r)+1-9 m,
$$

which is equivalent to

$$
3(s-3 m)+(r+1) .
$$

Thus $k+1$ and the sum of the digits of $k+1$ have the same residue modulo 3 .
6.5 The assertion is true for $n=1$. Assume that for $n=k$,

$$
1+2+\cdots+k=\frac{1}{2} k(k+1)
$$

and consider the case for $n=k+1$. By applying the inductive hypothesis we get

$$
1+2+\cdots+k+k+1=\frac{k}{2} k(k+1)+k+1,
$$

which can be written

$$
\frac{1}{2} k^{2}+\frac{3}{3} k+1=\frac{1}{2}\left(k^{2}+3 k+2\right)=\frac{1}{2}(k+1)(k+2) .
$$

Since this is of the form $\frac{1}{2} n(n+1)$, the proof is complete.
6.6 For all integers $n, 2^{n+9}$ exceeds $(n+9)^{3}$.
6.7 It is true that, when k is an integer greater than 2 , then

$$
2 k^{2}>k^{2}+2 k+2>(k+1)^{2} ;
$$

to show this, note that when $k>2$, then $k-2>0$, and since k is an integer, $k-2 \geq 1, k \geq 3$ so that $k(k-2)>1$ or $k^{2}>2 k+1$. Hence

$$
2 k^{2}=k^{2}+k^{2}>k^{2}+2 k+1,
$$

that is, $\quad 2 k^{2}>(k+1)^{2}$.
This fact does not enable us to prove that 2^{n} exceeds n^{2} for all $n>2$ because, in order to use that $2^{k+1}>2 k^{2}$, we had to assume that $2^{k}>k^{2}$, and it is not true that 2^{3} exceeds 3^{2}.
6.8 (a) For $N=1$ we have $\left(2^{1}\right)^{1}=2=2^{\left(1^{2}\right)}$. If, when $N=k$,

$$
\left(2^{k}\right)^{k}=2^{\left(k^{2}\right)}
$$

then

$$
\begin{aligned}
\left(2^{k+1}\right)^{k+1} & =\left(2^{k} \cdot 2\right)^{k+1}=\left(2^{k} \cdot 2\right)^{k}\left(2^{k} \cdot 2\right) \\
& =\left(2^{k}\right)^{k} \cdot 2^{2 k \cdot 2} \\
& =2^{\left(k^{2}+2 k+1\right)} \\
& =2^{\left[(k+1)^{2}\right]}
\end{aligned}
$$

(b) From $2^{N}>N^{2}$ if $N>4$ we get

$$
\left(2^{N}\right)^{N}>\left(N^{2}\right)^{N} \quad \text { or } \quad 2^{\left(N^{2}\right)}>\left(N^{2}\right)^{N}
$$

Thus, if we take $n=N^{2}$, we have that for $N>4,2^{n}>n^{N}$. But from the proofs of Theorems 2 and 3 we know that for $N=2$ and $N=3,2^{n}>n^{N}$ only if n exceeds N^{2}. This suggests that we can prove the inductive step of Therorem N by showing that for all $n>N^{2}, 2^{n}>n^{N}$.
6.9 If $2^{k}>k^{N}$, and $k>N^{2}$, then

$$
2^{k+1}=2 \cdot 2^{k}>2 k^{N}=k^{N}+k^{N}>k^{N}+N^{2} k^{N-1}
$$

so that

$$
\begin{aligned}
& 2^{k+1}>k^{N}+N k^{N-1}+N(N-1) k^{N-1} \\
& \geq k^{N}+N k^{N-1}+N(N-1) k^{N-2} \\
& =k^{N}+N k^{N-1}+\frac{N(N-1)}{2} k^{N \rightarrow 2}+\frac{N(N-1)}{2} k^{N \rightarrow 2} \\
& \geq k^{N}+N k^{N-1}+\frac{N(N-1)}{2} k^{N-2}+\frac{N(N-1)(N-2)}{3} k^{N-3} \\
& =k^{N}+N k^{N-1}+\frac{N(N-1)}{2} k^{N-2}+\frac{N(N-1)(N-2)}{2 \cdot 3} k^{N-3} \\
& +\frac{N(N-1)(N-2)}{2 \cdot 3} k^{N-3} \\
& \geq \cdots \\
& \geq k^{N}+N k^{N-1}+\frac{N(N-1)}{2!} k^{N-2}+\frac{N(N-1)(N-2)}{3!} k^{N-2} \\
& +\cdots+\frac{N(N-1) \cdots\{N-(N-2)\}}{(N-1)!} k^{N-(N-1)}+1 \\
& =(k+1)^{N} \text {. }
\end{aligned}
$$

6.10 We have proved (Theorem 1) that when $N=1$,

$$
2^{n}>n^{N}=n \quad \text { for all integers } n
$$

Assume that when $N=k$ and n exceeds k^{2}, it is true that $2^{n}>n^{k}$. It follows from Problem 6.9 that $2^{n}>n^{k+1}$ provided that $n>(k+1)^{2}$, which is all we need to complete the proof that $2^{n}>n^{N}$ for all integers N and n such that $n>N^{2}$.
6.11 Let us try to imitate the proof of Lagrange's Theorem (pages 115-117) in the present case and let us observe what modifications will be necessary.

The box principle tells us that any sequence of residues $(\bmod N)$ has a repeating consecutive pair within $N^{2}+2$ terms. If the pairs a_{i}, a_{i+1} and a_{k}, a_{k+1} have the same residues, then from

$$
a_{i}=a_{k}(\bmod N) \quad \text { and } \quad a_{i+1}=a_{k+1}(\bmod N)
$$

we get

$$
3 a_{i}=3 a_{k}(\bmod N) \quad \text { and } \quad 2 a_{i+1}=2 a_{k+1}(\bmod N)
$$

It follows that

$$
2 a_{i+1}+3 a_{i} \equiv 2 a_{k+1}+3 a_{k}(\bmod N)
$$

or

$$
a_{i+2}=a_{k+2}(\bmod N)
$$

By the same argument

$$
\begin{aligned}
a_{i+3} & =a_{k+8}(\bmod N), \\
a_{i+4} & =a_{k+4}(\bmod N),
\end{aligned}
$$

which shows that the sequence of residues $(\bmod N)$ of the sequence given by $a_{n+1}=2 a_{n}+3 a_{n-1}$ is periodic.

Let the period of the sequence be p. Then

$$
a_{j}=a_{j+p}(\bmod N)
$$

from some j on, say $j=T$. Suppose a_{T} is not the first term of the sequence. From the recursion formula we have

$$
\begin{aligned}
3 a_{T-1} & =a_{T+1}-2 a_{T} \\
& =a_{T+1+p}-2 a_{T+p}(\bmod N) \\
& =3 a_{T+p-1} .
\end{aligned}
$$

Hence,

$$
3 a_{T-1}=3 a_{T-1+p}(\bmod N),
$$

or

$$
3\left(a_{T-1}-a_{T-1+p}\right)=0(\bmod N)
$$

Clearly, we can conclude that

$$
a_{T-1}=a_{T-1+p}(\bmod N)
$$

only if we assume that 3 and N are relatively prime; otherwise, it does not necessarily follow that N is a factor of $a_{T-1}-a_{T_{-1+p}}$. Since T is a a finite integer, this process applied successively to $T-1, T-2$, $T-3, \cdots$, eventually must lead to

$$
a_{1}=a_{1+p}(\bmod N)
$$

Thus, the sequence of residues $(\bmod N), N \geq 2$, of the sequence defined by $a_{n+1}=2 a_{n}+3 a_{n-1}, \quad n \geq 2$ (where the initial values a_{1} and a_{2} may be any given integers) is periodic. If 3 and N are relatively prime, then the periodic part begins with the residue of a_{1}.
6.12 The residues $(\bmod N), N \geq 2$, of any sequence defined by

$$
a_{n+1}=\alpha a_{n}+\beta a_{n-1}
$$

with arbitrary initial integers a_{1} and a_{2} are periodic; the repetition of a pair occurs within at most $N^{2}+2$ terms. If N and β are relatively prime, then the periodic part begins with the residue of a_{1}.
6.13 The sequence of residues $(\bmod N)$ of any sequence defined by

$$
a_{n+1}=\alpha a_{n}+\beta a_{n-1}+\gamma a_{n-2}, \quad n \geq 3,
$$

has a repeated consecutive triplet within $N^{2}+3$ terms. If N and γ are relatively prime, the sequence of residues $(\bmod N)$ is periodic from the beginning on.
6.14 In general, the sequence of residues $(\bmod N)$ of a sequence a_{1}, a_{2}, \cdots, a_{n}, \cdots built (after the nth term) on a rule expressing the ($n+1$)th term as a linear combination of the preceding n terms is periodic from the beginning on and will repeat within $N^{n}+n$ terms whenever N has no factors greater than 1 in common with the coefficient of the earliest term in the recursion formula.
6.15 The lines $x=a$ for all rational a constitute a countable infinity of lines since the set of all rational numbers is countable. The same is true for the sets $y=b, x=c, y=d$ for rational b, c, d. Since all special rectangles are formed by combining 4 sides, each from one of these sets, we obtain $\boldsymbol{X}_{0} \cdot \boldsymbol{K}_{0} \cdot \boldsymbol{K}_{0} \cdot \mathcal{K}_{0}=\boldsymbol{K}_{0}$ possible special rectangles. (This even includes the degenerate rectangles in which a pair of opposite sides coincides. Therefore, the non-degenerate special rectangles certainly constitute a countable set.)
6.16 Let P be the point $\left(x_{0}, y_{0}\right)$, and let d be the minimum distance from P to any point on the given rectangle. Then there exist rational numbers $\delta_{1}<\frac{1}{d}$ and $\delta_{2}<\frac{1}{d} d$ such that

$$
x=x_{0}+\delta_{1}=a \quad \text { and } \quad x=x_{0}-\delta_{2}=a^{\prime}
$$

are rational, and numbers $e_{1}<\left\{d\right.$ and $e_{2}<\frac{1}{d} d$ such that

$$
y=y_{0}+\epsilon_{1}=b \quad \text { and } \quad y=y_{0}-\epsilon_{2}=b^{\prime}
$$

are rational. It follows that the sides of a special rectangle R lie on the lines $x=a, x=a^{\prime}, y=b, y=b^{\prime}$, and the point P is inside of this rectangle. Furthermore, since the length of the diagonal of R is

$$
\sqrt{\left(\delta_{1}+\delta_{2}\right)^{2}+\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}<d
$$

the distance from P to the farthest point on R is less than the minimum distance from P to the given rectangle. Hence, the special rectangle lies entirely within the given one.
0.17 If we assume that there is no point P in the set X such that every rectangle containing P contains uncountably many points of X, then every point in the set X must be inside at least one rectangle containing a countable set of points of X. In this case, the solution to Problem 6.10 shows that every point of X is inside of a special rectangle which is entirely within the rectangle containing a countable set of points belonging to X, and so also contains at most a countable infinity of points of X. Now, we have proved (Problem 6.15) that the set of all special rectangles is of power X_{0}; therefore, the set of special rectangles with which we are concerned is certainly countable. Moreover, since each of these special rectangles contains a countable set of points of X, it follows from $\boldsymbol{K}_{0} \cdot \boldsymbol{N}_{0}=\boldsymbol{N}_{0}$ that the set X is countable. But this contradicts the hypothesis that the given set is uncountable; hence, there must exist some point P in X such that every rectangle containing P contains uncountably many points belonging to the set X.
6.18 Take the point P obtained in the solution to Problem 6.17, and a sequence of decreasing intervals (rectangles in the case of the plane) closing down on P. In each of these intervals pick one point of X from among the uncountably many which are available. This gives a sequence $P_{1}, P_{2}, P_{3}, \cdots$ of points of X which form the desired convergent sequence. A proof such as this is called "non-constructive" because no mechanism is provided for actually defining each point P_{n}. Since we know nothing about X except that it is uncountable, no method of selection is available to us.

Bibliography

Cajori, Florian, A History of Mathematics, New York and London: The Macmillan Company, 1919.
Courant, Richard, Differential and Integral Calculus, Vol. 1, New York: Nordemann, 1940.
Courant, Richard and Robbins, Herbert, What is Mathematics?, London and New York: Oxford University Press, 1941.
Coxeter, H. S. M., Introduction to Geometry, New York: John Wiley and Sons, Inc., 1961.
Davis, Philip J., The Lore of Large Numbers, Vol. 6, New Mathematical Library, New York and New Haven: Random House, Inc. and Yale University, 1961.
Eves, Howard, An Introduction to the History of Mathematics, New York: Rhinehart and Company, 1958.
Frankel, Abraham A., Abstract Set Theory, Amsterdam, Holland: North-Holland Publishing Company, 1953.

Hardy, Godfrey H., A Course of Pure Mathematics, Cambridge: Cambridge University Press, 1938.
Heath, Thomas L., Manual of Greek Mathematics, London and New York: Oxford University Press, 1931.
Hilbert, David and Cohn-Vossen, Stephan, Geometry and the Imagination, New York: Chelsea, 1952.
Neugebauer, Otto, The Exact Sciences in Antiquity, Copenhagen, Denmark and Princeton, New Jersey: E. Munksgaard and Princeton University Press, 1951.
Niven, Ivan, Numbers: Rational and Irrational, Vol. 1, New Mathematical Library, New York and New Haven: Random House, Inc. and Yale University, 1961.

Olds, C. D., Continued Fractions, to be published for the New Mathematical Library, approximately 1962.
Rademacher, Hans and Toeplitz, Otto, The Enjoyment of Mathematics, Princeton: Princeton University Press, 1957.
Steinhaus, Hugo, Mathematical Snapshots, New York: G. E. Stechert and Company, 1938 (2nd ed., London and New York: Oxford University Press, 1960).
Wilder, Raymond L., Introduction to the Foundations of Mathematics, New York: John Wiley and Sons, Inc., 1952.
Yaglom, I. M., Geometric Transformations, translated from the Russian by Allen Shields, to be published for the New Mathematical Library, approximately 1962.

Uses of Infinity

The word "infinity" usually elicits feelings of awe, wonder, and admiration; the concept infinity has fascinated philosophers and theologians. The author shows how professional mathematicians tame this unwieldy concept, come to terms with it, and use its various aspects as their most powerful tools of the trade.
The early chapters are descriptive and intuitive, full of examples that not only illustrate some infinite processes, but that are worth studying for their own sake. Many questions are raised in the beginning, partially answered in various contexts throughout the book, and finally treated with the precision necessary to give the reader an excellent grasp of the fundamental notions used in the calculus as well as in virtually all other mathematical disciplines. The text is peppered with challenging problems whose solutions appear at the end of the book.

Leo Zippin was born in New York City in 1905. He received his PhD from the University of Pennsylvania in 1929. Zippin joined the Queens faculty of CUNY in 1938. He helped to create the doctoral program in mathematics at CUNY and served as its first executive officer, from 1964 to 1968. He retired in 1971. He became known internationally in the 1950's for having helped solve "the fifth problem of Hilbert", a poser regarding locally Euclidean topological groups. He passed away in 1995.

