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Note to the Reader 

his book is one of a series written by professional mathematicians T in order to make some important mathematical ideas interesting 
and understandable to a large audience of high school students and 
laymen. Most of the volumes in the New Il/lathemticaZ Library cover 
topics not usually included in the high school curriculum; they vary 
in difficulty, and, even within a single book, some parts require a 
greater degree of concentration than others. Thus, while the reader 
needs little technical knowledge to understand most of these books, 
he will have to make an intellectual effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be 
read quickly. Nor must he expect to understand all parts of the book 
on first reading. He should feel free to skip complicated parts and 
return to them later; often an argument will be clarified by a subse- 
quent remark. On the other hand, sections containing thoroughly 
familiar material may be read very quickly. 

The best way to learn mathematics is to do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to acquire the habit of reading with 
paper and pencil in hand; in this way mathematics will become in- 
creasingly meaningful to him. 

The authors and editorial committee are interested in reactions to 
the books in this series and hope that readers will write to: Anneli 
Lax, Editor, New Mathematical Library, NEW YORK UNIVERSITY, 
THE COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 Mercer 
Street, New York, N. Y. 10012. 

The Editors 
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Preface 

Most of this book is designed so as to make little demand on the 
reader’s technical competence in mathematics; he may be a high 
school student beginning his mathematics now or one who has put 
away and forgotten much of what he once knew. On the other hand, 
the book is mathematical except for the first chapter-that is to say, 
it is a carefully reasoned presentation of somewhat abstract ideas. 
The reader who finds the material interesting must be prepared, 
therefore, to work for it a little, usually by thinking things through 
for himself now and then and occasionally by doing some of the prob- 
lems listed, Solutions to some of these are given at  the end of the 
book. But it will not pay the reader to stop too long at any one 
place; many of the ideas are repeated later on, and he may find that 
a second view of them leads to understanding where a first view was 
baffling. This style of presentation is imposed upon an author by 
the nature of mathematics. It is not possible to say at once all of the 
key remarks which explain a mathematical idea. 

Many a reader is perhaps wondering whether it is possible for 
fellow human beings to communicate upon a topic as remote-sounding 
as “uses of infinity”; but, as we shall see, any two people who know 
the whole numbers, 

1, 2, 3, 4, 5,  ... , 
can talk to each other about “infinities” and have a great deal to say. 

I have written this book from a point of view voiced in a remark 
by David Hilbert when he defined mathematics as “the science of 
infinity”. An interesting theorem of mathematics differs from in- 
teresting results in other fields because over and above the surprise 
and beauty of what it says, it has “an aspect of eternity”; it is always 
part of an infinite chain of results. The following illustrates what I 
mean: the fact that 1 + 3 + 5 + 7 + 9, the sum of the first five 
odd integers, is equal to 5 times 5 is an interesting oddity; but the 

3 
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theorem that for all n the sum of the first n odd integers is n2 is 
mathematics. 

I hope that the reader will believe me when I say that professional 
mathematicians do not profess to understand better than anybody 
else what, from a philosophical point of view, may be called “the 
meaning of infinity.” This is proved, I think, by the fact that most 
mathematicians do not talk about this kind of question, and that 
those who do do not agree. 

Finally, I wish to express my especial thanks to Mrs. Henrietta 
Mazen, a teacher of mathematics at the Bronx High School of Science, 
who selected and edited the material in this monograph from a 
larger body of material that I had prepared. The reader who enjoys 
this book should know that in this way a considerable role was played 
in it by Mrs. Mazen. I am also indebted to Miss Arlys Stritzel who 
supplied most of the solutions to the problems posed in the book. 



Solutions to Problems 

C H A P T E R  T W O  

2.1 This is a non-terminating scquence of sets of musical compositions, the 
first set consisting of compositions for one voice part or instrument, tho 
sccond set of pieccs for two performers, thc third of pieces for three per- 
formers, and so 0n.t 

2.2 This is a periodic sequcncc of the four classes of hits in baseball. The 
iteration dots indicate that  we arc t o  repeat the samc scquence of classes 
aguin and again. 

2.3 Collections of siblings born on the same day makc up the terms of this 
scquence. Thc first term is the collection of all individuals with one such 
sibling, the second is thc set of individuals with two such siblings, etc. 
The terms which occur bcyond a certnin point in this infinite sequcncc 
are empty sets. 

2.4 IIcrc we have a list of the names of the days of the week. In  this CRSC the  
iteration dots reprcsent an abbreviation for the days Saturday and 
Sunday. 

2.5 This is a periodic scqucnce, the terms of which ure the first letters in tho 
names of the days of thc week, in thc order of the days, bcginning with the 
letter M corresponding to  Monday. Thc first term occuro again aftcr 
six more terms, and from thcn on the entirc period is repeated over and 
over. 

2.0 Thc first of thesc three sets is the collection of all integers n of the form 
n = 3q whcrc q is an integer. It is easily seen that  this set consists of 
thc numbers 0, 3, G, 9, . 
The second sct is composcd of all intcgers n of thc form n = 1 + 3q. 

Since each such number has thc remaindcr 1 when divided by 3, the 
numbers of the infinite scquence 1, 4, 7, 10, belong t o  tho 
second sct. 

t Remark added by the author: I can see “quintet”, “sextet”, “septet”, 
“octct”, but thcrc I get stuck. In thc absence of a clear-cut rule as t o  just 
how t o  continue, I would agree with a student who called the question unclear 
and would count all answers correct. 

121 



122 U S E S  OF I N F I N I T Y  

The numbers in the third set are each of the form 2 + 39, wherc q 
is an integer, and hence each has remainder 2 when divided by 3. Thus, 
the third set has the elements 2, 5, 8, 11, * - . 

Innsmuch as every integer when divided by 3 has one and only one of 
the remainders 0, 1, 2, we know that  these three nonoverlapping 
infinite sets together comprise the entire set of integers. 

2.7 If q divides n, then n = qb and n + 1 = qb + 1, where b is an in- 
teger. In  other words, if n is divisible by q, n + 1 has the remainder 
1 when divided by q, and hence n and n + 1 have no common factor. 

2.8 Tho general principle which is suggested by an examination of these tables 
is that  for every k by k multiplication table, whcre k is any positive 
whole number, the sum of the numbers in the table is the square of the 
sum of the first k positive integers. The sum of the integers in  any lower 
gnomon-figure is the cube of the smallest integer in that  gnomon. 

1 1 
2.9 - = 1.10-1 + 4*10*+ 2.10-8 + 8*10-' + 5.10-6 + 7*10-' + - * 10-7 

7 7 

1 
= .142857 +* .000000142857 + 7 * lo-'' J42857142857 * * -  , 

1 1 

9 9 
Similarly, - 1-10-1 + - -  = .111111 *. .  . 

1 1 - a 0.10-1 + 9.10" + * lo-' - .090909 * -  
11 

1 1 - = 0.10-1 + 1.10-2 + - - 10-3 = .oioioi ... . 
99 99 

Every terminating decimal may be written in the form a/lOk .where 

a is an integer; for examplo, 

3572 
3.672 = - 

103 

If a contains factors 2' and/or SL with 0 < 8 ,  t 5 k, then a/lOk is 
not in lowest terms and may be reduced as follows: 

2.10 The symbols 0.9090909090 and 0.0909090909 * are the non-terminat- 
ing decimal roprcsentations of { s  and tf, respectively. When we "add" 
these expressions the resulting symbol is .9999999999 - a -  , whcrcas the 
sum of f P  and +r is + I  - 1. 

2.11 Since 
1 

n + m = n X ; ,  

the method is clear. For example, to  divide 7 by 9 we look up the reciprocal 
of 9 in the table of Figure 2.4 and write 

1 
7 c 9 = 7 x 9 = 7 x .111 = .777 a * . .  
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2.12 Construct the circle of radius PQ with center Q; sce Figure 2.7. Using 
P as center, and the same radius, swing the compass to  find the points 
PI and QI of intersection of this circle with the first circle. 

Next, open the compass t o  the width PIQl ; draw circles with ccntcr 
P1 and &I respectively. One of thcir intersections (the onc to  the right 
of P and Q) is thedesired point R. 

Q ,  R are collinear and PQ = QR = d, obscrve that  
PIP& and QIPQ are two equilateral triangles with common base PQ 
which is bisected by the segment PlQl in  the point M (see Figure 2.7)' 
and that  PIQIR is an equilateral triangle with base PIQI and whose 
altitude MR lies on the line through P and Q. 

To scc that  P,  

Moreover, if PQ = d, then 

1 3d 
PIQI = 2PiM = d d 3  and MR = -plQIG = - * 

2 2 '  

3d d 

2 2  
QR p MR - MQ = - - - P d.  

This method shows us how t o  construct an infinite sequence of points 
on a line. Simply pick two points, call them P and Q, get R,  and re- 
peat the above construction on Q and R ,  getting R', etc. 

2.13 Suppose P is to  the left of Q. Line up the ruler with P and Q so 
that  its right end is at Q and make a mark on tho ruler at the  place 
where P falls. This mark divides the ruler into two parts, one of length 
PQ = d on the right, and one of smaller length d' on the left. After 
drawing the segment PQ, line up the ruler with the segment PQ so that  
the division mark on the ruler falls on Q. Then the right end of the ruler 
will be at a distance d from Q, on PQ extended. Denote the endpoint 
of this extension by QI . Next move the ruler in the direction from Q 
t o  Q1 along the line until the division mark is on the new point & I .  

The right endpoint of the ruler will be at a point Qt on the line through 
P and Q, a t  a distance 2d from Q. Continue this process indefinitely 
in order t o  extend the line through P and Q indefinitely to  the right. 

In  order to  cxtend the line through P and Q t o  the left, we just 
reflect the method just described. 

If d' were longer than d, the same method would work but i t  would 
be more economical to  interchange the roles of d and d'. 

2.14 Once the direction of the road and the point at which i t  is t o  entcr the 
mountain are dctermincd, it is only necessary t o  line up every three con- 
secutive guide-posts. This can be checked a t  each advance. 

2.15 The successive midpoints approach tho point which is a t  a distance from 
A equal t o  8 of the length of AB. 

2.20 (a) Divide a segment into 5 equal parts, hold one part, and give 3 pieces 
away. Then one part remains and we hold t of the amount which has 
becn distributed. If we repeat the same process over and over, each 
time dividing the one remaining part into 5 equal pieces, we shall 
continue to hold t of the total amount distributcd and a smaller and 
smaller amount of the original segment will rcmain to  be distributed. 
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Thus 

Similarly, 

1 + ... P - ,  
1 1 1 

lo+loo+looo 9 

2.21 Divide the segment into n equal parts, hold m of them, leave m of 
them t o  work on and give away the remaining n - 2 m  parts. Thus 
m + (n  - 2m) = n - m parts have been distributed, and we hold m 
parts; hence we hold m / ( n  - m) of the distributed amount. 

We treat the remaining part in the same way, dividing it into n equal 
pieces, holding m, giving away n - 2 m  and keeping m to  be worked on. 
Continuing in this way, we shall always hold m / ( n  - m) of the distribu- 
ted part while the part t o  be worked on gets smaller and smaller. 

2.22 It follows from 4 = 2.2 that  <4 = 2, so that  42 is rational. To prove 
that  4 3  and 4 5  are irrational, we need only consider the following: 
(a) If we assume that  (3 = p / q ,  where p/q is that  fraction (among 

all equivalent fractions) which has the smallest denominator, then 
we have 

P 

P 
1 <  - < 2 ,  

and 

3qz = P2, 

392 - p q  = p' - P q  1 

d 3 q  - PI - P(P - 4)s 

P 3 9 - P  

which implies, in contradiction to  our initial assumption, that  

- -. 
Q P - - 4  

(b) Assume that  p / q  = 4, p/q the fraction with smallest denomi- 
nator, Then p = Gq and 2 < p/q < 3 give US 

2q < P < 39, 

0 < P - 29 < Q, 
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2.23 

2.24 

2.25 

and 

so that 

pa = Sq', 

pa - 2pq = spa - 2pq, 

P ( P  - = q(69 - 2P)l 

P 5q - 2P 

4 P - 2 q '  
- =  

where p - 2q < q.  

From p = diq and 2 < p/q < 3 we get 

2q < P < 3% 

0 < p - 2q < q ;  

p' = 7q', 

p' - 2pq = 742 - 2pq, 

= d 7 q  - 2P). P ( P  - 
Then 

contradicts the assumption that 47 can be represented as a ratio of  two 
integers, p and q, where q is the smallest possible denominator. 

4 = = 6 4 . 4 9  = 2 4 %  If d$ = p/q,  then 2 4 2  = p/ql or 
<2 - p/2q (a contradiction since 4 2  is irrational). 

p = f i q  and k* < n < ( k  + 1)' imply that 

- a  nq - k p  
where p - kq < q. 

P P - k k p  
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If there were a fraction whose square is the integer N, we would write 
i t  with as small a denominator as possible, say p / q  = .\/m, and q # 1 
by assumption, so q2 # 1. Hcnce the fraction p2 /q2  would lie between 

consecutive integers k and k + 1 and we can produce the above con- 
tradiction. 

2.20 If di is not an integer, then, by problem 2.26, s is not the square of a 
fraction. But if 2 4  = n, where n is an integer, then s is equal to  the 
fraction (n/2)2. Hence, unless 4s is an integer, we are involved in  a 
contradiction. 

2.27 To prove that 12.6 X a = 100a/8 we need only note that  

1 24 + 1 26 100 
12.6 = 12 + 2 = - - = - 

2 2 8 '  

2.28 Let a be any integer with digits akak-l--.ao. Then we may write 

a = aklOk + aL1lObl + a * . +  al.10 + a0 
=I ak(1Ok - 1 + I) + ak-1(10"1 - 1 + 1) + - a * +  al(10 - 1 + 1) + a0 
= ak99...9 + ak + akl99.-.9 + ak-1 + . . a +  a1.9 + a1 + ao 
= 3[ar(33...3) + a~1(33.*.3) +--.+ ale31 

+ ak + ak-l+ ak-2 +...+ a1 + ao. 
Since the first expression on the right is a multiple of 3, a has the same 
remainder upon division by 3 as the second term on the right, i.e. the  sum 
of the digits of a. Another way of saying this is that  a and the sum of 
its digits belong to  the same residue class (mod 3). 

If ak + ak-1 + a  a * +  a. < 10, the  proof is complete. If not, let 

ah + aL1 +..-+ a0 - b - btlOi + bt-JOi-'+...+ bl.10 + b o ,  
and proceed in the same manner as above; eventually the sum of digits 
will be less than 10, and we shall have reached the root number r(a). 
This shows that  a and the sum b of its digits and the sum c of the 
digits of b etc. down to r(a) are all in the same residue class modulo 3. 

2.29 (a) and (b) Let us consider the infinite sequence of decimals 

a1 = .1111..., 

a2 = .101010.. +, 

aa - .100100100~~~, 
ad = .lOOOlOOOlOOOl~ -.  , 

and note that  the period of ak is k. 

(c) .1010010001oooo1o0o001m001* * a .  



\ SOLUTIONS T O  P R O B L E M S  127 

C H A P T E R  T H R E E  

3.1 The proof of this theorem for the case AB':B'B = m:n, where m and 
n are positive integers, is essentially the same as the proof given in 
Chapter 6, Section 6.2(a). For m = 2/2, n = 1, the theorem can be 
proved by the methods used in Sections 6.2(b) and 6.2(c) for the incom- 
mensurable case. 

3.2 Such a rectanglo docs not exist because i t  would lead t o  the equation 
1 = 0.2, where x is the length of the other sidc. But this contradicts 
tho rule of arithmetic: x.0 = 0 for all x whatsoever. 

3.3 Construct the right triangle ADC (see Figure 3.6) with legs of lengths z 
and 1. Draw the perpendicular to  the hypotenuse AC through C. Ex- 
tend line AD to  meet this perpendicular at B .  The segment DB then 
has the desired length y = 1/x because the length of the  altitude CD of 
right triangle ACB is the mean proportional between the lengths of 
AD - x and D B  = y: 

3.4 The parabola y = x2 is the locus of points (2, y) such that, for every 
abscissa z, tho ordinate y satisfies the relation 

2 l! P -. 
x 1  

This rclation suggests again the construction of a right triangle so that  
the altitude to  the hypotenuse has length x and divides the hypotenuse 

into segments of lengths 1 and y. In  Figure 3.7 this construction was 
carried out for two given values of x, XI and x2 , and the correspond- 
ing values of ?J are y1 and y2 . (The details of this construction are left 
to  the reader.) 

The parabola shown in Figuro 3.8 may now be plotted cither by using 
values (5, y) obtaincd from the construction of Figure 3.7 as coordinates 
for points of the  graph, or i t  may be plotted directly by carrying out the 
construction in the coordinate plane as indicated: For each abscissa x, 
find the point Z: (5, -l), connect i t  t o  the origin 0, draw a perpendicular 
to  the resulting segment at 0 and locate the point W: (x, y) at which this 
perpendicular intersects tho vertical line x units away from the y-axis. 
In  the right triangle OWZ the altitude to  the hypotenuse has length x 
and divides ZW into segments of length 1 and y so that  the relation 

1 s  

X Y  
or y P 21 - p -  

is satisfied for each W so constructed. 
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3.6 If x is a given length then 6 can always be constructed by virtue of 
the relation 

i d  P -, 

6 %  

For example, in Figure 3.7, let A E  = 1 as before, extend A E  t o  B 
so that  EB has the given length x ,  and draw the semicircle with A B  
as diameter. The perpendicular to  A B  at E will intersect this semi- 
circle at a point 0, and EO, the altitude of right triangle AOB, will 
have length 6, 

The length 4; can also bc read off the parabola of Figure 3.8: just 

find a point whose distance from the horizontal axis is x ;  its distance 
from the vcrticnl axis is 6. 

3.6 To find approximatcly the cube root i / a  of a number a one determines 
the point of intersection P of the graph of y = xs with the horizontal 
line g = a and measures tho abscissa of P. The coordinates of P are 

3.8 A careful construction will show that  as n gets larger and larger, the 

3.9 Let a = dn-, b = 6. Then 

(44 a) .  

quantity d m  - 4; bccomcs smaller and smaller. 

( d n T  + f i ) . ( d n = -  6) = 1, 
or 

1 
4- - 6 = 4- + 6. 

Clearly, as n gets larger and larger the denominator dn-+T + 4; 
increases, and i t  follows from the above identity that  the quantity 
4- - fi becomes smaller and smallcr; that is, the difference be- 
tween - and 6 can be made as small as we wish (it is always 
greater than 0) by taking n large enough. 

3.10 We multiply the expression by 

As n gets largcr and larger, l / n  becomes smaller and smaller so that  
this expression approaches 
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3.11 If 0 < y < ir, then (sce Figure 3.15), sin y < g < tan I/; dividing 
by tan y, we obtain 

cos y < - < 1. 
tan y 

As y dccreases, cos y approaches 1 so that  y/tan y is squeezed between 
1 and a number close t o  1. 

3.12 (a) PROOF OF THEOREM 3.1. Let S be the sequence z1 , 5 2  , 5 3  , ... 
having the limit L, and suppose that  y1 , y2 , 1/3 , ... is any 
subsequence S’ of S (i.e., S’ is an infinite sequence whose terms 
are somc or all of the terms of S, arranged in the order in  which they 
occur in  8). 

Now S has the limit L means that  the sequence (51 - L), 
(5, - L ) ,  (5,  - L), ... approaches 0; that  is, for every intcgcr n, 
there are a t  most a finite number (depcnding on n) of terms XL - L,  
k - 1, 2, 3, . a * ,  which are numerically larger than l/n. But if 
S‘ is a subsequence of S, then every tcrm of the sequence (y1 - L), 

(y2 - L ) ,  . . - is identical to  some term z k  - L, so that ,  for every 

intcger n, there can be at most a finite number of terms ykl - L, 
k’ = 1, 2, 3, ..., numerically larger than l/n. 

Thus, every subsequence of an infinite sequence with limit L also 
has the limit L. 

(b) PROOF OF THEOREM 3.2. a + 5 - (a + L)  = z - L, so that  if 
(21 - L ) ,  ( 2 2  - L ) ,  (z3 - L), approaches zero, then 
[a + z1 - (a f L ) ] ,  [a + 5 2  - (a + L ) ] ,  * 9 * also approaches zero; 

therefore a + ZI , a + z2 , a + 5 3  , has the limit a + L. 

(c) PROOF OF THEOREM 3.3. We wish to  show that ,  for every integer m, 
all but a finitc number of terms kz i  satisfy 

provided that the sequencc z i  has L RS limit. In  other words we 
know that  for cvcry n, all but a finite number of z i  satisfy 

In  particular, take n to  be the nearest integer greater than or equal 
t o  I k I m. Then 

for all but a finite number of terms. This argument holds for cvery 
integer m. 

- *.  h w  tho limit L and yl , y2 , 
y3 , has the limit M, then zlyl , sly2 , say3 , .- .  has the 
limit LM. 

(d) We prove first: if 21 , z2 , x 3  , 
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Following the hint, we write 

~ i ~ i  - LM ~ i y i  - x ~ M  + x ~ M  - LM 

~ i ( y i  - M) + M ( x ~  - L). 
By assumption, for every integer n. 

for all but a finite number of x i  , y i  . Moreover, since the x i  have 
a limit, all but a finite number are certainly bounded by some con- 

- stant, say C. Thus 

I s i y i  - L M I  I 1xi1Iyi - M I  + M1xi - L I  
1 1 1 

I C - + M - = ( C + M ) ; .  n n 

Now, given any integer m, we can achieve 

merely by choosing the integer n so that  

thus establishing, for every integer m, 

for all but a finite number of terms xiyi . 
To prove Theorem 3.4, that  the limit of x i  , xi, -.. is L2 , 

use the above result with yi = x i  and L = M. To prove that  the 

limit of xt  , xg , - 9 .  is Lk, we simply repeat the argument k - 1 

times. 

3.13 (a) This problem is not at all easy. Take the case 0 < r < 1. One standard 
proof runs as follows: 

Sinco l /r  > 1, l /r = 1 + h,  h > 0. Now 

for every n, and so (1 + h)" increases without limit as n increases. 
Therefore the reciprocal, r", goes to  zero. 

The assertion that  (1 + h)" increases without limit as n --$ m 

can also be proved by appeal to  tho Bolzano-Weierstrass principle 
described in the next section. For if L is any number such that  



S O L U T I O N S  T O  P R O B L E M S  131 

for all n, then 

= L ' < L  
L 

l + h  
(1 + h)"' 5 - 

for all n; and so, given any upper bound L to  this sequence, there 
would exist a smaller upper bound L'. Such a sequence is incompati- 
ble with the Boleano-Weierstrass principle. 

and each number of the sequence ( r  - l), (r* - l ) ,  equals 0. 
Since no term of this sequence exceeds l /n,  n > 0, the sequence 
approaches 0 and r ,  r*, ra, ... has thc limit 1 when r = 1. 

Letussupposenowthat r =  1. Then r2= 1, r * =  1 ,  r 4 =  1, 

(b) From the identity 

a(1 - 2)(1 + 2 + 2 2  +'..+ 5"-1) = a(1 - 5") 

we get 

then, sinco r" approaches 0 if 1 r 1 < 1, we have 

-1 < r < 1. 
1 - r" 1 

1 - r 1 - r '  
limit - = - 

Hence, the sum of any infinite geometric series a + ar + arz + * - 
with ratio r numerically smaller than 1 is a / ( l  - r). 

3.14 The sequence of rational numbers constructed in the text, in decimal 

1.00oooo0000~~*, 
.6 0 OOOOOOOO* * * , 

2.00 0 0000000. * * , 
,333 3 333333 * * * , 

3.0000 0 00OOO* * * , 
.25OOO 0 0000. * * , 
.666666 0 666. * * , 

4.OoOOOOoOO O . * * ,  

form, is 

. 

1.6oOoO00 0 00. * * ,  

.2MHxH)0000 e m . ,  

............ 
We shall construct a number whose kth decimal is always one or the 

other of the digits 2 or 3 but differs from the kth decimal of the kth 
number in  this list. 

Let us choose 3 as its first decimal since 3 is different from the first 
decimal of the first number. Let us choose 3 for the second decimal of the 
number we are constructing because 3 is different from the second decimal 
of the  second number in the list. Similarly, let us choose 3(# 0) for the 
third decimal, 2(# 3) for the fourth decimal, 3(# 0) for the fifth, 
3(# 0) for the sixth, 3(# 6) for the seventh, etc., until we come to a 
kth number with 3 in the kth place; then we will choose 2. 
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3.15 Before classifying the letters of the alphabet, we shall consider, for the 
sake of definiteness, the letter T. We shall simplify the situation by con- 
sidering an uncountable set of identical (i.0. congruent) letters T (e.g. 
with a stem of one inch and a top bar of one inch) whose vertices are 
labelled A ,  B ,  C, see Figure 3.18(a). 

On any piece of paper of finite dimensions, an uncountable set of such 
T’s must contain an uncountable subset of T’s such that  the vertices 
labelled A are within 4, say, inch of each other. In  this set, there is an 
uncountable subset such that  the vertices labelled B are within t inch 
of each other. And in this set, there is an uncountable subset such that  
the vertices labelled C are within inch of each other. 

Now then, let ABC and A‘B’C’ [see Figure 3.18(b)] be two T’s of 
the kind described. Thcy cross. This can be proved by elementary gcome- 
t ry  from the fact that  a straight line divides the plane into two regions 
(called the two sides of the line), and segments connecting points on op- 
posite sides of the line must cross the line. This establishes the impossi- 
bility of writing an uncountable number of congruent non-crossing T’s 

on a page. Note that  if we merely required the distances AA‘ and BB‘ 
t o  be small, then the T’s could possibly stand as they do in Figure 3.19, 
and not cross. We shall not treat the case of T’s of varying sizes here, 
but the same result can be proved. 

All letters of the alphabet that  contain a configuration such as we en- 
countered in the letter T (i.e. an intersection of two segments or curves 
where at least one of the segments extends beyond the point of intersec- 
tion) are in the same class as T. They are A, B, E, F, H, K, P, 
Q, R, T, X, Y. 

For all other letters, it is possible to  scribble an uncountable set of them 
on a page. Figures 3.20(a), (b) illustrate this fact for the letters 1, 0 

respectively. In each case, tho fact that  a line segment contains an un- 
countable number of points gives the clue. 

C H A P T E R  F O U R  

4.1 The phrase “if this limit exists” has been omitted. The statement 
L = limn,, L, makes sense only if the L. have a limit, and in  this case 
i t  asserts that  L is the value of this limit. 

S1 , S2 , . - - of the sides of cqui- 
lateral triangles whose bases are on the z-axis and whose vertices lie on 
the curve y = 21 is somewhat awkward; fortunately the question posed 
in the problem can easily be answered without such a computation: The 
length of the resulting zig-zag is again 2 because, as in  Example 2, i t  is 
twice as long aa the distance from (1, 0) to  the origin. 

4.2 The direct computation of the lengths 

4.3 We calculate the distances 

which approach zero. Hence T is the limit of the sequence 

Bl 1 Ba, a * *  BW+I a * *  * 

The distances Bh&n-l can be represented aa sides of equilateral tri- 
angles of lengths 1/2”-1 and so these distances also approach 0. 
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By virtue of the triangle inequality, we have the following relations 
between lengths: 

BznT 5 B2nBZyl + BZn-lT. 

As n increases each term on the right approaches zero (by what we 
showed above) and hence their sum approaches zero. Therefore T is 

also the limit of points with even subscripts. 

4.4 The point 2: (4, <2/3) is the limit of the sequence of points 
Dr , D 2 ,  . The abscissas of D I  , DZ , are 

$ + G  dZ + 8, .'., q = + 4, X I =  
<2 4 

2 4 2 

When these finite geometric progressions arc summed, they have the form 

21 =&(l - 1) 2 '  2 2  = &(l - l), 

these numbers come arbitrarily close to  4 sincc the sequence 3, t 
Q, * - approaches zero. This shows that  limn,, xn = 4, and this is 
the meaning of the phrase "the abscissa of 2 is the limit of the abscissas 
of D 1 ,  D 2 ,  9 . .  " . 

To prove that  che ordinates 

1 1  ... , yn = 9 2 [l - - 2 4  + - - ... + (-;)n-'3 ' * * .  

of D1, Dz, have the limit &/3, we sum these finite geo- 
metric series and find that  

As n ---t a, (-+)n approaches zero so that  the yn have the limitd/2/3. 
From the fact that  the abscissas have thc limit .\/?1 and the ordinates 

have the limit @3, we can prove that  the sequence D1 , D Z  , * * * has 
the limit 2: (<2, &/3) by the Pythagorean Theorem. We express the 
distance DnZ by 

Tho terms on the right approach zero as n + 00, hence their squares 
approach zero, and so does the sum of their squares. Therefore the dis- 
tances DnZ approach zero and 2 is indeed the limit of the sequence 
D1,  Dz, * * * .  
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4.5 Denote the abscissas and ordinates of 0; ,D; , . - *  by XI , xz , 
and vl , v 2 ,  - .  * respectively. It is clear from the construction of Ex- 
ample 4' and our knowledge of Example 4 that 

I 1  
, 4  

2 
2 1  = - 

1 1 1  

4 8  

2 

+ ... 1 - -  1 1  

for n 2 2, n even, 

a nd 
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and 

so that  

4 
lim yn = - = lim yWl. 
n-m 6 n-m 

As we have seen in  the solution to  Problem 4.4, this implies that  the 
point (3fi/5, fi/5) is thelimit point of thesequence DI , DZ , . a * .  

4.0 Project each point El , Es , Er , and so on, perpendicularly onto the 
V-axis (this is what we do, essentially, when we calculate the ordinate of a 
point). Call these points F1 , F1 , F a ,  and so on. Now if we let f. 
denote the ordinate of En , then f,, is also the length of OF. . Notice 

that  the sequence of numbers f2 , f4  , f6 , - is constantly increasing 
and is bounded above. By the Bolrano-Weierstrass principlo this sequence 
has a limit f*. We shall show in a moment, but the reader may prefer t o  
prove i t  himself, that  f* is also the limit of tho soquence of odd-numbered 
1)s, f~ , f a  , f~ , ..*, which approach i t  from above. Thus the entire 
sequence has f* as a limit, but the approach t o  this limit is two-sided. 
To  I* there corresponds a point F* (on the y-axis) which ought t o  be 
the projection of the limit of the points El , EZ , Es , * * * ;  but as we 

have seen, the points El , ES , - have no limit. 
A proof that  the sequence of odd-numbered j ’ s  has f* as a limit fol- 

lows. For every n, 

the  second term in parentheses being negative (see Figure 4.10). The first 
term on the right is precisely 4 2 / ( 2 n ) .  We have no formula for the  
second term; but since the sequence fz. (n - 1, 2, 3, ) con- 
verges to  f*, we know that  all such terms are small when n is large 
enough, by the very definition of limit. Thus we can be sure that  whon n 
is large enough, the right hand sido is the difference of two small numbers 
and is small. This shows that  fzn-l is ncar to  f* (for large n)  and con- 
cludes the proof. 

4.7 Example 5 showed (see solution to  previous problem) that  a sequence of 
points in  the plane may have no limit point although the sequence of their 
projections has a limit point. Assertion (a) would be correct if ono added 
“if the given sequence of points has a limit”; we shall demonstrate this 
in  a moment. 

Assertion (b) is true. Let &. be the points in the given sequence, & 
its limit point, P, the  projections of &, , and P the projection of &. 
Then P,P = &,& cosa, where a. is the angle between the segment 
&,& and the line which carries the projections. Since I cos an 1 5 1 i t  
follows that  (P,P I 5 I &.& I and sinco limn-- &,& - 0, i t  follows that  
limn..* I P,P 1 - 0 so that  P ,  the projection of &, is indeed the limit 
point of the seauence P. . 
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This also proves that the limit of the projections is the projection of 
the limit of a sequence of points, provided they havo a limit. If P* is 
the limit of the projections, P the projection of the limit Q ,  then 
limn*= P.P* - 0 and limn..- P,P = 0 imply that  P and P* coincide. 

4.8 Lot 

1 1  1 
Sn p 1 + 21 + 5 + + 2 .  

Sincc for k > 1 we have k > k - 1, i t  follows that  

1 1 
and - < - for all k > 1. 

1 1 
- < -  
k k - 1  k* k(k - 1) 

Thcref ore 

1 1 1 
Sn < 1 + E + E +  * * .  + 

(n - 1)n ' 
(1) 

Now we observe that  

1 1 

(k - l)k k - 1 k 
for k = 2,3,  -.- p - - -  

1 

and re-write the right member of (1) in  the form 

S. < 1 + (; - ;) + (; - ;) + ..- + (A - A) 
n 

This proves that  S, < 2, for n = 1, 2, ..-. 
4.9 By Pythagoras' theorem, we may express any segment OPb in terms of 

the previous one: 

1 
OP: = O P L  + 

(k - 1)1 * 
(1) 

Next, we express OPb1 in terms of the previous one and substitute in (1): 

1 1 
op: - o p t 2  + (k - 2)Z + ( k  - 1)1 * 

Continuing in this manner we find that  

1 1  1 
OP: = OP: + 1 + 214-31 + - * *  + (k - l ) z ,  

and, sinco OPI - 1, we have (in the notation used in the solution to  the 
previous problem) 

OP: = 1 + S L 1 .  

We have seen that  S, < 2 for all n. Hence OP; < 1 + 2 P 3 and 

(2) OP, < <3 for all n. 
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The length of the zig-zag PIP2..  .P. is 

and we have already Seen (page 65) that  the harmonic series 

1 + f + f + 
T o  prove that the projections Q k  (on a circle of radius 3 and center 0) 

of our points Pk wind wound indefinitely often, i t  suffices to  show that  
the sum of the angles a, between OP. and OPn+I becomes arbitrarily 
large. To  see this, consider 

has no limit. 

1 - 
1 =- sin un = - 

OPn+l n OPn+l* 

By our result (2), we see that  

for n = 1, 2, - * * ;  
1 1 

> -  
n OP.+I n d '  

Moreover, for any acute angle a, we have sin CY < P (see Figure 3.15). 
Thus 

so that the sum of the angles exceeds the harmonic series (multiplied by 
tho constant factor 1 / 4 2 )  and hence is infinite. 

Tho sequence P I  , P , . - clearly cannot have a limit point for, 
if i t  did, all points after a certain point (say P N )  on would have t o  be in 
some small sector of the circle, and this is clearly not the case. 

I- l l  

2 
4.10 (a) 

The quantity in brackets is the  harmonic series treated earlier. It was 
found t o  be infinite. Hence, a constant times the harmonic series is 
infinite, and tho series (a) diverges. 

1 1 1  1 1 1 
(b) i + ? + ~ + * * *  a- 4.1 - 1 + -  4.2 - 1 + -  4.3 - 1 

+ ... 1 + ... + - 
4n - 1 

since 

1 1 

4 n - I ' G  
for n = 1, 2, * . -  , 
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each term of the series (b) is greater than the corresponding term in 
the diverging series 

1 1  

1 1  i + , + E + . . . - +  1 1 1  1 a * *  = - [ l + i + i + - .  1 

4n 4 

and hence the series (b) diverges. 

(c) Since for n > 1, n > 6, we have 

1 1 

z ' n  
and 

Hence the sequence (c) diverges. 

terms of (c) and therefore (d) certainly diverges. 
(d) The terms of this sequenco are even larger than the corresponding 

4.11 (a) If for every line i n  the plane the projection of P is the limit of the 
projections of P, , then this is true, in particular, for the two per- 
pendicular axes of a coordinate system. Denote the projections of 
Pn on the x-axis and on the y-axis by x, , y, respectively, and those 
of P by x and y. Then, see Figure4.15(a), 

(PnP)' m (zn - 2)' + (yn - Y)', 

and since the Z n  approach x and the y, approach y, 

lim (PnP)g - 0 
n-rm 

and the P, approach P. 

(b) Clearly, this result cannot ba deduced from the fact that  the given 
data are true for just one line, as Example 5 (page 68) shows. 

(c) If the given data are true for any two non-parallel lines, say 11 and 
1 2  , take one (say 11) to  be the z-axis. It can be shown (by methods 
of analytic geometry or linear algebra) that  any line in the plane, for 
example the y-axis, can be expressed as a linear combination of two 
given non-parallel lines. Moreover, the projections y, of P, on the 
y-axis can be expressed in terms of the  xn and the projections zn of 
Pn on the line I' [see Figuro 4.15(b)], and the y, have a limit y 
if the x, and the z, have limits. Thus the problem that  P is the 
limit of the Pn can be reduced to  tho problem solved in (a). 

C H A P T E R  F I V E  

5.1 Assume that & is rational, i.e. that the diagonal of a unit square has 
lcngth p l /q l  where p l  and q1 are integers. Then a square whose sides 
are qI units long has a diagonal of length p l  . 
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Now construct the following sequence of right isosceles triangles: 
The first has legs of length 41 and a hypotcnuse of length pl , see 
Figure 5.4(b). Erect a perpendicular to  the hypotenuse at a point which 
divides i t  into scgmcnts of lengths ql and pl - q I  . This perpendicular 
cuts off a corner of the first triangle, and this corncr is our sccond triangle, 
clearly similar to  the first, with leg of length q2 and hypotenuse of length 

p2 . We observe [sce Figure 5.4(b)] that  

q i  = PI - qI and p2 = 41 - q 2  = qI - (pi - q1) = 2q1 - PI . 
Now we repeat the construction and cut off the next corner triangle 
Its legs have length 

43 = p2 - q 2  - 2q1 - pl - (PI - q 1 )  = 3q1 - 2Pl 

and its hypotenuse has length 

pa qa - q 3  = pi - pi - (391 - 2P1) 3Pi - 4q1 

We continue cutting off corners, always obtaining an isosceles right 
triangle similar t o  all the prcvious ones. The leg of the nth triangle 
has length q,, , its hypotenuse has length p. , and these lengths satify 
the relations 

q n  = Pn-1 - Qn-1 Pn = Qn-1 - Qn * 

Since p,+l = qn-. - qn-l we may express the length q. of the nth leg 

qn Qn-2 - 2qn-1 i n > 2, 

that  is, in terms of the lengths of the legs of the previous two triangles. 
Now consider the sequence ql , q 2  , qa , . Since pl and ql 

are integers, q2 = pl - q1 is an integer, q a  = ql - 2q2 is an integer and, 
in general, q,, = qn-2 - 2q.-l is an integer for all n > 2. It is clear 
from our construction that  the legs of subsequent triangles decrease in 
length, i.e. that  

by 

qi > 42 > 9s > * a *  . 
Thus th6 &ssmnption that  <2 = pt/ql is rational has led to  an infinite 
decreasing sequcnce of positive integers, and no such sequence exkts. 
We conclude that  4 is irrational. 

In  order to  apply this method to  4 5 ,  assume that  & = r,/s1 where 
rl and 81 are integers. Blow,up the rectangle of Figure 5.5 so that  its 
sides are 81 , 291 ; then its diagonal is rl . Our construction will lead 
to  similar right triangles with legs sn , 29" and hypotenuse r,, . The 
recursion relations will be 

an = rn-1 - 29.4 , rn an-1 - 29n , 
so that  

8n 5 Sn-a - 29.4 - 29n-1 8.-2 - 49n-1 1 

and the sequence 81 , 8 2 ,  sa , of lengths of shorter legs of the 
similar triangles is again a decreasing infinite sequence of integers. 

These examples show how this method can be used t o  prove the irra- 
tionality of dz for any integer k which can be written as the sum of 
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the squares of two integers: k - a' + b'. We have used it for k 9 1' + l', 
and for k 9 2' + 1'. The details of this generalization are left t o  the 
reader. 

6.3 The kth fraction, Fk , is formed from the previous fraction, FLI , as 
follows : 

If 
4 

9- 

1 
I 9 - _  thnn FL = - F k - .  I ------ - I 

4 , + p  P + q *  
- I  

4 

6.4 (a) A sequence of finite parts of the expreaeion 4 1  - 4 1  - 4- 
is formed in the following manner: 

d i t  4 - 9  4 1  -41 -,/i, .. . . 

When we compute theae numbers we see that  this is the sequence 
1, 0, 1, 0, * * a  , which has no limit. 

(b) Since m satisfies m' + m = 1, its reciprocal satisfies 

1 1  
; + - = l  or l + r = * .  

T 

The terms a,  of the sequence of finite parts 

obey the recureion formula 

(1) at - 4, an = 41 + an-I, for n = 2,3, . 
We shall show that the increasing sequence a1 , al , * * has a limit 
by applying the Bolzano-Weierstrass Theorem, see Section 3.8. In  
order t o  do this, we must find a bound B such that  al < as < * < B. 

The fact that the a, increase implies that am+l - a n  > 0 for 
n = 1, 2, . From (1) we have 

h + i  - a n  

41- + 1 + a n - i  

+ an-l 
141 + a. - d1 + a n - I 1  4 r a n  + 

(1 + 4 - (1 + a d  0- - 0-1 - 41- + dl + 6 - 1  = d l 7  + 4r+;. 

Since a i  > 0 for all i ,  the denominator in the last expression is 
greater than 2. Therefore 

for all n, 
1 

2 
0s < - (a. - am-1) a.+l - 
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and 

2 2  1 " 
1 

< gl (a2 - ad. 

1 

2 
(2) an+* - an < - (a, - a - - ~ )  < - - (an-1 - a d  

< ... 

Next we write an+1 in the form 

= (an+l - a,) + (a. - a , ~ )  + ... + (a2 - ad + a1 
and apply inequality (2) to  each expression in parentheses: 

+ (a, - ad + a, + ... 

The expression in brackets never exceeds 2 , s o  

a,,l < 2(a2 - a , )  + al = 2 ( d  - 1) + 1 = 2 4  - 1 ,  

and this number bounds all terms of our sequence. 

sequence is T = l /m = 1 + m = 1.618 . . . . The bound 
Observe that  we did not make use of the fact that  the limit of this 

B p 2<2 - 1 * 1.828 ... 

which we constructed is somewhat larger than this limit. 

5.5 The values of these ratios, calculated to  six decimal places, are 

- = .625000; - = 615385; - l3 = .619048; 5 

8 13 21 

= 617647; _- 34 = .618182; - 55 = .617978. 21 

34 55 89 
- 

The fractions 

- and - 'lo = ,618034 
987 

377 = .el8033 
610 

are the 17th and 18th terms of the sequence. 

5.6 Each successive fraction in the sequence is numerically closer to  m. 

The approximate differences between m and the fractions 4,  3 ,  
i?, a ,  18 me, respectively, .118034, .048633, .018034, .oo(j96G, and 
.002649. For a general proof of the fact that  each convergent t o  an in- 
finite continued fraction is closer to  i t  than the previous convergent, see 
for example Chapter 3 (particularly Theorem 3.7) of the book by C. D. 
Olds, Continued Fractions, to  appear in this series. 
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5.7 m6 = 2m - 3mz = 5m - 3; 

m7 5m - 8m2 = 13m - 8; 

If f. is the nth term of the Fibonacci Sequence, the formula for the 

ma = 5m1 - 3m = 5 - 8m; 

ni8 = 13m* - 8m = 13 - 21m; * * .  . 

nth power of m is 

mn = (-l)"(fn-l - fmm). 

The corresponding situation for t is 

t' = 3r + 2;  7' 5T + 3; 7' = 8t + 5; * ' .  ; tm = f n 7  +f,,-l . 

5.8 A complete solution to  Problem 5.8 is given in Chapter 6, pp. 114-117. 

5.9 The way the vertices are ordered in successive rectangles reflects the 
fact that the shorter side of each rectangle (i.e. the line joining the 2 
vertices named last in the ordering) is the longer side of the next one (i.e. 
the line between the vertices listed in the middle position). In each case 
the vertex named first is the one from which the 45" line is drawn to the 
point that is the first named vertex of the next rectangle. 

5.10 The length of each successive segment of this zig-zag is the length of the 
preceding segment reduced by the factor m < 1. Hence, the length of 

the zig-zag is the sum of the infinite geometric series 

fi + 42 m + 4 3  * ma + 42 * ma + 

The solution t o  Problem 3.13 (p. 52) proves that  the formula for the 
sum of any infinite geometric series with first term a and ratio r < 1 

is a/(l  - r ) .  

5.11 

Number of quarter-turns Distancefrom 1' to  
(degreee) about T point on the spiral 

2n + 1 

2 
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5.12 If 1 takes on negative valucs, we get a continuation of the spiral in a 
counter-clockwise direction from A T .  As the values of 1 become smaller 
and smaller (i.e. as 1 approaches -a), R increases without limit. 

5.13 T o  multiply a number RI by a number R2 by nieans of the spiral in 
Figure 5.11 (where the distance A T  is now taken to  be the unit of meas- 
urement) we use the ruler to  locate those points PI  and Pi on the 
spiral which have distances Rl and R2 from T :  

PIT RI , P2T a Rt . 

Now we follow the spiral from the point A to  the point PI and denote 

by a1 the angle through which the radius vector to  the spiral must 
rotate to  get from T.4 to  T P ,  . (Observe that  i f  RI < 1, then we 
reach PI by going in the clockwise direction and a1 will be taken to he 
positive; if Rl > 1, then we reach PI by going count.er-clockwise and 
a1 will be taken negative.) Next, we follow the spiral from A to  P2 and 
measure the angle a2 by which the radius vector must be rotated to  
get from T A  to  TP2 . Now we add the anglen a1 and a2 , and rot.ate 

the line A T  through the angle ul + a2 alwayn following the spiral from 
the point A on. This will lead to  a point P ,  on the spiral whose distance 
from T is 

PsT - R i . R z .  

This method is just a geometric interpretation of the law of exponents: 
Given 

R~ = mal, Rt  =, ma*, 

we have found 

5.14 If the radius vectors T P ,  , T P 2  , . - .  , T P .  have the same direction 

but different magnitudes Rl , R 1 ,  . . .  , R . ,  then the angles of 
rotation a1 , a2 , ... , a n ,  measured from the line through T and 
.4 as this line passes through each point of the curve from A t o  P I  , 
to  P 2 ,  ’ . . , to  P .  , differ only by multiples of 2r radians (one full 

turn about T, i.e. 4 quarter-turns). This property corresponds to  t h e  
fact that  the logarithms of the numbers represented by the lengths 

R I ,  R , ,  * . .  , R ,  would differ only in their characteristics, i.e. in 
the integer part of the logarithm. (If a is measured in quarter-turns, 
these logarithms would differ by multiples of 4.) If a is hctween 4k 
and 4(k + 1) quarter-turns, a - 4k would correnpond to  the mantissa 

and would determine the direction of the line T P ,  while the charac- 
teristic 4k would determine on which “ring” of the spiral the point 
P lies. 
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C H A P T E R  SIX 

8.1 Assume to the contrary that there exist integers a and b such that 

2 * (1 + 42) = 1. 
b 

Then 

or 

But if b and a are integers, b - a is also an integer, and the laat 

equality states that 42 is rational, which is false. Therefore the re- 
ciprocal of 1 + fi is not rational. 

6.2 Let d be the highest common factor of a and b ,  and let x and y 
be integers. Then the integer 

az + by = c = a’dx + b’dy = d(a’z  + b ’ y )  

is clearly divisible by d .  

and b, then we can find integers x and y such that 

Conversely, if c is divisible by d ,  the highest common factor of a 

ax + by = c 

i n  the following way. We divide the equation by d obtaining 

a’x + b’y = c’, 

where a’ and b’ are relatively prime. In this case it is known (see e.g. 
the discussion of Euclid’s algorithm in Conlinued Fracfions by C. I). 

Olds, to  appear in this series) thst  t,here exist integers X I  and yt such 
that 

U’Z~ + b’yi = 1; 

then the integers z = C ’ X ~  , y = c’yl will satisfy 

a‘z + b’y - c’, 

and hence also ax + by - c .  

6.3 2“-1, n = 1, 2, 3, . . . . 

6.4 When N = 1, N and the sum of its digits clearly have the same residue 

Suppose that k is an integer mch that k and the sum of its digits 
modulo 3. This proves the first step in the induction. 

have the same residue modulo 3, i.e. such that 

k = 3q + r ,  O I r < 3 ,  
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arid the sum of the digits of k is piven by 

3s + r ,  O < r < 3 .  

To prove the inductive step, we must show that k + 1 and the sum 

of its digits have the NLIIIC remainder when divided by 3. Wheu 

0 < r + 1 < 3, we have 

k + l = 3 q + ( r + 1 ) ;  

otherwise 

k + 1 i= 3 ( q  + 1 ) .  

If t.lie last ?rt (ru 2 0) digits of a nuniber k are all '3 '8 ,  these 9's will 

become 0's when 1 is added to k ,  but the first digit. which is not a 9 will 

be increased by 1. Since t.he sum of the digits of k is 3s + r ,  we may 

write the sum of the digits of k + 1 in the f o r i n  

(3s + r )  + 1 - 9nt ,  

which i n  equivalent to  

3 ( s  - 3 m )  + ( r  + 1 ) .  

Thus k + I ctnd the suni of the digi1.s of k + 1 have t.lie sitme residue 

modulo 3. 

6.5 The assertion i n  true for n = 1. Assume that. for n = k, 

1 + 2 + . . . + k = f k ( k + t ) ,  

und consider the case for n = k + 1 .  By applying the inductive hypothesis 
we yet 

1 + 2  + . . .  + k +  k + 1 = fk(k + 1) + k + 1, 

which ccm be written 

fk' + j k  + 1 = f (k2  + 3k + 2) = f(k + l ) ( k  + 2) .  

Since t.his is of the form fn(n + I ) ,  the proof is complete. 

G.6 For cdl integers n, 2"'9 exceeds (n + 9)3. 

6.7 I t  is true that ,  when k is an integer greater than 2, then 

2k' > k2 + 2k  + 2 > (k + 1)';  

to  show this, note h t  when k > 2 ,  thcri k - 2 > 0, and since k is 

tin integer, k - 2 2 1 ,  k 2 3 so that k(k - 2) > 1 or k2 > 2k + 1 .  

Hence 

2k2 = k' + k' > k' + 2k + 1 ,  

that is, 

I his fact docs not eriable us to prove thcbt 2" exceeds nz for all 71 > 2 

because, i n  order to  use thctt 2x+'  > 2k2, we lictd to  ussunie that 2k > k2, 
arid it  is not true that Z 3  exc:cetls 32. 

2k2 > (k + 1)'. 
r .  
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(b) From 2N > N2 if N > 4 we get 

(2N)N > (N2)N or 2"') > (N2)N. 

Thus,  if we take n = N 2 ,  we have tha t  for N > 4 ,  2" > n N .  

Hut from the proofs of Theorems 2 and 3 we know tha t  for N = 2 
and N = 3, 2" > nN only if n exceeds N 2 .  ThiN nuggests t ha t  we 
can prove the inductive Htep of Therorem N by showing tha t  for all 

n > N 2 ,  2" > n N .  

6.9 If 2' > k N ,  and k > N 2 ,  then 

2k+' = 2.2k > 2kN = kN + kN > kN + NlkN-1 

so t ha t  

2k+1 > k N  + NkN-1 + N ( N  - 1)kN-I 

2 k N  + NkN-l + N ( N  - l)kN* 

2 

= ( k  + 1 ) N .  
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6.10 We have proved (Theorem 1) that when N = 1, 

2" > nN = n for all integers n. 

Assume that when N = k and n exceeds kz, it is true that 2" > nk. 
It follows from Problem 6.9 that 2" > n H 1  provided that  n > ( k  + l ) z ,  

which in all we need to  complete the proof that 2" > nN for all integers 
N and n such that n > NP. 

6.11 Let us t ry  to  imitate the proof of Lagrange's Theorem (pages 115-117) 
in the present case and let us observe what modifications will be necessary. 

The box principle tells us that any sequence of residues (mod N )  
has a repeating consecutive pair within Nz + 2 terms. If the pairs a,  , 
a,+1 and a k  , aktl have the same residues, then from 

a ,  = ak(mod N )  and a,,l = ak+l(mod N )  

we get 

3a. 3ak(mod N)  and 2a,+l 5 2ar+l(mod N). 

It follows that 

2 ~ , + ~  + 3a, = 2at+, + 3a4mod N ) ,  

or 

Q.+Z = attdmod N ) .  

By the same argument 

a,+a - arta(mod N ) ,  

a,+r = a d m o d  N ) ,  

which shows that  the sequence of residues (mod N) of the sequence given 
by anti = 2a. + 3a.-1 is periodic. 

Let the period of the sequence be p .  Then 

aj = aj+, (mod N )  ( j  2 T) 

from some j on, say j = T. Suppose QT is not the first term of the 

sequence. From the recursion formula we have 

Hence, 

or 

3 ( a ~ - 1  - U T - I + ~ )  m 0 (mod N). 
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Clearly, we can conclude that  

ar-1 = ar-ltp (mod N) 

only if we msume that  3 and N are relatively prime; otherwise, it does 
not necessarily follow that  N is a factor of - a ~ - ~ + ~  . Since T is a 
a finite integer, this process applied successively t o  T - 1, T - 2, 
T - 3, ... , eventually must lead t o  

al = a ~ + ~  (mod N). 

Thus, the sequence of residues (mod N), N 2 2, of the aequence 
defined by a. ,~  9 2a. + 3an-l, n 2 2 (where the initial values al 

and a2 may be any given integers) is periodic. If 3 and N are relatively 
prime, then the periodic part begins with the residue of at . 

6.12 The residues (modN), N 1 2 ,  of any sequence defined by 

a n t 1  man + Ban-1 

with arbitrary initial integers al and ax are periodic; the repetition of 
a pair occurs within at most N* + 2 terms. If N and @ are relatively 
prime, then the periodic part begins with the residue of al . 

6.13 The sequence of residues (modN) of any sequence defined by 

an+i P man + &-I + yam-, 9 n 1 3, 

has a repeated consecutive triplet within NJ + 3 terms. If N and y 
are relatively prime, the aequence of residues (modN) is periodic from 
the beginning on. 

... , an , built (after the n th  term) on a rule expressing the 
(n + 1)th term as a linear combination of the preceding n terms is 
periodic from the beginning on and will repeat within N" + n terms 
whenever N haa no factors greater than 1 in common with the coefficient 
of the earliest term in the recursion formula. 

6.16 The lines z = a for all rational a constitute a countable infinity of 
lines since the set of all rational numbers is countable. The same is true 
for the sets y = b, x 1 c, y 9 d for rational b, c ,  d. Since all 
special rectangles are formed by combining 4 sides, each from one of 
these sets, we obtain N 0.N ,.N 0-N = N possible special rectangles. 
(This even includes the degenerate rectangles in which a pair of opposite 
sides coincides. Therefore, the non-degenerate special rectangles certainly 
constitute a countable set.) 

6.16 Let P be the point (zo,  yo), and let d be the minimum distance 
from P t o  any point on the given rectangle. Then there exist rational 
numbers bl < f d  and 62 < f d  such that  

z 9 20 + 81 9 a 

are rational, and numbem el < i d  and es  < f d  such that 

6.14 In  general, the sequence of residues (modN) of a sequence a1 , a ,  , 

and 2 - xu - 6 2  - a' 

u YO + 61 b and y yo - 62 9 b' 
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are rational. It follows that  the sides of a special rectangle R lie on the 
lines x = a, x = a’, y = b,  y = b‘, and the point P is inside of this 
rectangle. Furthermore, since the length of the diagonal of R is 

the distance from P t o  the farthest point on R is less than the mini- 
mum distance from P t o  the given rectangle. Hence, the special rec- 
tangle lies entirely within the given one. 

6.17 If we assume that  there is no point P in the set X such that  every rec- 
tangle containing P contains uncountably many points of X, then 
every point in the set X must be inside a t  least one rectangle Containing 
a countable set of points of X. In this case, the solution t o  Problem 6.16 
shows that  every point of X is inside of a special rectangle which is 
entirely within the rectangle containing a countable set of points belong- 
ing t o  X, and so also contains at most a countable infinity of points of 
X. Now, we have proved (Problem 6.15) that  the set of all special rec- 
tangles is of power N O  ; therefore, the set of special rectangles with 
which we are concerned is certainly countable. Moreover, since each of 
these special rectangles contains a countable set of points of X, i t  follows 
from N o . N o  - N o  that  the set X is countable. But this contradicts 
the hypothesis that  the given set is uncountable; hence, there must exist 
some point P in X such that  every rectangle containing P contains 
uncountably many points belonging to  the set X. 

6.18 Take the point P obtained in  the solution t o  Problem 6.17, and a se- 
quence of decreasing intervals (rectangles in the case of the plane) closing 
down on P. In each of these intervals pick one point of X from among 
the uncountably many which are available. This gives a sequence 
PI  , Pz , P S  , ... of points of X which form the desired convergent 
sequence. A proof such as this is called “non-constructive” because no 
mechanism is provided for actually defining each point P ,  . Since we 
know nothing about X except that  i t  is uncountable, no method of 
selection iR available to  us. 
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