AMS / MAA	ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 8

Geometric Transformations I

I. M. Yaglom

Translated from the Russian by
Allen Shields

Geometric Transformations I

Anneli Lax New Mathematical Library
 published by

The Mathematical Association of America

Editorial Committee
Ivan Niven, Chairman Anneli Lax, Editor
University of Oregon New York University
W. G. Chinn, City College of San Francisco
Basil Gordon, University of California, Los Angeles
M. M. Schiffer, Stanford University

The New Mathematical Library (NML) was begun in 1961 by the School Mathematics Study Group to make available to high school students short expository books on various topics not usually covered in the high school syllabus. In a decade the NML matured into a steadily growing series of some twenty titles of interest not only to the originally intended audience, but to college students and teachers at all levels. Previously published by Randon House and L. W. Singer, the NML became a publication series of the Mathematical Association of America (MAA) in 1975.

Geometric

Transformations I

by

I. M. Yaglom
translated from the Russian by
Allen Shields
University of Michigan

Published and Distributed by
The Mathematical Association of America

Originally published in 1962 by Random House.
(C) 1975 by

The Mathematical Association of America (Incorporated)
Libraty of Congress Catalog Card Number 62-18330
Print ISBN: 978-0-88385-608-6
Electronic ISBN 978-0-88385-925-4
Printed in the United States of America

Note to the Reader

This book is one of a series written by professional mathematicians in order to make some important mathematical ideas interesting and understandable to a large audience of high school students and laymen. Most of the volumes in the New Mathematical Library cover topics not usually included in the high school curriculum; they vary in difficulty, and, even within a single book, some parts require a greater degree of concentration than others. Thus, while the reader needs little technical knowledge to understand most of these books, he will have to make an intellectual effort.

If the reader has so far encountered mathematics only in classroom work, he should keep in mind that a book on mathematics cannot be read quickly. Nor must he expect to understand all parts of the book on first reading. He should feel free to skip complicated parts and return to them later; often an argument will be clarified by a subsequent remark. On the other hand, sections containing thoroughly familiar material may be read very quickly.

The best way to learn mathematics is to do mathematics, and each book includes problems, some of which may require considerable thought. The reader is urged to acquire the habit of reading with paper and pencil in hand; in this way mathematics will become increasingly meaningful to him.

For the authors and editors this is a new venture. They wish to acknowledge the generous help given them by the many high school teachers and students who assisted in the preparation of these monographs. The editors are interested in reactions to the books in this series and hope that readers will write to: Editorial Committee of the NML series, New York University, The Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, N. Y. 10012.

The Editors

Anneli Lax New Mathematical Library

1. Numbers: Rational and Irrational by Ivan Niven
2. What is Calculus About? by W. W. Sawyer
3. An Introduction to Inequalities by E. F. Beckenbach and R. Bellman
4. Geometric Inequalities by N. D. Kazarinoff
5. The Contest Problem Book I Annual High School Mathematics Examinations 1950-1960. Compiled and with solutions by Charles T. Salkind
6. The Lore of Large Numbers by P. J. Davis
7. Uses of Infinity by Leo Zippin
8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields
9. Continued Fractions by Carl D. Olds
10. Replaced by NML-34
11. Hungarian Problem Book I, Based on the Extvoss Competitions 1894-1905, translated by E. Rapaport
12. Hungarian Problem Book II, Based on the Eotvos Competitions 1906-1928, translated by E. Rapaport
13. Episodes from the Early History of Mathematics by A. Aaboe
14. Groups and Their Graphs by E. Grossnan and W. Magnus
15. The Mathematics of Choice by Ivan Niven
16. From Pythagoras to Einstein by K. O. Friedrichs
17. The Contest Problem Book II Annual High School Mathematics Examinations 19611965. Compiled and with solutions by Charles T. Salkind
18. First Concepts of Topology by W. G. Chinn and N. E. Steenrod
19. Geometry Revisited by H. S. M. Coxeter and S. L. Greitzer
20. Invitation to Number Theory by Oystein Ore
21. Geometric Transformations II by I. M. Yaglom, translated by A. Shields
22. Elementary Cryptanalysis---A Mathematical Approach by A. Sinkov
23. Ingenuity in Mathematics by Ross Honsberger
24. Geometric Transformations III by I. M. Yaglom, translated by A. Shenitzer
25. The Contest Problem Book III Annual High School Mathematics Examinations 19661972. Compiled and with solutions by C. T. Salkind and J. M. Earl
26. Mathematical Methods in Science by George Pòlya
27. International Mathematical Olympiads-1959-1977. Compiled and with solutions by S. L. Greitzer
28. The Mathematics of Games and Gambling, 2nd ed. by Ectward W. Packel
29. The Contest Problem Book IV Annual High School Mathematics Examinations 19731982. Compiled and with solutions by R. A. Artino, A. M. Gaglione, and N. Shell
30. The Role of Mathematics in Science by M. M. Schiffer and L. Bowden
31. International Mathematical Olympiads 1978-1985 and forty supplementary problems. Compiled and with solutions by Murray S. Klamkin
32. Riddles of the Sphinx by Martin Gardner
33. U.S.A. Mathematical Olympiads 1972-1986. Compiled and with solutions by Murray S. Klamkin
34. Graphs and Their Uses by Oystein Ore.V Revised and updated by Robin J. Wilson
35. Exploring Mathematics with Your Computer by Arthur Engel
36. Game Theory and Strategy by Philip D. Straffin, Jr.
37. Episodes in Nineteenth and Twentieth Century Euclidean Geometry by Ross Honsberger
38. The Contest Problem Book V American High School Mathematics Examinations and American Invitational Mathematics Examinations 1983-1988. Compiled and augmented by George Berzsenyi and Stephen B Maurer
39. Over and Over Again by Gengzhe Chang and Thomas W. Sederberg
40. The Contest Problem Book VI American High School Mathematics Examinations 19891994. Compiled and augmented by Leo J. Schneider
41.The Geometry of Numbers by C. D. Olds, Anneli Lax, and Giuliana Davidoff
41. Hungarian Problem Book III Based on the Eotvors Competitions 1929-1943 translated by Andy Liu
42. Mathematical Miniatures by Svetoslov Savchev and Titu Andreescu

Other titles in preparation.

CONTENTS

Translator's Preface 3
From the Author's Preface 5
Introduction. What is Geometry? 7
Chapter I. Displacements 15

1. Translations 15
2. Half Turn and Rotation 21
Chapter II. Symmetry 41
3. Reflection and Glide Reflection 41
4. Directly Congruent and Oppositely Congruent Figures. Classification of Isometries of the Plane 60
Solutions. Chapter One. Displacements 71
Chapter Two. Symmetry 98

GEOMETRIC TRANSFORMATIONS I

Translator's Preface

The present volume is Part I of Geometric Transformations by I. M. Yaglom. The Russian original appeared in three parts; Parts I and II were published in 1955 in one volume of 280 pages. Part III was published in 1956 as a separate volume of 611 pages. In the English translation Parts I and II are published as two separate volumes: NML 8 and NML21. The first chapter of Part III, on projective and some non-Euclidean geometry, was translated into English and published in 1973 as NML vol. 24; the balance of Part III, on inversions, has not so far been published in English.

In this translation most references to Part III were eliminated, and Yaglom's "Foreword" and "On the Use of This Book" appear, in greatly abbreviated form, under the heading "From the Author's Preface".

This book is not a text in plane geometry. On the contrary, the author assumes that the reader is already familiar with the subject. Most of the material could be read by a bright high school student who has had a term of plane geometry. However, he would have to work; this book, like all good mathematics books, makes considerable demands on the reader.

The book deals with the fundamental transformations of plane geometry, that is, with distance-preserving transformations (translations, rotations, reflections) and thus introduces the reader simply and directly to some important group theoretic concepts.

The relatively short basic text is supplemented by 47 rather difficult problems. The author's concise way of stating these should not discourage the reader; for example, he may find, when he makes a diagram of the given data, that the number of solutions of a given problem depends on the relative lengths of certain distances or on the relative positions of certain given figures. He will be forced to discover for himself the conditions under which a given problem has a unique solution. In the second half of this book, the problems are solved in detail and a discussion
of the conditions under which there is no solution, or one solution, or several solutions is included.

The reader should also be aware that the notation used in this book may be somewhat different from the one he is used to. For example, if two lines l and m intersect in a point O, the angle between them is often referred to as $\Varangle l O m$; or if A and B are two points, then "the line $A B$ " denotes the line through A and B, while "the line segment $A B$ " denotes the finite segment from A to B.

The footnotes preceded by the usual symbol \dagger were taken over from the Russian version of this book while those preceded by the symbol \mathbf{T} have been added in this translation.

I wish to thank Professor Yaglom for his valuable assistance in preparing the American edition of his book. He read the manuscript of the translation and made a number of suggestions. He has expanded and clarified certain passages in the original, and has added several problems. In particular, Problems 4, 14, 24, 42, 43, and 44 in this volume were not present in the original version while Problems 22 and 23 of the Russian original do not appear in the American edition. In the translation of the next part of Yaglom's book, the problem numbers of the American edition do not correspond to those of the Russian edition. I therefore call to the reader's attention that all references in this volume to problems in the sequel carry the problem numbers of the Russian version. However, NML 21 includes a table relating the problem numbers of the Russian version to those in the translation (see p. viii of NML 21).

The translator calls the reader's attention to footnote \dagger on p .20 , which explains an unorthodox use of terminology in this book.
Project for their advice and assistance. Professor H. S. M. Coxeter was particularly helpful with the terminology. Especial thanks are due to Dr. Anneli Lax, the technical editor of the project, for her invaluable assistance, her patience and her tact, and to her assistants Carolyn Stone and Arlys Stritzel.

From the Author's Preface

This work, consisting of three parts, is devoted to elementary geometry. A vast amount of material has been accumulated in elementary geometry, especially in the nineteenth century. Many beautiful and unexpected theorems were proved about circles, triangles, polygons, etc. Within elementary geometry whole separate "sciences" arose, such as the geometry of the triangle or the geometry of the tetrahedron, having their own, extensive, subject matter, their own problems, and their own methods of solving these problems.

The task of the present work is not to acquaint the reader with a series of theorems that are new to him. It seems to us that what has been said above does not, by itself, justify the appearance of a special monograph devoted to elementary geometry, because most of the theorems of elementary geometry that go beyond the limits of a high school course are merely curiosities that have no special use and lie outside the mainstream of mathematical development. However, in addition to concrete theorems, elementary geometry contains two important general ideas that form the basis of all further development in geometry, and whose importance extends far beyond these broad limits. We have in mind the deductive method and the axiomatic foundation of geometry on the one hand, and geometric transformations and the group-theoretic foundation of geometry on the other. These ideas have been very fruitful; the development of each leads to non-Euclidean geometry. The description of one of these ideas, the idea of the group-theoretic foundation of geometry, is the basic task of this work. . . .

Let us say a few more words about the character of the book. It is intended for a fairly wide class of readers; in such cases it is always necessary to sacrifice the interests of some readers for those of others. The author has sacrificed the interests of the well prepared reader, and has striven for simplicity and clearness rather than for rigor and for logical exactness. Thus, for example, in this book we do not define the general concept of a geometric transformation, since defining terms that
are intuitively clear always causes difficulties for inexperienced readers. For the same reason it was necessary to refrain from using directed angles and to postpone to the second chapter the introduction of directed segments, in spite of the disadvantage that certain arguments in the basic text and in the solutions of the problems must, strictly speaking, be considered incomplete (see, for example, the proof on page 50). It seemed to us that in all these cases the well prepared reader could complete the reasoning for himself, and that the lack of rigor would not disturb the less well prepared reader. . . .

The same considerations played a considerable role in the choice of terminology. The author became convinced from his own experience as a student that the presence of a large number of unfamiliar terms greatly increases the difficulty of a book, and therefore he has attempted to practice the greatest economy in this respect. In certain cases this has led him to avoid certain terms that would have been convenient, thus sacrificing the interests of the well prepared reader. . . .

The problems provide an opportunity for the reader to see how well he has mastered the theoretical material. He need not solve all the problems in order, but is urged to solve at least one (preferably several) from each group of problems; the book is constructed so that, by proceeding in this manner, the reader will not lose any essential part of the content. After solving (or trying to solve) a problem, he should study the solution given in the back of the book.

The formulation of the problems is not, as a rule, connected with the text of the book; the solutions, on the other hand, use the basic material and apply the transformations to elementary geometry. Special attention is paid to methods rather than to results; thus a particular exercise may appear in several places because the comparison of different methods of solving a problem is always instructive.

There are many problems in construction. In solving these we are not interested in the "simplest" (in some sense) construction-instead the author takes the point of view that these problems present mainly a logical interest and does not concern himself with actually carrying out the construction.

No mention is made of three-dimensional propositions; this restriction does not seriously affect the main ideas of the book. While a section of problems in solid geometry might have added interest, the problems in this book are illustrative and not at all an end in themselves.

The manuscript of the book was prepared by the author at the Orekhovo-Zuevo Pedagogical Institute... in connection with the author's work in the geometry section of the seminar in secondary school mathematics at Moscow State University.
I. M. Yaglom

Solutions

Chapter One. Displacements

1. Translate the circle S_{1} a distance a in the direction l, and let S_{1}^{\prime} be its new position; let A^{\prime} and B^{\prime} be the points of intersection of S_{1}^{\prime} with the circle S_{2} (see Figure 60). The two lines parallel to l, one through the point A^{\prime} and the other through the point B^{\prime} will each solve the problem (the segments $A A^{\prime}$ and $B B^{\prime}$ in Figure 60 are each equal to the distance a of the translation). One can find two additional solutions by translating S_{1} in the opposite direction a distance a parallel to l into the new position $S_{1}^{\prime \prime}$.
Depending on the number of points of intersection of the circles S_{1}^{\prime} and $S_{1}^{\prime \prime}$ with S_{2}, the problem may have infinitely many solutions, four solutions, three solutions, two solutions, one solution, or no solution at all. In the case shown in Figure 60 the problem has three solutions.

Figure 60
2. (a) Assume that the problem has been solved, and translate the segment $M N$ into a new position $A N^{\prime}$ in such a manner that the point M is carried into the point A (Figure 61a). Then $A M=N^{\prime} N$, and therefore

$$
A M+N B=N^{\prime} N+N B
$$

Thus the path $A M N B$ will be the shortest path if and only if the points N^{\prime}, N, and B lie on one line.

Thus we have the following construction: From the point A lay off a segment $A N^{\prime}$ equal in length to the width of the river, perpendicular to the river, and directed toward it; pass a line through the points N^{\prime} and B; let N be the point of intersection of this line with the river bank nearest to B; build the bridge across the river at the point N.

Figure 61
(b) For simplicity we consider the case of two rivers. Assume that the problem has been solved, and let $K L$ and $M N$ be the two bridges across the rivers. Translate the segment $K L$ to a new position $A L^{\prime}$ in such a manner that the endpoint K is taken into the point A (Figure 61b). Then $A K=L^{\prime} L$ and

$$
A K+L M+N B=L^{\prime} L+L M+N B
$$

If $A K L M N B$ is the shortest path from A to B, then $L^{\prime} L M N B$ will be the shortest path from L^{\prime} to B and $L M N B$ the shortest path from L to B. But L and B are only separated by the second river, and so from part (a) we know how to construct the shortest path between them.

Thus we have the following construction: From the point A lay off a segment $A L^{\prime}$ equal in length to the width of the first river, perpendicular to it, and directed toward it; from the point L lay off a segment $L^{\prime} N^{\prime}$ equal in length to the width of the second river, perpendicular to it, and directed toward it. Pass a line through the points N^{\prime} and B; let N be the point of intersection of this line with the bank of the second river
nearest to B. The bridge across the second river should be built at. N. Let M be the other endpoint of this bridge. Pass a line through the point M parallel to the line $N^{\prime} B$, and let L be the point of intersection of this line with the bank of the first river nearest to M. The first bridge should be built at L.
3. (a) Let M be a point in the plane for which $M P+M Q=a$, where P and Q are the feet of the perpendiculars from M to the lines l_{1} and l_{2}, respectively (Figure 62a). Translate the line l_{2} a distance a in the direction $Q M$. If l_{2}^{\prime} is the new line obtained by this translation, then it is clear that the distance $M Q^{\prime}$ of the point M from the line l_{2}^{\prime} is equal to $a-M Q=M P$. Consequently M is on the bisector of one of the angles between the lines l_{1} and l_{2}^{\prime}.

From this it is clear that all points of the desired locus lie on the bisectors of the angles formed by the line l_{1} with the lines l_{2}^{\prime} and $l_{2}^{\prime \prime}$, obtained from l_{2} by translation through a distance a in the direction perpendicular to l_{2}. However, not all the points on these four bisectors are points of our locus. From Figure 62a it is not difficult to see that only the points on the rectangle $A B C D$ formed by the intersections of the four bisectors will be points of the locus.

Figure 62a
(b) Let M be a point of the plane satisfying one of the following two equations:

$$
M P-M Q=a \quad \text { or } \quad M Q-M P=a
$$

where P and Q are the feet of the perpendiculars from M to the lines l_{1} and l_{2} (in Figure 62 b , the point M satisfies the second equation). Translate the line l_{2} a distance a in the direction $Q M$, and let l_{2}^{\prime} be the new line. Just as in part (a) one can show that M is equidistant from l_{1} and l_{2}^{\prime} (see Figure 62 b , where $M Q-M P=a, M_{1} P_{1}-M_{1} Q_{1}=a$). It follows that all points of the desired locus lie on the bisectors of the four angles formed by the line l_{1} with the lines l_{2}^{\prime} and $l_{2}^{\prime \prime}$; however in the present case only points lying on the extensions of the sides of the rectangle $A B C D$ will be points of the locus (the equation $M P-M Q=a$ is satisfied by the points on $H B G$ and $L D N$, while the equation $M Q-M P=a$ is satisfied by the points on $E A F$ and $I C K)$.

Figure 62b
4. Observe that triangle $B D E$ is obtained from triangle $D A F$ by a translation (in the direction $A B$ through a distance $A D$); thus the line segments joining pairs of corresponding points in these two figures are equal and parallel to one another. Therefore

$$
O_{1} O_{2}=Q_{1} Q_{2}, \quad O_{1} O_{2} \| Q_{1} Q_{2}
$$

Similarly one has

$$
O_{2} O_{3}=Q_{2} Q_{3}, \quad O_{2} O_{3} \| Q_{2} Q_{3},
$$

and

$$
O_{3} O_{1}=Q_{3} O_{1}, \quad O_{3} O_{1} \| Q_{3} Q_{1} .
$$

Therefore triangles $O_{1} O_{2} O_{3}$ and $Q_{1} Q_{2} Q_{3}$ are congruent (in fact, their corresponding sides are parallel, that is, the triangles are obtained from one another by a translation-see pages 18-19).

Figure 63
5. Translate the sides $A B$ and $D C$ of the quadrilateral $A B C D$ into the new positions $M B^{\prime}$ and $M C^{\prime}$ (Figure 63). The two quadrilaterals $A M B^{\prime} B$ and $D M C^{\prime} C$ thus formed will be parallelograms, and therefore

$$
\begin{array}{lll}
B B^{\prime} \| A M & \text { and } & B B^{\prime}=A M, \\
C C^{\prime} \| D M & \text { and } & C C^{\prime}=D M .
\end{array}
$$

But $A M=M D$ (M is the midpoint of side $A D$); thus the segments $B B^{\prime}$ and $C C^{\prime}$ are equal and parallel. Since, in addition, $B N=N C$, it follows that

$$
\triangle B N B^{\prime} \cong \triangle C N C^{\prime}
$$

Therefore $B^{\prime} N=N C^{\prime}$ and $\Varangle B N B^{\prime}=\Varangle C N C^{\prime}$, that is, the segments $B^{\prime} N$ and $N C^{\prime}$ are extensions of each other.

Thus we have constructed a triangle $M B^{\prime} C^{\prime}$ in which, by the conditions of the problem, the median $M N$ is equal to half the sum of the two adjacent sides $M B^{\prime}$ and $M C^{\prime}$ (since $M B^{\prime}=A B, M C^{\prime}=D C$). If we extend the median $M N$ past the point N a distance $N M_{1}=M N$ and join M_{1} with B^{\prime}, we obtain a triangle $M M_{1} B^{\prime}$ in which the side $M M_{1}=2 M N$ is equal to the sum of the sides $M B^{\prime}$ and $B^{\prime} M_{1}=M C^{\prime}$, which is impossible. Consequently the point B must lie on the segment $M M_{1}$. But this means that

$$
M B^{\prime}\|M N\| M C^{\prime} ;
$$

therefore

$$
A B \| M N \quad \text { and } \quad D C \| M N,
$$

that is, the quadrilateral $A B C D$ is a trapezoid.
6. Assume that the problem has been solved. Translate the segment $A X$ a distance $E F=a$ in the direction of the line $C D$, and let the new position be $A^{\prime} X^{\prime}$ (Figure 64).

Clearly $A^{\prime} X^{\prime}$ passes through the point F. Further

$$
\Varangle A^{\prime} F B=\Varangle A X B=\frac{1}{2} A m B ; \dagger
$$

therefore we may regard the angle $A^{\prime} F B$ as known.
Thus we have the following construction: Translate the point A a distance a in the direction of the chord $C D$, and denote its new position by A^{\prime}. Using the segment $A^{\prime} B$ as a chord, construct a circular $\operatorname{arc}^{\mathrm{T}}$ that subtends an angle equal to $\Varangle A X B$ (that is, if Y is any point on the circular arc, then $\left.\Varangle A^{\prime} Y B=\Varangle A X B=\frac{1}{2} A m B\right)$.

Figure 64
If this circular arc intersects the chord $C D$ in two points, either one of them may be taken as the point F, and the point X is obtained as the point of intersection of the original circle with the line $B F$. In this case the problem has two solutions.

If the circular arc is tangent to $C D$, the point of tangency must be taken as the point F, and the problem has just one solution.

If the arc does not intersect $C D$ at all, the problem has no solution.
If one assumes that $C D$ is intersected by the extensions of chords $A X$ and $B X$ (and that points E and F are outside the circle-on the extension of chord $C D$), then the problem can have up to four solutions. (This is due to the fact that A may be translated in either of two opposite directions. ${ }^{\text {TT }}$
$\dagger A m B$ stands for arc $A m B$.
T For the details of this construction, see, for example, Hungarian Problem Book 1 in this series, Problem 1895/2, Note.

[^0]

Figure 65
7. (a) Assume that the problem has been solved, i.e., that $M_{1} M_{2}=a$ (Figure 65). From the centers O_{1} and O_{2} of the circles S_{1} and S_{2}, drop perpendiculars $O_{1} P_{1}$ and $O_{2} P_{2}$ onto the line l; then

$$
A P_{1}=\frac{1}{2} A M_{1}, \quad A P_{2}=\frac{1}{3} A M_{2},
$$

and consequently,

$$
P_{1} P_{2}=\frac{1}{2}\left(A M_{1}+A M_{2}\right)=\frac{1}{2} M_{1} M_{2}=\frac{1}{2} a .
$$

Translate the line l into a line l^{\prime} passing through the point O_{1}; let P^{\prime} be the point of intersection of l^{\prime} with the line $O_{2} P_{2}$. Then

$$
O_{1} P^{\prime}=P_{1} P_{2}=\frac{1}{2} a,
$$

since the quadrilateral $P_{1} O_{1} P^{\prime} P_{2}$ is a rectangle.
Thus we have the following construction: Construct a right triangle $O_{1} O_{2} P^{\prime}$ with $O_{1} O_{2}$ as hypotenuse and with side $O_{1} P^{\prime}=\frac{1}{2} a$. The desired line l will be parallel to the line $O_{1} P^{\prime}$.
If $O_{1} O_{2}>\frac{1}{2} a$ the problem has two solutions (the construction of a second solution to the problem is indicated in dotted lines in Figure 65); if $O_{1} O_{2}=\frac{1}{2} a$ there is one solution, and if $O_{1} O_{2}<\frac{1}{2} a$ there are no solutions.
(b) Let M, N, P be the three given points and let $A B C$ be the given triangle (Figure 66). On the segments $M N$ and $M P$ construct circular arcs subtending angles equal to $\Varangle A C B$ and $\Varangle A B C$, respectively. Thus we are led to the following problem: Pass a line $B_{1} C_{1}$ through the point M in such a way that the segment cut off by the two circular arcs has length $B C$, that is, we are led to Problem (a). The problem may have two solutions, or one solution, or no solutions at all (depending on which sides of the triangle are to pass through each of the three given points).

Figure 66
8. (a) Assume that the problem has been solved, and let the line l meet the circles S_{1} and S_{2} in points A, B and C, D (Figure 67a). Translate the circle S_{1} a distance $A C$ in the direction of the line l, and let S_{1}^{\prime} be its new position. Since $A B=C D$, the segment $A B$ will coincide with $C D$; therefore the centers O_{2} and O_{1}^{\prime} of the circles S_{2} and S_{1}^{\prime} will both lie on the perpendicular bisector of the segment $C D$.

Thus we have the following construction: Let m be the line perpendicular to l_{1} and passing through the center O_{2} of the circle S_{2}; let n be the line parallel to l_{1} and passing through the center O_{1} of the circle S_{1}; Let O_{1}^{\prime} be the point of intersection of these two lines. Translate S_{1} into a new position S_{1}^{\prime} with center at O_{1}^{\prime}. The line through the points of intersection of S_{2} and S_{1}^{\prime} is the solution to the problem.

The problem can have one solution or no solution.

Figure 67a
(b) Assume that the problem has been solved and let the line l meet S_{1} and S_{2} in points A, B and C, D; then $A B+C D=a$ (Figure 67b). Translate the circle S_{1} a distance a in the direction of l and denote its new position by S_{1}^{\prime}; then

$$
A A^{\prime}=a=A B+C D
$$

that is, $B A^{\prime}=C D$. Therefore, if we translate the circle S_{2} in the direction of l into a new position S_{2}^{\prime} whose center O_{2}^{\prime} is on the perpendicular bisector m of the segment $O_{1} O_{1}^{\prime}\left(O_{1}\right.$ and O_{1}^{\prime} are the centers of the circles S_{1} and S_{1}^{\prime}), then the chord $C D$ of S_{2} will be taken into $B A^{\prime}$.

Thus we have the following construction: Translate the circle S_{1} a distance a in the direction of the line l_{1}, and denote the new position by S_{1}^{\prime}; then translate S_{2} in the direction of l_{1} into a new position S_{2}^{\prime} whose center lies on the perpendicular bisector m of the segment $O_{1} O_{1}^{\prime}$. The points of intersection of the circles S_{1} and S_{2}^{\prime} (in the diagram they are the points B and B_{1}) determine the desired lines. The problem has at most two solutions; the number of solutions depends upon the number of points of intersection of the circles S_{1} and S_{2}^{\prime} (a case when there are two solutions l and l^{\prime} is shown in Figure 67b).

The other part of the problem, where the difference of the two chords cut off on the line l by the two circles is given, can be solved in a similar manner.

Figure 67b

Figure 68
(c) Assume that the problem has been solved, and translate the circle S_{1} in the direction of the line $K N$ so that the segment $K L$ coincides with $M N$; denote the new circle so obtained by S_{1}^{\prime} (see Figure 68). Thus the circles S_{2} and S_{1}^{\prime} have the common chord $M N$.

Let $A B_{1}$ and $A B_{2}$ be tangents from the point A to the circles S_{1}^{\prime} and S_{2} respectively (the points of tangency are B_{1} and B_{2}, respectively). Then

$$
\left(A B_{1}\right)^{2}=A M \cdot A N ; \quad\left(A B_{2}\right)^{2}=A M \cdot A N
$$

and therefore

$$
\left(A B_{1}\right)^{2}=\left(A B_{2}\right)^{2} .
$$

We can now determine $A O_{1}^{\prime}$ (O_{1}^{\prime} is the center of S_{1}^{\prime}):

$$
A O_{1}^{\prime}=\sqrt{\left(O_{1}^{\prime} B_{1}\right)^{2}+\left(A B_{1}\right)^{2}}=\sqrt{r_{1}^{2}+\left(A B_{2}\right)^{2}}
$$

where r_{1} is the radius of S_{1}; in addition, we know that $\Varangle O_{1} O_{1}^{\prime} O_{2}$ is a right angle, because $O_{1}^{\prime} O_{2}$, through the centers of S_{1}^{\prime} and S_{2}, is perpendicular to $M N$, their common chord, and therefore also to $O_{1} O_{1}^{\prime}$, which is parallel to l. This enables us to find the translation carrying S_{1} into S_{1}^{\prime}.

We use the following construction. With the point A as center, draw a circle of radius

$$
\sqrt{r_{1}^{2}+\left(A B_{2}\right)^{2}}
$$

draw a second circle having the segment $O_{1} O_{2}$ as diameter. The intersection of these two circles determines the position of the center O_{1}^{\prime} of the circle S_{1}^{\prime} of radius r_{1}. Now find the points M and.${ }^{\prime}$ of intersection of the circles S_{2} and S_{1}^{\prime} and draw the line $M N$, which will be the solution to the problem. Indeed, the point A lies on the line $M N$; for otherwise the equation $\left(A B_{1}\right)^{2}=\left(A B_{2}\right)^{2}$ could not be satisfied [if the line $A M$ were to intersect the circles S_{2} and S_{1}^{\prime} in distinct points V_{2} and V_{1}, then we would have $\left(A B_{2}\right)^{2}=A M \cdot A \Gamma_{2} \quad$ and $\left.\quad\left(A B_{1}\right)^{2}=A M \cdot A N_{1}\right]$. Also, $O_{2} O_{1}^{\prime}$ is perpendicular to $M N$, and $O_{1} O_{1}^{\prime}$ is perpendicular to $O_{2} O_{1}^{\prime}$; therefore $O_{1} O_{1}^{\prime} \| M N$, that is, the chords $K L$ and $M . V$ of the circles S_{1} and S_{1}^{\prime} are at the same distance from the centers O_{1} and O_{1}^{\prime}. But this means that the chords $K L$ and $M V^{\gamma}$ have the same length, which was to be proved.

The problem has at most two solutions.

Figure 69
9. Draw the line l^{\prime} obtained from l by a half turn about the point A (Figure 69) ; let P^{\prime} be one of the points of intersection of this line with the circle S. Then the line $P^{\prime} A$ is a solution to the problem, since the point P of intersection of this line with the line l is obtained from P^{\prime} by a half turn about A, and therefore $P^{\prime} A=A P$.

There are at most two solutions to this problem.

Figure 70a
10. (a) Draw the circle S_{2}^{\prime} obtained from S_{2} by a half turn about the point A (Figure 70a). The circles S_{1} and S_{2}^{\prime} intersect in the point A; let P^{\prime} be their other point of intersection. Then the line $P^{\prime} A$ will solve the problem, because the point P where this line meets the circle S_{2} is obtained from P^{\prime} by a half turn about A, and therefore $P^{\prime} A=A P$.

If the circles S_{1} and S_{2} intersect in two points, then the problem has exactly one solution; if they are tangent, then there is no solution if the radii are different, and there are infinitely many solutions if the radii are equal.

Remark: This problem is a special case of Problem 8(c), and it has a much simpler solution.

Figure 70b
(b) Draw the circle S_{2}^{\prime} obtained from S_{2} by a half turn about the point A. Assume that the problem has been solved and that the line $M A N$ is the solution (Figure 70b). Let N^{\prime} be the point where this line intersects the circle S_{2}^{\prime}; then $M N^{\prime}=a$. From the centers O_{1} and O_{2}^{\prime} of the circles S_{1} and S_{2}^{\prime}, drop perpendiculars $O_{1} P$ and $O_{2}^{\prime} Q$ to the line $M A N$; then

$$
P A=\frac{1}{2} M A, \quad Q A=\frac{1}{2} N^{\prime} A
$$

and

$$
P Q=P A-Q A=\frac{1}{2}\left(M A-N^{\prime} A\right)=\frac{1}{2} a
$$

Thus the distance from the point O_{2}^{\prime} to the line $O_{1} P$ is equal to $\frac{1}{2} a$, that is, the line $O_{1} P$ is tangent to the circle with center O_{2}^{\prime} and radius $\frac{1}{2} a$. This enables us now to find the line $O_{1} P$ without assuming that the solution to the whole problem is already known. Having found $O_{1} P$ we can now easily construct $M A N \perp O_{1} P$.

There are at most two solutions to the problem.

Figure 71
11. Assume that the problem has been solved (Figure 71), and let $A^{\prime} X^{\prime}$ be the segment obtained from $A X$ by a half turn about the point J. Since $A X$ passes through $E, A^{\prime} X^{\prime}$ will pass through F. Since $X^{\prime} A^{\prime} \| A X$, we see that

$$
\Varangle X^{\prime} F B=\Varangle A X B=\frac{1}{2} A m B ;
$$

therefore, $\Varangle A^{\prime} F B=180^{\circ}-\Varangle X^{\prime} F B$ and so we may regard

$$
\Varangle A^{\prime} F B=180^{\circ}-\frac{1}{2} A m B
$$

as known.
Thus we have the following construction: Let A^{\prime} be the point obtained from A by a half turn about J. On the segment $A^{\prime} B$ construct the circle arc that subtends an angle of

$$
180^{\circ}-\frac{1}{2} A m B
$$

The point of intersection of this arc with the chord $C D$ determines the point F, and the other intersection of the line $B F$ with the circumference is the desired point X.

The problem has a unique solution; if one assumes that $C D$ is intersected by the extensions of chords $A X$ and $B X$, then there may be two solutions (cf. solution of Problem 6).

Figure 72
12. Assume that the figure F has two centers of symmetry, O_{1} and O_{2} (Figure 72). Then the point O_{3}, obtained from O_{1} by a half turn about O_{2} is also a center of symmetry of F. Indeed, if A is any point of F, then the points A_{1}, A_{2}, and A^{\prime}, where A_{1} is obtained from A by a half turn about O_{2}, A_{2} from A_{1} by a half turn about O_{1}, and A^{\prime} from A_{2} by a half turn about O_{2}, will also be points of F (since O_{1} and O_{2} are centers of symmetry). But the point A^{\prime} is also obtained from A by a half turn about O_{3}; indeed, the segments AO_{3} and $\mathrm{O}_{3} \mathrm{~A}^{\prime}$ are equal, parallel, and have opposite directions, since the pairs of segments $A O_{3}$ and $A_{1} O_{1}$, $A_{1} O_{1}$ and $A_{2} O_{1}, A_{2} O_{1}$ and $A^{\prime} O_{3}$ are equal, parallel, and have opposite directions.

Thus if A is any point of F, then the symmetric point A^{\prime} obtained from A by a half turn about O_{3} is also a point of F, that is, O_{3} is a center of symmetry of F.

Similarly one shows that the point O_{4}, obtained from O_{2} by a half turn about O_{3}, and the point O_{6}, obtained from O_{3} by a half turn about O_{4}, etc. are centers of symmetry. Thus we see that if the figure F has two distinct centers of symmetry then it has infinitely many.
13. (a) The segment $A_{n} B_{n}$ is obtained from $A B$ by n successive half turns about the points $O_{1}, O_{2}, \cdots, O_{n}$ (n even). But the sum of the half turns about O_{1} and O_{2} is a translation; the sum of the half turns about O_{3} and O_{4} is a translation; the sum of the half turns about O_{5} and O_{6} is a translation; $\cdot \cdot$; finally, the sum of the half turns about O_{n-1} and O_{n} is also a translation. Therefore $A_{n} B_{n}$ is obtained from $A B$ by $\frac{1}{2} n$ successive translations. Since any sum of translations is again a translation the segment $A_{n} B_{n}$ is obtained from $A B$ by a translation, and therefore $A A_{n}=B B_{n}$.

If n is odd the assertion of the problem is false, because the sum of an odd number of half turns is a translation plus a half turn, or, what is the same thing, is a half turn about some other point (see page 34); therefore, in general $A A_{n} \neq B B_{n}$ (although $A B_{n}=B A_{n}$).
(b) Since the sum of an odd number of half turns is a half turn [see the solution to Problem (a)], the point A_{n} obtained from A by the n successive half turns about the points $O_{1}, O_{2}, \cdots, O_{n}$ can also be obtained from A by a single half turn about some point O. The point $A_{2 n}$ is obtained from A_{n} by these same n half turns; therefore it can also be obtained from A_{n} by the single half turn about the point O. But this means that $A_{2 n}$ coincides with A.

If n is even then A_{n} is obtained from A by a translation, and $A_{2 n}$ is obtained from A_{n} by this same translation; therefore $A_{2 n}$ will not, in general, coincide with A. (It will coincide with A if this translation is the identity transformation, i.e., a translation through zero distance. ${ }^{\mathbf{T}}$)

Figure 73
14. (a) The sum of the two half turns about the points O_{1} and O_{2} is a translation (see page 25) and the sum of the half turns about the points O_{3} and O_{4} is another translation (in general, different from the first). Thus the "first" point A_{4} is obtained from A by performing two translations in succession; the "second" point (we denote it by A_{4}^{\prime}) is obtained from A by performing the same two translations in the opposite order. But the sum of two translations is independent of the order in which they are performed. (To prove this it is sufficient to consider Figure 73, where the points B and C are obtained from the point A by the translations indicated by the segments $M N$ and $P Q$ respectively. The point D is obtained from the point B by the translation $P Q$, and D is also obtained from C by the translation $M N$. From this the assertion of the theorem follows.)
(b) This problem is clearly the same as Problem 13(b) (for $n=5$), since Problem 13(b) tells us that the point A_{5}, obtained from A by five successive half turns about the points $O_{1}, O_{2}, O_{3}, O_{4}, O_{5}$, is taken back into the point A by these same five half turns performed in the same order.

[^1](c) Whenever n is odd, the final positions will be the same (see Problem 13).
[The two points obtained by the n half turns will also coincide in case $n=2 k$ is an even number and there exists a k-gon $M_{1} M_{2} \cdots M_{k}$, whose sides $M_{1} M_{2}, M_{2} M_{3}, \cdots, M_{k} M_{1}$ are equal to, parallel to, and have the same direction as the segments $O_{1} O_{2}, O_{3} O_{4}, \cdots, O_{n-1} O_{n}$ (in this case the sum of the n half turns about the points $O_{1}, O_{2}, \cdots, O_{n}$, carried out in either this order or in the reverse order, is a "translation through zero distance", that is, it is the identity transformation).]

a

b

Figure 74
15. First solution. Assume that the problem has been solved and let

$$
A_{1} A_{2} \cdots A_{9}
$$

be the nine-gon, with $M_{1}, M_{2}, \cdots, M_{9}$ the centers of its sides (Figure 74a; here we are taking $n=9$). Let B_{1} be any point in the plane and let B_{2} be obtained from it by a half turn about M_{1}. Let B_{3} be obtained from B_{2} by a half turn about M_{2}. Continue this until finally B_{10} is obtained from B_{9} by a half turn about M_{9}. Since each of the segments $A_{2} B_{2}$, $A_{2} B_{3}, \cdots, A_{1} B_{10}$ is obtained from the preceding one by a half turn, they are all parallel and have the same length, and each one has a direction opposite to the direction of the one before it. Therefore $A_{1} B_{1}$ and $A_{1} B_{10}$ are equal and parallel and have opposite directions, which means that the point A_{1} is the midpoint of the segment $B_{1} B_{10}$. This enables us to find A_{1}, since by starting with any point B_{1} we can find B_{10}. The remaining vertices $A_{2}, A_{3}, \cdots, A_{9}$ are then found by successive half turns about $M_{1}, M_{2}, \cdots, M_{9}$.

The problem always has a unique solution; however, the nine-gon that is obtained need not be convex and may even intersect itself.

If n is even and if we repeat the same reasoning as before, i.e., if we assume that the problem has been solved, we see that $A_{1} B_{n+1}$ and $A_{1} B_{1}$ are equal, parallel and have the same direction, that is, they coincide. Therefore if B_{n+1} does not coincide with B_{1}, then the problem has no solution. If B_{n+1} does coincide with B_{1} then $A_{1} B_{1}$ will coincide with $A_{1} B_{n+1}$ no matter where the point A_{1} is chosen. In this case there are infinitely many solutions; any point in the plane can be taken for the vertex A_{1}.

Second solution. The vertex A_{1} of the desired n-gon will be taken into itself by the sum of the half turns about the points $M_{1}, M_{2}, \cdots, M_{n}$, that is, A_{1} is a fixed point of the sum of these n half turns (see Figure 74b) where the case $n=9$ is shown). If n were even then the sum of n half turns would be a translation [see the solution to Problem 13(a)]. Since a translation has no fixed points, it follows that for n even the problem has, in general, no solution. The only exception occurs when the sum of the n half turns is the identity transformation (a translation through zero distance), which leaves all points in the plane fixed; in this case the problem has infinitely many solutions; any point in the plane can be taken for the vertex $A_{1} . \dagger$ If n is odd (for example, $n=9$), then the sum of n half turns is a half turn. Since a half turn has exactly one fixed point, namely the center of symmetry, it follows that the vertex A_{1} of the desired nine-gon must coincide with this center of symmetry; in this case the problem has a unique solution.

We now show how to construct the center of symmetry of the sum of the nine half turns about the points $M_{1}, M_{2}, \cdots, M_{9}$. The sum of the half turns about M_{1} and M_{2} is a translation in the direction $M_{1} M_{2}$ through a distance $2 M_{1} M_{2}$; the sum of the half turns about M_{3} and M_{4} is a translation in the direction $M_{3} M_{4}$ through a distance $2 M_{3} M_{4}$, etc. Thus the sum of the first eight half turns is the same as the sum of the four translations in the directions $M_{1} M_{2}$ (or $M_{1} N_{1}$), $M_{3} M_{4}\left(\| N_{1} N_{2}\right), M_{5} M_{6}$ (\| $N_{2} N_{3}$) and $M_{7} M_{8}\left(\| N_{3} N_{4}\right)$ through distances $2 M_{1} M_{2}\left(=M_{1} N_{1}\right)$, $2 M_{8} M_{4}\left(=N_{1} N_{2}\right), 2 M_{5} M_{6}\left(=N_{2} N_{3}\right)$, and $2 M_{7} M_{8}\left(=N_{3} N_{4}\right)$ respectively (see Figure 74b), which is a single translation in the direction $M_{1} N_{4}$ through a distance $M_{1} N_{4}$. The point A_{1} is the center of symmetry of the half turn that is the sum of a translation in the direction $M_{1} N_{4}$ through a distance $M_{1} N_{4}$ and a half turn about the point M_{9}. To find A_{1} it is sufficient to lay off a segment $M_{9} A_{1}$ starting at M_{9}, parallel to $N_{4} M_{1}$ and of length $\frac{1}{2} M_{1} N_{4}$ (Figure 74b; compare this with Figure 18). Having found A_{1}, we have no difficulty in finding the remaining vertices of the nine-gon.

[^2]16. (a) If M, N, P, and Q are the midpoints of the sides of the quadrilateral $A B C D$ (see Figure 22a), then four half turns performed in succession about the points M, N, P, and Q will carry the point A into itself (compare with the solution to Problem 15). Now this is possible only in case the sum of the four half turns about the points M, N, P, and Q, which is equal to the sum of two translations in the directions $M N$ and $P Q$ through distances $2 M N$ and $2 P Q$ respectively, is the identity transformation. But this means that the segments $M N$ and $P Q$ are parallel, equal in length and oppositely directed, that is, the quadrilateral $M N P Q$ is a parallelogram.
(b) Just as in part (a), we conclude that the sum of the translations in the directions $M_{1} M_{2}, M_{3} M_{4}$, and $M_{5} M_{6}$ through distances $2 M_{1} M_{2}$, $2 M_{3} M_{4}$, and $2 M_{5} M_{6}$ is the identity transformation. Therefore there is a triangle whose sides are parallel to $M_{1} M_{2}, M_{3} M_{4}$, and $M_{5} M_{6}$, and equal to $2 M_{1} M_{2}, 2 M_{3} M_{4}$, and $2 M_{5} M_{6}$; but this means that there is also a triangle whose sides are parallel to and have the same lengths as the segments $M_{1} M_{2}, M_{3} M_{4}, M_{5} M_{6}$.

In the same way one proves that there exists a triangle whose sides are parallel to, and have the same lengths as the segments $M_{2} M_{3}, M_{4} M_{5}$, $M_{8} M_{1}$.

Remark: Using the same method that was used in the solution of Problem 16(b) one can show that a set of $2 n$ points $M_{1}, M_{2}, \cdots, M_{2 n}$ will be the midpoints of the sides of some $2 n$-gon if and only if there exists an n-gon whose sides are parallel to and have the same lengths as the segments $M_{1} M_{2}$, $M_{3} M_{4}, \cdots, M_{2 n-1} M_{2 n}$; there will then also exist an n-gon whose sides are parallel to and have the same lengths as $M_{2} M_{3}, M_{4} M_{5}, \cdots, M_{2 n} M_{1}$.
17. Rotate the line l_{1} about the point A through an angle α, and let l_{1}^{\prime} denote the new position of the line. Let M be the point of intersection of l_{1}^{\prime} with the line l_{2} (Figure 75). The circle having its center at A and passing through the point M will solve the problem, since the point of intersection M^{\prime} of this circle with the line l_{1} is taken into the point M by our rotation (that is, the central angle $M A M^{\prime}=\alpha$).

The problem has two solutions (corresponding to rotations in the two directions), provided that neither of the angles between the lines l_{1} and l_{2} is equal to α; it has either exactly one solution or infinitely many solutions if one of the angles between the lines l_{1} and l_{2} is equal to α; it has either no solutions at all or infinitely many solutions if l_{1} and l_{2} are perpendicular and $\alpha=90^{\circ}$.

Figure 75
18. Assume that the problem has been solved and let $A B C$ be the desired triangle whose vertices lie on the given lines l_{1}, l_{2}, and l_{3} (Figure 76). Rotate the line l_{2} about the point A through an angle of 60° in the direction from B to C; this will carry the point B into the point C.

Thus we have the following construction: Choose an arbitrary point A on the line l_{1} and rotate l_{2} about A through an angle of 60°. The point of intersection of the new line l_{2}^{\prime} with l_{3} is the vertex C of the desired triangle. The problem has two solutions since l_{2} can be rotated through 60° in either of two directions; however, these two solutions are congruent.

The problem of constructing an equilateral triangle whose vertices lie on three given concentric circles is solved analogously.

Figure 76
Remark: If we had chosen a different point A^{\prime} instead of A on the line l_{1}, then the new figure would be obtained from Figure 76 by an isometry (more precisely, by a translation in the direction l_{1} through a distance $A A^{\prime}$). But in geometry we do not distinguish between such figures (see the introduction). For this reason we do not consider that the solution to the problem depends on the position of the point A on l_{1}. If the three lines l_{1}, l_{2}, and l_{3} were not
parallel, then the problem would be solved in exactly the same way; however now we would have to allow infinitely many different solutions corresponding to the different ways of choosing a point A on the line l_{1} (since the triangles obtained would no longer be congruent).

In exactly the same way the problem of constructing an equilateral triangle $A B C$ whose vertices lie on three concentric circles S_{1}, S_{2}, and S_{3} can have at most four solutions (here the figures obtained by different choices of the point A on the circle S_{1} will also be the same-they are all obtained from one another by a rotation about the common center of the three circles S_{1}, S_{2}, and S_{3}). On the other hand, if the circles S_{1}, S_{2}, and S_{3} are not concentric, then the problem will have infinitely many solutions (different choices of the point A on the circle S_{1} will correspond to essentially different solutions).

Figure 77
19. Let us assume that the arc $C D$ has been found (Figure 77). Rotate the segment $B D$ about the center O of the circle S through an angle α; it will be taken into a new segment $B^{\prime} C$ that makes an angle $A C B^{\prime}=\alpha$ with the segment $A C$.

Thus we have the following construction: Rotate the point B about O through an angle α into a new position B^{\prime}. Through the points A and B^{\prime} pass a circular arc subtending an angle α (that is, if C is any point on the circular arc, then $\Varangle A C B^{\prime}=\alpha$). The intersection of this circular arc with the circle S determines the point C.

The problem can have up to four solutions (the arc can meet the circle in two points, and the point B can be rotated about the point O in two directions).
20. Assume that the problem has been solved. Rotate the circle S_{1} about A through an angle α into the position S_{1}^{\prime} (Figure 78). The circles S_{2} and S_{1}^{\prime} will cut off equal chords on the line l_{2}. Thus the problem has
been reduced to Problem 8(c). In other words, a line l_{2} must be passed through A so that it cuts off equal chords on S_{1}^{\prime} and S_{2}. Then l_{1} can be obtained by a rotation of l_{2} about A through an angle α, and S_{1} will cut the desired segment from l_{1}.

The problem can have up to four solutions. [Since S_{1} can be rotated about A in either of two directions, there are two ways of reducing the problem to Problem 8(c) which, in turn may have two solutions.]

Figure 78
21. First solution (compare with the first solution of Problem 15). Assume that the problem has been solved and that $A_{1} A_{2} \cdots A_{n}$ is the desired n-gon (see Figure 79, where $n=6$). Choose an arbitrary point B_{1} in the plane. The sequence of rotations, first about M_{1} through an angle α_{2}, then about M_{2} through an angle α_{2}, etc., and finally about M_{n} through an angle α_{n} carries the segment $A_{1} B_{1}$ first into a segment $A_{2} B_{2}$, then carries $A_{2} B_{2}$ into a segment $A_{3} B_{3}, \cdots$ and finally carries $A_{n} B_{n}$ into $A_{1} B_{n+1}$. All these segments are equal and therefore the vertex A_{1} of the n-gon is equidistant from the points B_{1} and B_{n+1} (where B_{n+1} is obtained from B_{1} by these n rotations). Now choose a second point C_{1} in the plane, and rotate it successively about the points $M_{1}, M_{2}, \cdots, M_{n}$ through angles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$. Thus we obtain a second pair of points C_{1} and C_{n+1} equidistant from A_{1}. Thus the vertex A_{1} of the n-gon can be found as the intersection of the perpendicular bisectors of the segments $B_{1} B_{n+1}$ and $C_{1} C_{n+1}$. Having found A_{1} we obtain A_{2} by rotating A_{1} about M_{1} thrcugh an angle $\alpha_{1} ; A_{3}$ is obtained by rotating A_{2} about M_{2} through an
angle α_{2}, etc. The problem has a unique solution provided that the perpendicular bisectors to $B_{1} B_{n+1}$ and to $C_{1} C_{n+1}$ do intersect (that is, the segments $B_{1} B_{n+1}$ and $C_{1} C_{n+1}$ are not parallel). If the perpendicular bisectors are parallel then the problem has no solution, and if they coincide then the problem has infinitely many solutions.

The polygon obtained as the solution to the problem need not be convex and may even intersect itself.

Second solution (compare with the second solution of Problem 15). The vertex A_{1} is a fixed point of the sum of the n rotations with centers $M_{1}, M_{2}, \cdots, M_{n}$ and angles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ (these rotations take A_{1} into A_{2}, A_{2} into A_{3}, A_{3} into A_{4}, etc. and, finally, A_{n} into A_{1}). But the sum of n rotations through the angles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ is a rotation through the angle

$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}
$$

provided that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ is not a multiple of 360°; it is a translation otherwise (this follows from the theorem on the sum of two rotations). The only fixed point of a rotation is the center of rotation. Therefore if

$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}
$$

is not a multiple of 360°, then A_{1} is found as the center of the rotation, that is, the sum of the rotations about the points $M_{1}, M_{2}, \cdots, M_{n}$ through angles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$. Actually to find A_{1} we may apply repeatedly the method given in the text to find the center of the sum of two rotations. \dagger

A translation has no fixed points whatever. Therefore if

$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}
$$

is a multiple of 360° then the problem has no solution in general. However, in the special case when the sum of the rotations about the points $M_{1}, M_{2}, \cdots, M_{n}$ through the angles $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ (where the sum $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$ is a multiple of 360°) is the identity transformation, the problem has infinitely many solutions (any point in the plane may be chosen for the vertex A_{1}).

Thus, if $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=180^{\circ}$ (this is the case considered in Problem 15), the problem has a unique solution when n is odd and has no solution or has infinitely many solutions when n is even.

[^3]

Figure 79
22. (a) Consider the sequence of three rotations, each through 120°, about the points O_{2}, O_{2}, O_{3} (see Figure 31 in the text). The first of these rotations carries A into B, the second carries B into C, and the third carries C into A.

Thus the point A is a fixed point of the sum of these three rotations. But the sum of three rotations through 120° is, in general, a translation, and therefore has no fixed points. From the fact that A is a fixed point we see that the sum of these three rotations must be the identity transformation (translation through zero distance). The sum of the first two rotations is a rotation through 240° about the point O of intersection of two lines, one through O_{1} and the other through O_{2}, each making an angle of 60° with $O_{1} O_{2}$. Therefore the triangle $O_{1} O_{2} \mathrm{O}$ is equilateral. Since the sum of this rotation and the rotation about O_{3} through 120° is the identity transformation, the point O must coincide with O_{3}. Thus the triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ is equilateral, which was to be proved.

In the same way one can show that the centers $O_{1}^{\prime}, O_{2}^{\prime}, O_{3}^{\prime}$ of the equilateral triangles constructed on the sides of the given triangle $A B C$, but lying towards the interior of $A B C$, also form an equilateral triangle (Figure 80).
(b) The solution to this problem is similar to that of (a). Since the point A is taken into itself by the sum of the three rotations through angles β, α, and $\gamma\left(\alpha+\beta+\gamma=360^{\circ}\right)$ about the centers B_{1}, A_{1}, and C_{1}, we see that the sum of these rotations is the identity transformation. But this is possible only if C_{1} coincides with the center of the rotation which is the sum of the two rotations through angles β and α about the centers B_{1} and A_{1}, that is, if C_{1} is the point of intersection of the two lines through B_{1} and A_{1} that make angles $\frac{1}{2} \beta$ and $\frac{1}{2} \alpha$ with the line $B_{1} A_{1}$. From this the assertion of the problem follows.

In the same way it can be shown that the vertices $A_{1}^{\prime}, B_{1}^{\prime}, C_{1}^{\prime}$ of the isosceles triangles $A B C_{1}^{\prime}, B C A_{1}^{\prime}$, and $A C B_{1}^{\prime}$ with vertex angles α, β, and γ, respectively, $\left(\alpha+\beta+\gamma=360^{\circ}\right)$ constructed on the sides of the given triangle $A B C$ but lying towards the interior of $A B C$, also form a triangle with angles $\frac{1}{2} \alpha, \frac{1}{2} \beta, \frac{1}{2} \gamma$.

Figure 80
23. The sequence of three rotations in the same direction through angles of $60^{\circ}, 60^{\circ}$, and 240° about the points A_{1}, B_{1}, and M takes the point B into itself (see Figure 32 in the text). Therefore the sum of these three rotations is the identity transformation, and thus the sum of the first two rotations is a rotation with center M. From this the assertion of the problem follows. (Compare with the solution to Problem 22.)
24. (a) The sum of the four rotations with centers M_{1}, M_{2}, M_{3}, and M_{4}, each through an angle of 60°, where the direction of the first and third rotations is opposite to that of the second and fourth, carries the
vertex A of the quadrilateral into itself (see Figure 33a, in the text). But the sum of the two rotations about M_{1} and M_{2} is a translation given by the segment $M_{1} M_{1}^{\prime}$, where M_{1}^{\prime} is a vertex of the equilateral triangle $M_{1} M_{2} M_{1}^{\prime} \quad\left(M_{2} M_{1}=M_{2} M_{1}^{\prime}, \quad \Varangle M_{1} M_{2} M_{1}^{\prime}=60^{\circ}\right.$, and the direction of rotation from $M_{2} M_{1}$ to $M_{2} M_{1}^{\prime}$ coincides with the direction of rotation from $M_{2} B$ to $M_{2} C$; see Figure 81a, and Figure 28 b in the text). Similarly the sum of the rotations about M_{3} and M_{4} is a translation given by the segment $M_{3} M_{3}^{\prime}$, where triangle $M_{3} M_{4} M_{3}^{\prime}$ is equilateral (and the direction of rotation from $M_{4} M_{3}$ to $M_{4} M_{3}^{\prime}$ is the same as the direction of rotation from $M_{4} D$ to $M_{4} A$). Thus the sum of two translations-given by the segments $M_{1} M_{1}^{\prime}$ and $M_{3} M_{3}^{\prime}$-carries the point A into itself. But if the sum of two translations leaves even one point fixed, then this sum must be the identity transformation, that is, the two segments that determine the two translations must be equal, parallel, and oppositely directed. But if the equilateral triangles $M_{1} M_{2} M_{1}^{\prime}$ and $M_{3} M_{4} M_{3}^{\prime}$ are so situated that

$$
M_{1} M_{1}^{\prime}=M_{3} M_{3,}^{\prime}, \quad M_{1} M_{1}^{\prime} \| M_{3} M_{3}^{\prime}
$$

and if $M_{1} M_{1}^{\prime}$ and $M_{3} M_{3}^{\prime}$ are oppositely directed, then the sides $M_{1} M_{2}$ and $M_{3} M_{4}$ are also equal, parallel, and oppositely directed, from which it follows that the quadrilateral $M_{1} M_{2} M_{3} M_{4}$ is a parallelogram (see Figure 81a).

Figure 81a
(b) The sum of the four rotations about the points M_{1}, M_{2}, M_{3}, and M_{4}, each through an angle of 90°, clearly carries the vertex A of the quadrilateral into itself. It follows that this sum of four rotations is the identity transformation [compare the solution of Problem (a)]. But the
sum of the rotations about M_{1} and M_{2} is a half turn about a point O_{1} the vertex of an isosceles right triangle $O_{1} M_{1} M_{2}$ (since

$$
\Varangle O_{1} M_{1} M_{2}=\Varangle O_{1} M_{2} M_{1}=45^{\circ} ;
$$

compare Figure 81b with Figure 28a in the text). Similarly the sum of rotations about M_{3} and M_{4} is a half turn about the vertex O_{2} of an isosceles right triangle $\mathrm{O}_{2} \mathrm{M}_{3} \mathrm{M}_{4}$. From the fact that the sum of the half turns about O_{1} and O_{2} is the identity transformation it clearly follows that these two points coincide. But this means that triangle $O_{1} M_{1} M_{3}$ is obtained from triangle $O_{1} M_{2} M_{4}$ by a rotation through 90° about the point $O_{1}=O_{2}$, and therefore the segments $M_{1} M_{3}$ and $M_{2} M_{4}$ are equal and perpendicular.

Figure 81b
(c) By what has already been proved [see the solution to Problem (b)], the diagonals $M_{1} M_{3}$ and $M_{2} M_{4}$ of the quadrilateral $M_{1} M_{2} M_{8} M_{4}$ are equal and mutually perpendicular. Further, since the point O of
intersection of the diagonals of the parallelogram $A B C D$ is its center of symmetry, it is also the center of symmetry for all of Figure 81c, and in particular it is the center of symmetry for the quadrilateral $M_{1} M_{2} M_{3} M_{4}$ (which must, therefore, be a parallelogram-since the parallelogram is the only quadrilateral that has a center of symmetry). But a parallelogram whose diagonals are equal and perpendicular must be a square.

Figure 81c
In the same way it can be shown that if the four squares are constructed in the interior of the parallelogram, then their centers again form a square (Figure 81d).

Figure 81d

Chapter Two. Symmetry

25. (a) Let us assume that the point X has been found, that is, that

$$
\Varangle A X M=\Varangle B X N
$$

(Figure 82a). Let B^{\prime} be the image of B in the line $M N$; then

$$
\Varangle B^{\wedge} X N=\Varangle B X N=\Varangle A X M
$$

that is, the points A, X, B^{\prime} lie on a line. From this it follows that X is the point of intersection of the lines $M N$ and $A B^{\prime}$.
(b) Let us assume that the point X has been found and let S_{2}^{\prime} be the image of the circle S_{2} in the line $M N$ (Figure 82b).

If $X A, X B$, and $X B^{\prime}$ are tangents from the point X to the circles S_{1}, S_{2}, and S_{2}^{\prime} then

$$
\Varangle B^{\prime} X N=\Varangle B X N=\Varangle A X M
$$

that is, the points A, X, and B^{\prime} lie on a line. Therefore X is the point of intersection of the line $M N$ with the common tangent line $A B^{\prime}$ to the circles S_{1} and S_{2}^{\prime}. The problem can have at most four solutions (there are at most four common tangents to two circles).

Figure 82
(c) First solution. Assume X has been found. Let B^{\prime} be the image of B in $M N$ and let $X C$ be the continuation of the segment $A X$ past the point X (Figure 83a). Then

$$
\Varangle C X N=2 \Varangle B X N=2 \Varangle B^{\prime} X N
$$

and therefore the ray $X B^{\prime}$ bisects the angle $N X C$. Thus the line $A X C$ is tangent to the circle S with center B^{\prime} that is tangent to $M N$; consequently, the point X is the intersection of the line $M N$ and the tangent from A to the circle S.

Second solution. Again, assume X has been found. Let A^{\prime} be the image of A in the line $B^{\prime} X$ (we are using the same notation as in the first solution). $B^{\prime} X$ bisects the angle $A X M$; therefore A^{\prime} lies on the line $X M$ and $B^{\prime} A=B^{\prime} A^{\prime}$ (Figure 83b). Thus A^{\prime} can be found as the intersection of the line $M N$ with the arc of a circle with center B^{\prime} and radius $B^{\prime} A$. The point X is now obtained as the intersection of the line $M N$ with the perpendicular dropped from B^{\prime} onto $A A^{\prime}$.

Figure 83
26. (a) Assume that the triangle $A B C$ has been constructed, with l_{2} bisecting angle B and l_{3} bisecting angle C (Figure 84a). Then the lines $B A$ and $B C$ are images of each other in l_{2}, and the lines $B C$ and $A C$ are images of each other in l_{3}, and therefore the points A^{\prime} and $A^{\prime \prime}$ obtained from A by reflection in the lines l_{2} and l_{3} lie on the line $B C$.

Thus we have the following construction: Reflect the point A in the lines l_{2} and l_{3} to obtain the points A^{\prime} and $A^{\prime \prime}$. The vertices B and C are the points of intersection of the line $A^{\prime} A^{\prime \prime}$ with the lines l_{2} and l_{3}.

Figure 84a

If l_{2} and l_{3} are perpendicular, then the line $A^{\prime} A^{\prime \prime}$ passes through the point of intersection of the three given lines and the problem has no solution; if l_{1} is perpendicular to one of the lines l_{2} and l_{3}, then $A^{\prime} A^{\prime \prime}$ will be parallel to the other line and again the problem will have no solution. In case no two of the three given lines are perpendicular, the problem has a unique solution; however only in case each of the three given lines is included in the obtuse angle formed by the other two will the three lines bisect the interior angles of the triangle $A B C$; if, for example, l_{1} is included in the acute angle formed by l_{2} and l_{3}, then these last two lines bisect the exterior angles of the triangle (Figure 84b). We leave the proof of this statement to the reader.

Figure 84b
(b) Choose an arbitrary point A^{\prime} on one of the lines and construct the triangle $A^{\prime} B^{\prime} C^{\prime}$ having the lines l_{1}, l_{2}, and l_{3} as bisectors of its interior angles [see part (a) of this problem]. Construct tangents to S parallel to the sides of triangle $A^{\prime} B^{\prime} C^{\prime}$ (Figure 85). The triangle thus obtained is the solution to the problem. The problem has a unique solution if each of the three lines l_{1}, l_{2}, l_{3} is included in the obtuse angle formed by the other two; if one of them is included in the acute angle formed by the other two then the given circle will be an escribed circle or excircle ${ }^{\mathrm{T}}$ of the triangle.

[^4]

Figure 85
(c) Let us assume that the triangle $A B C$ has been found (Figure 86). Since the point A is the image of the point B in the line l_{2}, it must lie on the line that is the image of $B C$ in l_{2}; and since A is the image of C in l_{3}, it must also lie on the line that is the image of $B C$ in l_{3}.

Thus we have the following construction: Pass a line m through A_{1} perpendicular to l_{1}. Then construct the lines m^{\prime} and $m^{\prime \prime}$ obtained from m by reflection in the lines l_{2} and l_{3}. The point of intersection of m^{\prime} and $m^{\prime \prime}$ will be the vertex A of the desired triangle; the vertices B and C are the images of this vertex in the lines l_{2} and l_{3} (Figure 86).

If the lines l_{2} and l_{3} are perpendicular, then either the lines m^{\prime} and $m^{\prime \prime}$, obtained from m by reflection in l_{2} and l_{3}, will be parallel (provided that the point A_{1} does not coincide with the point O of intersection of the three lines l_{1}, l_{2}, and l_{3}) or they will coincide (if A_{1} coincides with O). In the first case the problem has no solution, while in the second the solution is not determined uniquely. In all other cases the solution is unique.

Figure 86
27. (a) Assume that the problem has been solved. Pass a line $M N$ through the vertex C parallel to $A B$, and let B^{\prime} be the image of B in the line $M N$ (Figure 87). Let α and β be the angles at the base $A B$ (we shall assume that $\alpha>\beta$). Then

$$
\begin{gathered}
\Varangle A C N=180^{\circ}-\alpha, \quad \Varangle B^{\prime} C N=\Varangle B C N=\beta ; \\
\Varangle A C B^{\prime}=\left(180^{\circ}-\alpha\right)+\beta=180^{\circ}-(\alpha-\beta)=180^{\circ}-\gamma .
\end{gathered}
$$

Thus we have the following construction: Lay off the segment $A B=a$, and construct a parallel line $M N$ at a distance h from $A B$. Let B^{\prime} be the image of B in the line $M N$. On the segment $A B^{\prime}$ construct the arc that subtends an angle of $180^{\circ}-\gamma$. The point of intersection of this arc with the line $M N$ is the vertex C of the triangle. The problem has a unique solution.

Figure 87
(b) Assume that the problem has been solved and determine the line $M N$ and the point B^{\prime} as in part (a) (Figure 87).

Since

$$
\Varangle A C B^{\prime}=180^{\circ}-\gamma,
$$

we can construct the triangle $A C B^{\prime}$ from the two sides $A C$ and $C B^{\prime}=B C$ and their included angle $180^{\circ}-\gamma . M N$ coincides with the median $C D$ of this triangle (because $M N$ is a "midline" of triangle $A B B^{\prime}$, that is, $M N$ is parallel to the base $A B$ and midway between this base and the opposite vertex B^{\prime}). Finally, the vertex B is obtained as the image of B^{\prime} in the line $M N$. The problem has a unique solution.
28. Assume that the problem has been solved and let B^{\prime} be the image of B in $O M$ (Figure 88). We have:

$$
\Varangle B^{\prime} X A=\Varangle B^{\prime} X B+\Varangle Y X Z ;
$$

but

$$
\Varangle B^{\prime} X B=2 \Varangle O X Z=2(\Varangle X Z Y-\Varangle M O N)
$$

(because $\Varangle X Z Y$ is an exterior angle of triangle $X O Z$). Consequently

$$
\begin{aligned}
\Varangle B^{\prime} X A & =2 \Varangle X Z Y-2 \Varangle M O N+\Varangle V X Z \\
& =\Varangle X Z Y+\Varangle X Y Z+\Varangle V X Z-2 \Varangle M O N \\
& =180^{\circ}-2 \Varangle M O N .
\end{aligned}
$$

Thus $\Varangle B^{\prime} X A$ is known. Now X can be found as the point of intersection of the ray $O M$ with the arc, constructed on the chord $A B^{\prime}$, that subtends an angle equal to $180^{\circ}-2 \Varangle M O N$. The problem has a unique solution.

Figure 88
29. (a) Assume that the quadrilateral $A B C D$ has been constructed and let B^{\prime} be the image of B in the diagonal $A C$ (Figure 89). Since $\Varangle B A C=\Varangle D A C$ the point B^{\prime} lies on the line $A D$. The three sides of the triangle $B^{\prime} D C$ are known:

$$
D C, \quad B^{\prime} C=B C, \quad \text { and } \quad D B^{\prime}=A D-A B^{\prime}=A D-A B .
$$

Figure 89

Construct this triangle, and locate the vertex A (this can be done since the distance $A D$ is known). The vertex B is then obtained as the image of B^{\prime} in the line $A C$. The problem has a unique solution if $A D \neq A B ;$ it has no solution whatsoever if $A D=A B$ and $C D \neq C B$; it has more than one solution if $A D=A B$ and $C D=C B$.

Figure 90
(b) Assume that the problem has been solved (Figure 90), and let triangle $A D_{1} C_{1}$ be the image of triangle $A D C$ in the line $A O$ (O is the center of the circle inscribed in the quadrilateral). Clearly the point D_{1} lies on the line $A B$, and the side $D_{1} C_{1}$ is tangent to the circle inscribed in the quadrilateral $A B C D$.
Thus we have the following construction: On an arbitrary line lay off the segments $A B$ and $A D_{1}=A D$. Since $\Varangle A B C$ and $\Varangle A D_{1} C_{1}=\Varangle A D C$ are known, we can find the lines $B C$ and $D_{1} C_{1}$ (although we do not yet know the positions of the points C and C_{1} on these lines). Now we can construct the inscribed circle since it is tangent to the three lines $A B, B C$, and $D_{1} C_{1}$. Finally, the side $A D$ and the line $D C$ are obtained as the images of $A D_{1}$ and $D_{1} C_{1}$ by reflection in the line $A O$. (The point C is the intersection of line $B C$ with the image of line $D_{1} C_{1}$.)
The problem has a unique solution if $\Varangle A D C \neq \Varangle A B C$; it has no solution at all if $\Varangle A D C=\Varangle A B C, A D \neq A B$; it has more than one solution if $\Varangle A D C=\Varangle A B C, A D=A B$.
30. (a) Assume that the problem has been solved, that is, that points $X_{1}, X_{2}, \cdots, X_{n}$ have been found on the lines $l_{1}, l_{2}, \cdots, l_{n}$ such that

$$
A X_{1} X_{2} \cdots X_{n} B
$$

is the path of a billiard ball (in Figure 91 the case $n=3$ is represented). It is easy to see that the point X_{n} is the point of intersection of the line l_{n} with the line $X_{n-1} B_{n}$, where B_{n} is the image of B in l_{n} [see the solution to Problem 25(a)], that is, the points B_{n}, X_{n}, X_{n-1} lie on a line. But then the point X_{n-1} is the point of intersection of the line l_{n-1} with the line $X_{n-2} B_{n-1}$, where B_{n-1} is the image of B_{n} in l_{n-1}. Similarly one shows that the point X_{n-2} is the intersection of the lines l_{n-2} and $X_{n-3} B_{n-2}$, where B_{n-2} is the image of B_{n-1} in l_{n-2}; the point X_{n-3} is the intersection of the lines l_{n-8} and $X_{n-4} B_{n-3}$, where B_{n-3} is the image of B_{n-2} in l_{n-3}, and so forth.

Figure 91

Thus we have the following construction: Reflect the point B in l_{n}, obtaining the point B_{n}; next reflect B_{n} in l_{n-1} to obtain B_{n-1}, and so forth, until the image B_{1} of the point B_{2} in line h_{1} is obtained. The point X_{1}, that determines the direction in which the billiard ball at A must be hit, is obtained as the point of intersection of the line l_{1} with the line $A B_{1}$. It is then easy to find the points $X_{2}, X_{3}, \cdots, X_{n}$ with the aid of the points $B_{2}, B_{3}, \cdots, B_{n}$ and X_{1}.

Figure 92
(b) ${ }^{\mathbf{T}}$ Following the procedure of part (a), we first reflect the point A in l_{4} to obtain A_{4}, then reflect A_{4} in l_{3} to obtain A_{3}, and so forth until we reach A_{1} (see Figure 92). It is easily verified that reflection in l_{4} followed by reflection in l_{3} is equivalent to a half turn about the point of intersection, R, of these two lines. ${ }^{\text {TT }}$ Similarly, the next two reflections are equivalent to a half turn about the point P. Hence the four reflections are equivalent to the sum of two half turns, about R and P. But as we know (see Figure 17), this is equivalent to a translation in the direction $P R$ through a distance of twice $P R$.

Thus $A A_{1}$ is parallel to, and twice as long as, the diagonal $P R$. By considering angles it is easy to see that the path $A X_{1} X_{2} X_{3} X_{4} A$ is a parallelogram (the opposite sides are parallel) with sides parallel to the diagonals. Thus if the ball is not stopped when it returns to the point A, it will describe exactly the same path a second time.

Finally, it can be seen from the figure that the total length of the path is equal to $A A_{1}$, that is, to twice the length of a diagonal.
31. (a) Let us assume that the problem has been solved. Draw the circle S_{1} of center A and radius a, and the circle S_{2} of center X and radius $X B$ (Figure 93a). Clearly these two circles are tangent at a point lying on the line $A X$. Since S_{2} passes through the point B, it must also

[^5]pass through the point B^{\prime}, the image of B in the line l. Thus the problem has been reduced to the construction of a circle S_{2}, passing through two known points B and B^{\prime} and tangent to a given circle S_{1}, that is, to Problem 49(b) of Vol. 2. ${ }^{\text {T }}$ The center X of the circle S_{2} is the desired point. This problem has at most two solutions; there may only be one or there may be none at all.

Figure 93a
(b) Assume that the problem has been solved, let S_{1} be the circle of center A and radius a, and let S_{2} be the circle of center X and radius $B X$ (Figure 93b). The circles S_{1} and S_{2} are tangent at a point that lies on the line $A X$. In addition S_{2} passes through the point B^{\prime} that is the image of B in the line l. Therefore this problem is also reduced to Problem 49(b) of Vol. 2.T There are at most two solutions.

Figure 93b

[^6]32. (a) Let H_{1} be the image of B in the side $B C$ (Figure 94). Let P, Q, R be the feet of the altitudes. We have
$$
\Varangle B H_{1} C=\Varangle B H C \quad \text { (because } \quad \triangle B H_{1} C \cong \triangle B H C \text {) }
$$

But

$$
\Varangle B H C=\Varangle R H Q,
$$

and

$$
\Varangle R H Q+\Varangle R A Q=\Varangle B H_{1} C+\Varangle R A Q=180^{\circ} ;
$$

therefore $\Varangle B B_{1} C+\Varangle B A C=180^{\circ}$, and from this it follows that H_{1} lies on the circle through the points A, B, C. The images of H in sides $A B$ and $A C$ can be treated in the same way.

Figure 94
(b) Let us assume that triangle $A B C$ has been constructed. The points H_{1}, H_{2}, and H_{3} lie on the circumscribed circle [see Problem (a)]. Since

$$
\Varangle B R C=\Varangle B Q C\left(=90^{\circ}\right)
$$

and $\Varangle B H R=\Varangle C H Q$, it follows that $\Varangle R B H=\Varangle Q C H$, that is, arc $A H_{3}$ is equal to $\operatorname{arc} A H_{2}$. Similarly one shows that $\operatorname{arcs} B H_{1}$ and $B H_{3}$ are equal, and that arcs CH_{1} and CH_{2} are equal. From this it follows that the vertices A, B, and C of the triangle are the midpoints of the arcs $H_{2} H_{3}, H_{3} H_{1}$, and $H_{1} H_{2}$ of the circle through the three points H_{1}, H_{2}, and H_{3}. The problem has a unique solution unless the points H_{1}, H_{2}, and H_{8} lie on a straight line, in which case there is no solution at all.
33. (a) Clearly; for example, the altitudes of triangle $A_{2} A_{3} A_{4}$ are the lines

$$
A_{1} A_{4} \perp A_{2} A_{3}, \quad A_{1} A_{3} \perp A_{2} A_{4}, \quad \text { and } \quad A_{1} A_{2} \perp A_{3} A_{4} ;
$$

the point of intersection of these altitudes is the point A_{1}.
(b) Let A_{4}^{\prime} be the image of A_{4} in the line $A_{2} A_{3}$ (Figure 95). This point lies on the circle S_{4}, circumscribed about triangle $A_{1} A_{2} A_{3}$ [see Problem 32(a)]. Thus the circle circumscribed about triangle $A_{2} A_{4}^{\prime} A_{3}$ coincides with S_{4}; from this it follows that the circle S_{1}, circumscribed about triangle $A_{2} A_{3} A_{4}$, is congruent to S_{4} (S_{1} and S_{4} are images of each other in the line $A_{2} A_{3}$). Similarly one shows that the circles S_{2} and S_{3} are also congruent to S_{4}.

Figure 95
(c) At least one of the triangles $A_{1} A_{2} A_{3}, A_{1} A_{2} A_{4}, A_{1} A_{3} A_{4}$, and $A_{2} A_{3} A_{4}$ must be acute angled; indeed, if triangle $A_{2} A_{3} A_{4}$ has an obtuse angle at A_{4}, then triangle $A_{2} A_{3} A_{1}$ (where A_{1} is the point of intersection of the altitudes of triangle $A_{2} A_{3} A_{4}$) will be acute. Thus we shall assume that triangle $A_{1} A_{2} A_{3}$ is acute and that the point A_{4} lies inside it.

Consider the quadrilateral $A_{1} A_{4} O_{1} O_{4}$. The points O_{1} and O_{4} are centers of circles S_{1} and S_{4} that are images of each other in the line $A_{2} A_{3}$ [see Figure 95 and the solution to part (b) of this problem]. Therefore O_{1} and O_{4} are images of each other in $A_{2} A_{3}$, and so $O_{1} O_{4} \perp A_{2} A_{3}$. In the
quadrilateral $A_{1} A_{4} O_{1} O_{4}$ we thus have

$$
O_{4} O_{1} \| A_{1} A_{4} \quad \text { and } \quad O_{1} A_{4}=O_{4} A_{1}=R
$$

(where R is the radius of the circles S_{1}, S_{2}, S_{3}, and S_{4}). Therefore this quadrilateral is either a parallelogram or an isosceles trapezoid. But it cannot be an isosceles trapezoid because the perpendicular bisector $A_{2} A_{2}$ of side $O_{4} O_{1}$ does not meet side $A_{1} A_{4}$. Hence $A_{1} A_{4} O_{1} O_{4}$ is a parallelogram and its diagonals $A_{1} O_{1}, A_{4} O_{4}$ meet in a point O that is the midpoint of each of them. In the same way one shows that O is the midpoint of $\mathrm{A}_{2} \mathrm{O}_{2}$ and of $\mathrm{A}_{3} \mathrm{O}_{3}$.

Figure 96
34. (a) Let O^{\prime} be the image of the center O of the circle S in the line $A_{2} A_{3}$ (Figure 96). The quadrilaterals $O O^{\prime} H_{4} A_{1}$ and $O O^{\prime} H_{1} A_{4}$ are parallelograms [see the solution to Problem 33(c)]. Therefore

$$
A_{1} H_{4}=O O^{\prime}=A_{4} H_{1}, \quad A_{1} H_{4}\left\|O O^{\prime}\right\| A_{4} H_{1}
$$

and so $A_{1} H_{4} H_{1} A_{4}$ is a parallelogram. From this it follows that the segments $A_{1} H_{1}$ and $A_{4} H_{4}$ have a common midpoint H. In the same way one shows that H is also the midpoint of $A_{2} H_{2}$ and $A_{3} H_{3}$.
(b) By comparing Figure 96 and Figure 95 one sees that, for example, H_{4} lies on the circle S^{\prime}, the image of S in the line $A_{2} A_{3} ; H_{1}$ also lies on this circle. Thus A_{2}, A_{3}, H_{1}, and H_{4} all lie on a circle congruent to S. The remaining assertions of the theorem are proved similarly.

a

b

Figure 97
35. First of all it is clear that any two axes of symmetry $A B$ and $C D$ of the polygon M must intersect inside M; indeed, if this were not the case (Figure 97a), then they could not both divide the figure into two parts of equal area. Now let us show that if there is a third axis of symmetry $E F$, then it must pass through the point of intersection of the first two. Assume that this were not the case; then the three axes of symmetry $A B, C D$, and $E F$ would form a triangle $P Q R$ (Figure 97b). Let M be a point inside this triangle. It is easy to see that each point in the plane lies on the same side of at least one of these three axes of symmetry as does M. Let T be the vertex of the polygon that is farthest from M (if there is more than one such vertex, let T be any one of them), and let T and M lie on the same side of the axis of symmetry $A B$. Thus, if T_{1} is the image of T in $A B$ (T_{1} is therefore a vertex of the polygon), then $M T_{1}>M T$ (since the projection of $M T_{1}$ onto $T T_{1}$ is larger than the projection of $M T$ on $T T_{1}$; see Figure 97b). This contradiction proves the theorem.
[In a similar way it can be shown that if any bounded figure (not necessarily a polygon) has several axes of symmetry, then they must all pass through a common point. For unbounded figures this is not so: Thus, the strip between two parallel lines l_{1} and l_{2} has infinitely many axes of symmetry, perpendicular to l_{1} and l_{2} and all parallel to each other.]

Remark: The assertion of this problem is evident from mechanical considerations. The center of gravity of a homogeneous, polygonal-shaped body, having an axis of symmetry, must lie on that axis. Consequently, if there are several axes of symmetry they must all pass through the center of gravity.

Figure 98
36. Since the segment $X Y$ has length a, we are required to minimize the sum $A X+B Y$. Let us assume that the segment $X Y$ has been found. A glide reflection in the axis l through a distance a carries B into a new point B^{\prime}, and carries Y into X (Figure 98); therefore $B Y=B^{\prime} X$, and so

$$
A X+B Y=A X+B^{\prime} X
$$

Thus it is required that the path $A X B^{\prime}$ should have minimum length. From this it follows that X is the point of intersection of l with $A B^{\prime}$.

Figure 99
37. (a) Assume that the quadrilateral $A B C D$ has been constructed. Let A^{\prime} be the image of A under a glide reflection in the axis $D C$ through a distance $D C$ (Figure 99); then $\Varangle A^{\prime} C D=\Varangle A D K$ (where $D K$ is the extension of side $D C$ past the point D) because if A_{1} is the image of A in $D C$, then

$$
\Varangle A^{\prime} C D=\Varangle A_{1} D K=\Varangle A D K .
$$

But

$$
\Varangle A D K=180^{\circ}-\Varangle D=180^{\circ}-\Varangle C ;
$$

consequently, $\Varangle A^{\prime} C D=180^{\circ}-\Varangle C$, that is, $A^{\prime} C B$ is a straight line. In addition we know that

$$
A^{\prime} B=A^{\prime} C+C B=A D+C B
$$

and we know the distance d from A to $C D$.
Thus we have the following construction: Let l be any line, let A be a point at a distance d from l, and let A^{\prime} be the image of A under a glide reflection in the line l through a distance $C D$. The vertex B of the quadrilateral can now be found, since we know the distances $A B$ and

$$
A^{\prime} B=A D+B C
$$

The vertex C is the point of intersection of the segment $A^{\prime} B$ with the line l, and the vertex D which lies on l is found by laying off the known distance $C D$ from the point C. The problem can have two, one, or no solutions.
(b) Draw the segment $A B$; the line l can now be found as the common tangent to the two circles of radii d_{1} and d_{2}, with centers at the points A and B respectively (Figure 100). It remains to put the segment $D C$ on the line l in such a position that the sum of the lengths $A D+B C$ has the given value [compare with Problem 31 (a)].

Assume that the points D and C have been found and let A^{\prime} and $A^{\prime \prime}$ be the images of A under a translation in the direction of the line l through a distance $D C$, and under a glide reflection with axis l through a distance $D C$. Clearly the circle of center C and radius $A D$ passes through the points A^{\prime} and $A^{\prime \prime} \quad\left(A^{\prime} C=A^{\prime \prime} C=A D\right) \quad$ and is tangent to the circle S with center B and radius

$$
B C+C A^{\prime \prime}=B C+A D
$$

But the circle S can be constructed from the given data, and thus it only remains to find the circle passing through the two known points A^{\prime}
and $A^{\prime \prime}$ and tangent to S [see Problem 49(b) of Vol. 2]. The center of this circle is the vertex C.

Figure 100
38. First solution. Clearly the only time a ray of light will be reflected from a mirror in a direction exactly opposite to the direction of incidence is when the path is perpendicular to the mirror. From now on we shall assume that the ray of light does not strike the first side of the angle at right angles. Let us now consider the case when the ray $M N$, after two reflections in the angle $A B C$, leaves along a path $P Q$ exactly opposite to $M N$ (Figure 101a). In this case we have:

$$
\begin{aligned}
\Varangle P N B & +\Varangle N P B=180^{\circ}-\Varangle N B P=180^{\circ}-\alpha ; \\
2\left(180^{\circ}-\alpha\right) & =2 \Varangle P N B+2 \Varangle N P B \\
& =\Varangle A N M+\Varangle P N B+\Varangle N P B+\Varangle C P Q \\
& =180^{\circ}-\Varangle M N P+180^{\circ}-\Varangle N P Q \\
& =360^{\circ}-(\Varangle M N P+\Varangle N P Q) .
\end{aligned}
$$

[^7]Since the rays $M N$ and $P Q$ are parallel and oppositely directed,

$$
\Varangle M N P+\Varangle N P Q=180^{\circ},
$$

so

$$
2\left(180^{\circ}-\alpha\right)=360^{\circ}-180^{\circ}, \quad \text { and } \quad \alpha=90^{\circ} .
$$

Conversely, if $\alpha=90^{\circ}$ then $\Varangle M N P+\Varangle Q P N=180^{\circ}$, that is, the direction of the departing ray $P Q$ is opposite to $M N$.

a

b

Figure 101
Next consider the case when the incoming ray $M N$, after four reflections in the sides of the angle, leaves in a direction $R S$ opposite to $M N$ (Figure 101b; the only way in which a light ray can leave in the opposite direction to the direction of incidence after exactly three reflections is if it hits the second side of the angle at right angles; this cannot happen for every incoming light ray-in fact, for a given angle α there is only one angle of incidence for which this will happen). Reflect the line $A B$ and the path $P Q R$ in the line $B C$; the line $B A_{1}$ is the image of $B A$, and the point Q_{1} is the image of Q in $B C$. Then

$$
\Varangle A B A_{1}=2 \Varangle A B C=2 \alpha .
$$

Further

$$
\Varangle Q P B=\Varangle Q_{1} P B=\Varangle N P C ;
$$

therefore, $N P Q_{1}$ is a straight line. In the same way it can be shown that $Q_{1} R S$ is a straight line (since $\Varangle Q R B=\Varangle Q_{1} R B=\Varangle S R C$). Finally, $\Varangle B Q_{1} P=\Varangle A_{1} Q_{1} R$, since these angles are equal respectively to the angles $B Q P$ and $A Q R$, which are equal. Thus we see that the ray $M N$, reflected from the points N and Q_{1} of the angle $A B A_{1}=2 \alpha$, leaves in a direction $Q_{1} S$, opposite to the incoming direction. But then by what
was shown previously $2 \alpha=90^{\circ}$ and therefore $\alpha=90^{\circ} / 2$. Conversely, if $\alpha=90^{\circ} / 2$ then $\Varangle A B A_{1}=90^{\circ}$ and so the ray $M N$, after four reflections in the sides of the angle $A B C$, leaves in the opposite direction to the direction of incidence.

Now consider the case when the incoming ray $M N$ is reflected six times in the sides of the angle, and then leaves along a path $T U$ opposite to the incoming path (Figure 101c; in general a light ray cannot leave along a path opposite to the incoming path after exactly five reflections). Reflect the line $A B$ and the path $P Q R S T$ in the line $B C$; let $B A_{1}$ be the image of $B A$ and let Q_{1} and S_{1} be the images of Q and S in the line $B C$. Just as before we can conclude that $N P Q_{1}$ is a straight line $\left(\Varangle Q_{1} P B\right.$ $=\Varangle Q P B=\Varangle N P C)$, that $S_{1} T X$ is a straight line $\left(\Varangle S_{1} T B=\Varangle S T B\right.$ $=\Varangle U T C)$ and that

$$
\Varangle Q_{1} R B=\Varangle S_{1} R C, \quad \Varangle R Q_{1} B=\Varangle P Q_{1} A_{1}, \quad \Varangle R S_{1} B=\Varangle T S_{1} A_{1} .
$$

Thus we find that the ray $M N$, reflected successively from the lines $A B$, $B A_{1}, B C$, and again from $B A_{1}$ at the points N, Q_{1}, R, and S_{1} leaves in the direction $S_{1} U$, opposite to the incoming direction $M N$.

Figure 101c

Now reflect the line $B C$ and the path $Q_{1} R S_{1}$ in the line $B A_{1}$; let $B A_{2}$ be the image of $B C$ and let R_{1} be the image of R in the line $B A_{1}$. Then $N P Q_{1} R_{1}$ is a straight line (because $\Varangle R_{1} Q_{1} B=\Varangle R Q_{1} B=\Varangle P Q_{1} A_{1}$) and $R_{1} S_{1} T U$ is a straight line (because $\Varangle R_{1} S_{1} B=\Varangle R S_{1} B=\Varangle T S_{1} A_{1}$), and $\Varangle Q_{1} R_{1} B=\Varangle S_{1} R_{1} A_{2}$ (because they are equal respectively to the angles $Q_{1} R B$ and $S_{1} R C$, which are equal). Thus we find that the ray $M N$ after being reflected in the sides of the angle $A B A_{2}(=3 \alpha)$ at the points N and R_{1} leaves in the direction $R_{1} U$, opposite to the incoming direction $M N$. But then by what was proved earlier we must have $3 \alpha=90^{\circ}$, that is, $\alpha=90^{\circ} / 3$. Conversely, if $\alpha=90^{\circ} / 3$, then $\Varangle A B A_{2}=90^{\circ}$ and the ray $M N$, after being reflected six times in the sides of angle $A B C$, leaves in the direction opposite to the direction of incidence.

Finally, suppose that after $2 n$ reflections in the sides of an angle $A B C=\alpha$ the ray leaves in the direction opposite to the direction of the incoming ray [in general a light ray cannot leave in a direction opposite to the direction of incidence after $(2 n-1)$ reflections in the sides of an angle].

Proceed as in the previous cases, ${ }^{\mathbf{T}}$ that is, if the incoming ray strikes $A B$, reflect the path of the ray in line $B C$; let $B A_{1}$ be the image of $A B$ after this reflection. Next, reflect $B C$ in line $B A_{1}$ to obtain $B A_{2}$, then reflect $B A_{1}$ in $B A_{2}$ to obtain $B A_{3}$, and so forth, until, after $n-1$ reflections, we have $B A_{n-1}$. The angle $A B A_{n-1}=n \alpha$.

Next, establish that the incoming ray, when continued by the proper reflections, forms a straight line which hits $A_{n-1} B$, is reflected there, then hits $B A$ so that it leaves in the direction opposite to that of its entry. Then, by what was proved earlier, conclude that $n \alpha=90^{\circ}$, and hence, that

$$
\alpha=\frac{90^{\circ}}{n} .
$$

Second solution. Let $A B C$ be the given angle, and let $M N P Q \cdots$ be the path of the light ray (see Figure 102a, where the case $n=2, \alpha=45^{\circ}$ is shown). We are only interested in the directions of the path, and it will be convenient to have all these directions emanate from a single point O (in the figure

$$
O 1\|M N, \quad O 2\| N P, \quad 03 \| P Q
$$

and so forth). Since $\Varangle M N A=\Varangle P N B$, it follows that the ray 02 is the image of $O 1$ in the line $O U \| A B$ (to prove this it is sufficient to note

[^8]that in Figure 102a, $N M^{\prime}$ is the image of $N P$ in $N B$). Similarly, the ray 03 is the image of $O 2$ in the line $O V \| B C$. Therefore by Proposition 3 on page 50 , the ray 03 is obtained from the ray 01 by a rotation through an angle $2 \Varangle U O V=2 \alpha$. Similarly the ray 05 is obtained from the ray 03 by a rotation through an angle 2α in the same direction; consequently the ray 05 is obtained from the ray 01 by a rotation through an angle 4α, and so forth. Therefore, if $\alpha=90^{\circ} / n$ then the ray $O(2 n+1)$, which has the same direction as that of a light ray after n reflections from each of the two faces of the angle, will form an angle $n \cdot 2 \alpha=180^{\circ}$ with the ray $O 1$, which establishes the assertion of the problem. [Here we are assuming that $0<\Varangle M N A<\alpha$; if $\Varangle M N A>\alpha$, then $M N$ will intersect $B C$, which means that the incoming light ray has to be reflected from side $B C$ before it can hit side $B A$. This fact guarantees that the rays in the directions $01,03,05, \cdots$, etc. will all hit the mirror $B A$, while the rays in the directions $02,04, \cdots$, etc. will hit the mirror $B C$. If $\Varangle M N A=\alpha$, that is, if the incoming ray $M N$ is parallel to side $B C$, then the ray $O(2 n)$ will already be opposite in direction to 01 : In this case the final ray leaves along a path opposite to the path of the original incoming ray; however the number of reflections is one fewer than in the general case; see Figure 102b, where $\Varangle A B C=45^{\circ}, \Varangle M N A=45^{\circ}$.]

These considerations show that if $\alpha \neq 90^{\circ} / n$, then not every incoming light ray will, after successive reflections in the sides, leave in a direction opposite to the direction of approach of the original ray.

Figure 102a

Figure 102b
39. (a) First solution (see also the first solutions to Problems 15 and 21). Let $A_{1}, A_{2}, \cdots, A_{n}$ be the desired n-gon and let B_{1} be any point in the plane. Reflect the segment $A_{1} B_{1}$ successively in the lines

$$
l_{1}, \quad l_{2}, \cdots, l_{n-1}, l_{n}
$$

we obtain segments $A_{2} B_{2}, A_{3} B_{3}, \cdots, A_{n} B_{n}, A_{1} B_{n+1}$. Since these segments are all congruent to each other, it follows that $A_{1} B_{1}=A_{1} B_{n+1}$, that is, the point A_{1} is equidistant from B_{1} and B_{n+1}, and lies therefore on the perpendicular bisector of the segment $B_{1} B_{n+1}$.

Now choose another point C_{1} in the plane and let $C_{2}, C_{3}, \cdots, C_{n}, C_{n+1}$ be the points obtained, starting from C_{1}, by successive reflections in the lines $l_{1}, l_{2}, \cdots, l_{n-1}, l_{n}$. Clearly the vertex A_{1} of the n-gon is also equidistant from C_{1} and C_{n+1}, and therefore lies on the perpendicular bisector to $C_{1} C_{n+1}$. Therefore A_{1} can be found as the intersection of the perpendicular bisectors to the segments $B_{1} B_{n+1}$ and $C_{1} C_{n+1}$ (the segments $B_{1} B_{n+1}$ and $C_{1} C_{n+1}$ can be constructed, once we have chosen any two distinct points for B_{1} and C_{1}). By reflecting A_{1} successively in the n given lines we obtain the remaining vertices of the n-gon.

The problem has a unique solution provided that the segments $B_{1} B_{n+1}$ and $C_{1} C_{n+1}$ are not parallel (i.e., provided that the perpendicular bisectors p and q intersect in one point); if $B_{1} B_{n+1} \| C_{1} C_{n+1}$ then the problem has no solution when p and q are distinct, and has infinitely many solutions (the problem is undetermined) when p and q coincide.

The n-gon obtained as the solution to the problem may intersect itself.
One drawback to this solution is that it gives no indication of the essential difference between the cases when n is even and when n is odd (see the second solution to the problem).

Second solution (see also the second solutions to Problems 15 and 21). Let $A_{1} A_{2} \cdots A_{n}$ be the desired n-gon (see Figure 50 a). If we reflect the vertex A_{1} successively in the lines $l_{1}, l_{2}, \cdots, l_{n-1}, l_{n}$ we obtain the points $A_{2}, A_{3}, \cdots, A_{n}$ and, finally, A_{1} again. Thus, A_{1} is a fixed point of the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$.

We now consider separately two cases.
First case: n even. In this case the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ is, in general, a rotation about some point O (see page 55), which can be found by the construction used in the addition of reflections. The point O is the only fixed point of the rotation, and so A_{1} must coincide with O. Having found A_{1}, one has no difficulty in finding all the remaining vertices of the n-gon. The problem has a unique solution in this case.

In the exceptional case, when the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ is a translation or is the identity transformation (a rotation through an angle of zero degrees, or a translation through zero distance), the problem either has no solution at all (a translation has no fixed points) or has more than one solution-any point in the plane can be taken for the vertex A_{1} (every point is a fixed point of the identity transformation).

Second case: \boldsymbol{n} odd. In this case the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ will, in general, be a glide reflection (see pages $55-56$). Since a glide reflection has no fixed points, there will in general be no solution when n is odd. In the exceptional case, when the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ is a reflection in a line l (this line can be constructed), the solution will not be uniquely determined; any point of the line l can be taken for the vertex A_{1} of the n-gon (every point of the axis of symmetry is a fixed point under reflection in this line).
(Thus, for $n=3$, the problem has, in general, no solutions; the only exceptions are the cases when the lines l_{1}, l_{2}, l_{3} meet in one point [see Problem 26(c)] or are parallel; in these cases the problem has more than one solution [see Proposition 4 on page 53]).
(b) This problem is similar to Problem (a). If $A_{1} A_{2} \cdots A_{n}$ is the desired n-gon (see Figure 50 b), then the line $A_{n} A_{1}$ is taken by successive reflections in the lines $l_{1}, l_{2}, \cdots, l_{n-1}, l_{n}$ into the lines

$$
A_{1} A_{2}, \quad A_{2} A_{8}, \cdots, \quad A_{n-1} A_{n}
$$

and finally back into $A_{n} A_{1}$. Thus $A_{n} A_{1}$ is a fixed line of the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$. We consider two cases.

First case: n even. In this case the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ is, in general, a reflection about some point O and, therefore, has in general no fixed lines. Thus for n even our problem has, in general, no solution. In the exceptional cases when the sum of the reflections is a half turn about the point O (a rotation through an angle of 180°), or is a translation, or is the identity transformation, the problem has more than one solution. In the first case one can take any line through the center of symmetry to be the line $A_{n} A_{1}$; in the second case one can take any line parallel to the direction of translation; in the third case one can take any line whatsoever in the plane.

Second case: \boldsymbol{n} odd. In this case the sum of the reflections in the lines $l_{1}, l_{2}, \cdots, l_{n}$ is, in general, a glide reflection with an axis l (that can be constructed). Since l is the only fixed line of a glide reflection, it follows
that the side $A_{n} A_{1}$ of the desired n-gon must lie on l; by reflecting l successively in the lines $l_{1}, l_{2}, \cdots, l_{n-1}$, we obtain all the remaining sides of the n-gon. Thus for odd n the problem has, in general, a unique solution. An exception occurs when the sum of the reflections in the given lines is a reflection in a line l; in this case the problem has more than one solution. For the side $A_{n} A_{1}$ one can take the line l itself, or any line perpendicular to it.
(Thus, for $n=3$, the problem has in general a unique solution; the lines l_{1}, l_{2}, l_{3} will either all be bisectors of the exterior angles of the triangle, or two of them will bisect interior angles and the third will bisect the exterior angle. The only exception is when the three lines l_{1}, l_{2}, and l_{3} meet in a point; in this case the problem has more than one solution [see Problem 26(a)]; the lines l_{1}, l_{2}, l_{3} will all bisect interior angles, or two or them will bisect exterior angles and the third will bisect the interior angle.)

We leave it to the reader to find a solution to part (b) similar to the first solution to part (a).

Figure 103
40. (a) Assume that the problem has been solved (Figure 103). A half turn about the point M will carry the vertex A_{1} into A_{2}, a reflection in the line l_{2} will carry the vertex A_{2} into A_{3}, a reflection in l_{3} will carry A_{3} into A_{4}, and so forth. Finally, a reflection in l_{n} carries A_{n} into A_{1}. Thus, A_{1} is a fixed point of the sum of a half turn about M followed by reflections in the lines $l_{2}, l_{3}, \cdots, l_{n}$. A half turn about the point M is equivalent to a pair of reflections in lines. We shall consider separately two cases.

First case: \boldsymbol{n} odd. In this case the problem reduces to finding fixed points of the sum of an even number of reflections in lines. This sum is, in general, a rotation about some point O (which can be constructed
from the point M and the lines $l_{2}, l_{3}, \cdots, l_{n}$). Therefore for odd n the problem has in general a unique solution [compare this with the first case in the solution to Problem 39(a)]. The only exceptional cases are when the sum of the even number of reflections in the lines is a transla-tion-then the problem has no solution at all; or is the identity trans-formation-then the problem has many solutions.
Second case: n even. In this case the problem reduces to finding the fixed points of an odd number of reflections in lines. In general this sum is a glide reflection and the problem has no solution (a glide reflection has no fixed points). In the special case when the sum of the reflections is itself a reflection in some line l, the problem will have many solutions (reflection in a line has an infinite number of fixed points, namely all the points on the line l).
The construction can also be carried out in a similar manner to the construction in the first solution to Problem 39(a). The polygon obtained as the solution may intersect itself.

Figure 104
(b) Assume that the problem has been solved (Figure 104). A rotation of $180^{\circ}-\alpha$ about the point M carries the line $A_{n} A_{1}$ into $A_{1} A_{2}$. A reflection in l_{2} carries $A_{1} A_{2}$ into $A_{2} A_{3}$, a reflection in l_{3} carries $A_{2} A_{3}$ into $A_{3} A_{4}$, and so forth. Finally, a reflection in l_{n} carries $A_{n-1} A_{n}$ into $A_{n} A_{1}$. Thus, $A_{n} A_{1}$ is a fixed line of the transformation consisting of the sum of a rotation through $180^{\circ}-\alpha$ about the point M (which can be replaced by two reflections in lines) and $n-1$ reflections in the lines $l_{2}, l_{3}, \cdots, l_{n}$.

We consider separately two cases.

First case: n even. The sum of an odd number of reflections in lines is in general a glide reflection; it has a unique fixed line, the axis of symmetry l (that can be constructed), and therefore the problem has a unique solution. In the special case when the sum of the reflections is a reflection in some line, the problem will have infinitely many solutions (because reflection in a line has infinitely many fixed lines).

Second case: \boldsymbol{n} odd. In this case the transformation we are considering will be the sum of an even number of reflections in lines which, in general, is a rotation. In this case the problem will have no solution. In special cases, however, this sum of reflections may be a half turn about some point, a translation, or the identity transformation; in each of these cases the problem will have more than one solution.

The polygon that was constructed to solve the problem may intersect itself; the lines $l_{2}, l_{3}, \cdots, l_{n}$ will bisect either the exterior or the interior angles.

The construction can also be carried out in a manner similar to that in the first solution to Problem 39(a).

Figure 105
41. (a) Let $A_{1} A_{2} A_{3} \cdots A_{n}$ be the desired n-gon (Figure 105). Reflect the vertex A_{1} successively in lines drawn from the center O of the circle and perpendicular to the sides $A_{1} A_{2}, A_{2} A_{3}, \cdots, A_{n-1} A_{n}, A_{n} A_{1}$ of the n-gon (these lines are known, since we are given the directions of the sides of the n-gon) ; the vertex A_{1} is first taken into A_{2}, then A_{2} is taken into A_{3}, \cdots, then A_{n-1} is taken into A_{n}, and finally A_{n} is taken back into A_{1}. Thus A_{1} is a fixed point of the sum of n reflections in known lines. Let us consider two cases separately.

First case: n odd. Since the sum of three reflections in lines meeting in a point is again a reflection in some line through this point (See Proposition 4 on page 53), it is not difficult to see that the sum of any odd number of reflections in lines that all pass through a common point is again a reflection in some line through this point. (First replace the first three reflections by a single reflection, then consider the sum of this reflection and the next two, etc.) Therefore the sum of our n reflections is a reflection in some line passing through the center O of the circle. There are exactly two points on the circle that are left fixed by reflection in l they are the points of intersection of the circle with l. Taking one of these points for the vertex A_{1} of the desired polygon, we find the other vertices by successive reflections of this one in the n lines. The problem has two solutions.

Second case: n even. The sum of any two reflections in lines passing through the point O is a rotation about O through some angle. From this it follows that the sum of an even number, n, of reflections in lines passing through O may be replaced by the sum of $\frac{1}{2} n$ rotations about O; from this it is clear that the sum is itself a rotation about O. Since a rotation about O has, in general, no fixed points on a circle with center O, our problem has no solutions in general. An exception is the case when the sum of the n reflections is the identity transformation; in this case the problem has infinitely many solutions-any point on the circle can be chosen for the vertex A_{1} of the desired n-gon.
(b) Assume that the n-gon has been constructed (see Figure 105). Reflect the vertex A_{1} successively in the ($n-1$) lines perpendicular to the sides $A_{1} A_{2}, A_{2} A_{3}, \cdots, A_{n-1} A_{n}$ and passing through the center O of the circle (these lines are known, since we know the point O and the directions of the sides of the polygon) ; this process takes A_{1} into A_{n}. We consider separately two cases.

First case: n odd. In this case the sum of $(n-1)$ reflections in lines passing through the point O is a rotation about O through an angle α (that can be found). Thus, angle $A_{1} O A_{n}=\alpha$ is a known angle, and so we know the length of the chord $A_{1} A_{n}$ and its distance to the center. Since $A_{1} A_{n}$ must pass through a given point M, it only remains to pass tangents from the point M to the circle with center O and radius equal to the distance from the chord $A_{1} A_{n}$ to the center O. The problem can have two, one, or no solutions.

Second case: n even. In this case the sum of ($n-1$) reflections in lines passing through a common point is a reflection in some line l through this point. Therefore A_{1} and A_{n} are images of each other in l. Since $A_{1} A_{n}$ must pass through a known point M, it can be found by simply dropping the perpendicular from M onto l. The problem always has a unique solution.
42. (a) Since the sum of the reflections in the three lines l_{1}, l_{2}, and l_{8} meeting in the point O is a reflection in some line l (also passing through the point O), it follows that the point A_{3} is obtained from A by a reflection in l. But A_{6} is obtained from A_{2} by a reflection in l, and so A_{6} coincides with A.

This result is valid for any odd number of lines meeting in a point (compare Problem 13). If we have an even number n of lines meeting in a point O, then the sum of the n reflections in these lines is a rotation about O through some angle α, and so the point $A_{2 n}$ obtained after $2 n$ rotations will coincide with the original point A only in case α is a multiple of 180°.

Remark. The point A_{6} obtained from an arbitrary point A of the plane by six successive reflections in lines $l_{1}, l_{2}, l_{3}, l_{1}, l_{2}, l_{3}$ will coincide with the initial point A if and only if l_{1}, l_{2}, and l_{3} meet in a point or are parallel [if $l_{1}\left\|l_{2}\right\| l_{3}$, then the sum of the reflections in l_{1}, l_{2}, and l_{3} is a reflection in some line $l_{\text {, }}$, and the reasoning used in the solution to Problem 42(a) can be applied]. In all other cases the sum of the reflections in l_{1}, l_{2}, and l_{3} is a glide reflection, and thus the point A_{6} is obtained from A by two successive glide reflections along some axis l, that is, by a translation in the direction of $l_{\text {; therefore }} A_{6}$ cannot coincide with A. [The sum of two (identical) glide reflections along an axis l can be written as the sum of the following four transformations: translation along l, reflection in l, reffection in l, and translation along l (see page 48), that is, as the sum of two (identical) translations along l.]
(b) This problem is essentially the same as part (a) [see also Problem 14(b)].
(c) The sum of the reflections in l_{1} and l_{2} is a rotation about their point of intersection O through some angle α; the sum of the reflections in l_{3} and l_{4} is a rotation about O through some angle β. From this it follows that (no matter in which order these reflections are performed!) the point A_{4} is obtained from A by a rotation about O through an angle of $\alpha+\beta$, which was to be proved [compare with Problem 14(a)].
43. (a) Since the three lines $C M, A N, B P$ meet in a point, it follows that the sum of the reflections in the lines $C M, A N, B P, C M, A N, B P$ is the identity transformation [see Problem 42(a)]. To show that the lines $C M^{\prime}, A N^{\prime}, B P^{\prime}$ meet in a point it is sufficient to show that the sum of the reflections in the lines $C M^{\prime}, A N^{\prime}, B P^{\prime}, C M^{\prime}, A N^{\prime}, B P^{\prime}$ is also the identity transformation [see the remark following the solution to Problem 42(a)]. However reflection in the line $C M^{\prime}$ is the same as the sum of the reflections in the three lines $C B, C M$ and $C A$ all meeting in the point C-this follows from the fact that rotation through angle $B C M^{\prime}$ about the point C carries line $C M$ into $C A$, and carries $C B$ into line $C M^{\prime}$, which is the image of $C M$ in the bisector of angle $B C A$ (compare Figure 106a with Figure 47 b , and see the proof of the second half of Proposition 4, page 53). Similarly, reflection in $A N^{\prime}$ is the same as the sum of the reflections in the three lines $A C, A N$, and $A B$, and reflection in $B P^{\prime}$ is the sum of the reflections in the lines $B A, B P$, and $B C$. From this it follows that the sum of the reflections in $C M^{\prime}, A N^{\prime}$, and $B P^{\prime}$ is the same as the sum of the reflections in the following nine lines: $C B, C M, C A, A C(=C A)$, $A N, A B, B A(=A B), B P$, and $B C$. Since two consecutive reflections in the same line cancel each other, this is the same as the sum of the reflections in the following five lines: $C B, C M, A N, B P$, and $B C$. Now perform this transformation twice; we obtain the sum of the reflections in the following ten lines: $C B, C M, A N, B P, B C, C B(=B C), C M, A N, B P$, and $B C$, which is the same as the sum of the reflections in the eight lines $C B, C M, A N, B P, C M, A N, B P$, and $B C$. But if the sum of the reflections in the six "inner" lines is the identity transformation, then the sum of our eight reflections in the eight lines reduces to the sum of the two reflections in $C B$ and $B C(=C B)$, that is, to the identity transormation!

Figure 106
(b) Let the perpendiculars to the sides $A B, B C$ and $C A$ of the triangle $A B C$, erected at the points M and M_{1}, N and N_{1}, P and P_{1} be denoted by m and m_{1}, n and n_{1}, p and p_{1}; let a and b denote the perpendiculars to side $A B$ erected at the endpoints A and B. We must show that if the sum of the reflections in the lines m, n, p, m, n, p is the identily transformation, then the sum of the reflections in the lines $m_{1}, n_{1}, p_{1}, m_{1}, n_{1}, p_{1}$ is also the identity transformation [compare the solution to Problem (a)]; clearly the perpendiculars to two different sides of a triangle cannot be parallel to one another. But the reflection in m_{1} is identical with the sum of the reflections in the point A, in the line m and in the point B; similarly, the reflection in n_{1} is the sum of the reflections in B, n and C, and the reflection in p_{1} is the sum of the reflections in C, p and A. To prove the first of these assertions, note that the reflection in A is the sum of the reflections in $A B$ and a, and the reflection in B is the sum of the reflections in b and $A B$; thus, the sum of the reflections in A, m and B is equal to the sum of the reflections in the following five lines: $A B, a, m, b$, and $A B$. But the sum of the three "inner" reflections is equal to the reflection in m_{1} alone-this follows from the fact that the translation of the two lines a and m, carrying m into b, carries a into m_{1} (since m_{1} is the reflection of m in the midpoint of the segment $A B$; compare Figure 106b with Figure 47a). Therefore the sum of the five reflections is equivalent to the sum of the reflections in the three lines: $A B, m_{1}$, and $A B$, or to the sum of the reflections in M_{1} and $A B$. The reflection in M_{1} is also equal to the sum of the reflections in m_{1} and $A B$ taken in that order; therefore the sum of the reflections in M_{1} and $A B$ is equal to the sum of the reflections in $m_{1}, A B$, and $A B$, and this is clearly the same as a single reflection in m_{1} alone.

It is now clear that the sum of the reflections in the six lines m_{1}, n_{1}, p_{1}, m_{1}, n_{1}, p_{1} is equal to the sum of the reflections in the following points and lines: $A, m, B ; B, n, C ; C, p, A ; A, m, B ; B, n, C ; C, p, A$, or, what is the same thing, to the reflections in A, m, n, p, m, n, p, A. Therefore, if the sum of the six "inner" reflections is the identity transformation, then the sum of all the reflections (which reduces in this case to two reflections in the point A) is also the identity transformation [compare the solution to part (a)].
44. If we take the sum of the reflections in three lines in the plane twice, then we obtain either the identity transformation or a translation [see the solution to Problem 42(a), and in particular the remark following the solution]. Thus the "first" point A_{12} is obtained from A by the
sum of two translations (one or even both of them may be "translations through zero distance"-that is, the identity transformation); the "second" point (which we shall call A_{12}^{\prime}) is obtained from A by the sum of the same two translations taken in the opposite order. The assertion of the problem follows from this [compare the solution to Problem 14(a)].

Figure 107a
45. First solution (based on Theorem 1, page 51). Suppose first that the lines l_{1} and l_{2} are not parallel (Figure 107a). Assume that the problem has been solved. By Theorem 1 the segment $A X$ can be taken by a rotation into the congruent segment $B Y$, so that A is taken into B and X into Y (since l_{1} and l_{2} are not parallel, $A X$ cannot be taken into $B Y$ by a translation). The angle of rotation α is equal to the angle between l_{1} and l_{2}; therefore the center of rotation O can be found as the point of intersection of the perpendicular bisector p of the segment $A B$ with the circular arc constructed on $A B$ and subtending an angle α (this arc lies on the circle S circumscribed about triangle $A B P$, where P is the point of intersection of l_{1} and l_{2}). \dagger Let this rotation take the desired line m into a line m^{\prime}, also passing through \boldsymbol{Y}. We shall now consider Problems (a), (b), (c), and (d) separately.

[^9](a) Rotate the line n through an angle α about the center O that was found above, and let n^{\prime} be the line thus obtained. The line $O Y$ will bisect the angles between m and m^{\prime}, and between n and n^{\prime}; hence Y can be found as the point of intersection of l_{2} with the line joining O to the point of intersection of n and \boldsymbol{n}^{\prime}. The problem can have two solutions (see the note \dagger).
(b) m^{\prime} passes through the point M^{\prime} that is the image of M under a rotation through an angle α about the point O; the angle between m and m^{\prime} is equal to α. Therefore Y can be found as the point of intersection of the line l_{2} with the circular arc on $M M^{\prime}$ that subtends the angle α. The problem can have two solutions.
(c) In the isosceles triangle $O X Y$ we know the vertex angle α and the base $X Y=a$; this enables us to find the distance $O X$ from O to the unknown point X. The problem can have up to four solutions.

Figure 107b
(d) Let S be the midpoint of $X Y$. Since the angles of the isosceles triangle $O X Y$ are known, we also know the ratio

$$
\frac{O S}{O X}=k \quad \text { and the angle } \quad X O S=\frac{1}{2} \alpha .
$$

Therefore the point S is obtained from X by a known spiral similarity (see Vol. 2, Chapter 1, Section 2). \dagger The point S is found as the intersection of the line r and the line l_{1}^{\prime} obtained from l_{1} by this spiral similarity. The desired line m is perpendicular to $O S$. The problem has, in general, two solutions; if l_{1}^{\prime} coincides with r then the solution is undetermined.

If $l_{1} \| l_{2}$ then the desired line m either passes through the midpoint S of the segment $A B$ or is parallel to $A B$ (Figure 107b). In these cases the-
\dagger Here the second solution is preferable, as it does not use material from Vol. 2.
problem becomes much simpler. We shall merely indicate the number of solutions:
(a) One solution if n is not parallel to l_{1} or to $A B$; no solutions if $n\left\|l_{1}\right\| l_{2}$; infinitely many solutions if $n \| A B$.
(b) Two solutions if M does not lie on the line $A B$ or on the line l_{0} midway between l_{1} and l_{2} and parallel to them; one solution if M lies on $A B$ or on l_{0} but does not coincide with S; infinitely many solutions if M coincides with S.
(c) Two solutions if $a \neq A B$, and $a>d$ (where d is the distance between l_{1} and l_{2}); one solution if $a=d$ but $A B \neq d$; no solutions if $a<d$; infinitely many solutions if $a=A B(\geq d)$.
(d) One solution if r is not parallel to $l_{1} \| l_{2}$ and does not pass through S; no solutions if $r \| l_{1}$ but does not pass through S; infinitely many solutions if r passes through S.

Figure 108

Second solution of parts (a), (c), (d) (based on Theorem 2, page 64). By Theorem 2 the segment $A X$ can be taken by a glide reflection (or by an ordinary reflection in a line, which may be regarded as a special case of a glide reflection) into the congruent segment $B Y$ so that A goes into B and X into Y. Also, the axis l of the glide reflection is parallel to the bisector of the angle between l_{1} and l_{2} and passes through the mid-
point of segment $A B ; \dagger$ the distance d of the translation is equal to $A_{1} B$ where A_{1} is the image of A in l (Figure 108). Also, let X_{1} be the image of X in l; in this case

$$
X_{1} Y \| l \quad \text { and } \quad X_{1} Y=d
$$

We now consider the three cases (a), (c) and (d) separately.
(a) In triangle $X X_{1} Y$ the side $X_{1} Y=d$ is known, as is $\Varangle X Y X_{1}$ (it is equal to the angle between m and l); hence the length of side $X X_{1}$ can be found. Now X can be found as the point of intersection of the line l_{1} and the line l^{\prime}, parallel to l at a distance of $\frac{1}{2} X X_{1}$. In the general case, when l_{1} is not parallel to l_{2}, the problem has two solutions.
(c) In triangle $X X_{1} Y$ the hypotenuse $X Y=a$ and the side $X_{1} Y=d$ are known; hence the other side $X X_{1}$ can be found. The remainder of the construction is similar to that in part (a); in general the problem has two solutions.
(d) The midpoint S of the segment $X Y$ must lie on the midline l of triangle $X X_{1} Y$. Therefore S is the point of intersection of l and r. X can now be found as the intersection of l_{1} with the perpendicular p to l at the point S_{1} (where $S S_{1}=\frac{1}{2} d$). In general the problem has two solutions.
46. Suppose that the lines l_{1}, l_{2}, and l_{3} are not all parallel to each other for example l_{9} is not parallel to l_{1} or to l_{2}. Assume that the problem has been solved (Figure 109). By Theorem 1 there is a rotation carrying $A X$ into $C Z$ and there is a rotation carrying $B Y$ into $C Z$; the angles of rotation α_{1} and α_{2} are equal respectively to the angles between l_{1} and l_{8}, and between l_{2} and l_{3}. The centers of rotation O_{1} and O_{2} are found just as in the first solution to Problem $45(\mathrm{a})$ - (d). From the isosceles triangles $O_{1} X Z$ and $O_{2} Y Z$ with angles at O_{1} and O_{2} equal respectively to α_{1} and α_{2}, one can find

$$
\Varangle O_{1} Z X=90^{\circ}-\frac{1}{2} \alpha_{1}, \quad \Varangle O_{2} Z Y=90^{\circ}-\frac{1}{2} \alpha_{2} .
$$

[^10]From this it follows that

$$
\Varangle O_{1} Z O_{2}=\frac{1}{2}\left(\alpha_{1} \pm \alpha_{2}\right),
$$

and, therefore, Z can be found as the point of intersection of l_{2} with the arc of a circle constructed on the segment $\mathrm{O}_{1} \mathrm{O}_{2}$ and subtending the known angle $\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right)$ or $\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right)$.

Each of the angles α_{1} and α_{2}, and each of the centers of rotation O_{1} and O_{2}, can be determined in two different ways (compare the solution of the preceding problem). Hence there are at most 16 solutions to the problem.

Figure 109
47. Assume that the problem has been solved (Figure 110). By Theorem 1 there is a rotation carrying $B P$ into $C Q$; the angle of rotation α is equal to the angle between $A B$ and $A C$, and the center of rotation O is found just as in the first solution to Problem 45(a) - (d). Since in the isosceles triangle $O P Q$ we know the angle α at the vertex O, we also know the ratio

$$
\frac{O P}{P Q}=k .
$$

But by the conditions of the problem, $P Q=B P$; therefore

$$
\frac{O P}{B P}=k
$$

which enables us to find P as the point of intersection of side $A B$ with the circle that is the locus of points the ratio of whose distances to O
and B is equal to k. This geometric locus is a circle, as can be seen, for example, from the fact that the bisectors of the interior and exterior angles of $\triangle O P B$ from P (see Figure 111, where P is any point for which $O P / B P=k$) intersect the base $O B$ in constant (independent of P) points M and N determined by the conditions

$$
\frac{O M}{M B}=\frac{O N}{B N}=k=\frac{O P}{B P}
$$

Since the two bisectors are perpendicular to each other, P belongs to the circle with diameter $M N$. T

Figure 110

Figure 111

[^11]
AMS / MAA $\operatorname{ANNELI~LAX~NEW~MATHEMATICAL~LIBRARY~}$

Almost everyone is acquainted with plane Euclidean geometry as it is usually taught in high school. This book introduces the reader to a completely different way of looking at familiar geometrical facts. It is concerned with transformations of the plane that do not alter the shapes and sizes of geometric figures. Such transformations (isometries) play a fundamental role in the group-theoretic approach to geometry.

The treatment is direct and simple. The reader is introduced to new ideas and then is urged to solve problems using these ideas. The problems form an essential part of this book and the solutions are given in detail in the second half of the book.

Isaac Moisevitch Yaglom was born on March 6, 1921 in the city of Kharkov. He graduated from Sverdlovsk University in 1942 and received his Candidate's Degree (the equivalent of an American PhD) from Moscow State University in 1945. He received the DSc degree in 1965. An influential figure in mathematics education in the Soviet Union, he was the author of many scientific and expository publications. In addition to Geometric Transformations, English translations of his books include Convex Figures (Holt, Rinehart and Winston, 1961, written jointly with V. G. Boltyanskii), Challenging Mathematical Problems with Elementary Solutions (Holden-Day, 1964, written jointly with his twin brother Akiva M. Yaglom), Complex Numbers in Geometry (Academic Press, 1968), A Simple Non-Euclidean Geometry and Its Physical Basis (Springer, 1979), Probability and Information (Reidel, 1983, written jointly with Akiva), Mathematical Structures and Mathematical Modelling (Gordon and Breach, 1986), and Felix Klein and Sophus Lie (Birkhäuser, 1988). Professor Yaglom died April 17, 1988 in Moscow.

Allen Shields (1927-1989), the translator of this volume, was professor of mathematics at the University of Michigan for most of his career. He worked on a wide range of mathematical topics including measure theory, complex functions, functional analysis and operator theory.

[^0]: TT The foregoing paragraphs concerning the number of solutions were added in translation.

[^1]: T This sentence was added in translation.

[^2]: \dagger See the note at the end of the solution of Problem 16(b) for a discussion of the conditions that the points $M_{1}, M_{2}, \cdots, M_{n}$ must satisfy in this case.

[^3]: \dagger It may happen that in the construction we shall have to find the center of a rotation that is the sum of a translation and a rotation. In this connection one should consult the text in fine print on page 36 or on page 51.

[^4]: T Every triangle has an inscribed circle or incircle and three excircles. Each excircle is tangent to the extensions of two of the sides of the triangle and to the third side (externally). The center of each excircle is the point of intersection of an internal angle bisector and the bisectors of the exterior angles at the other two vertices.

[^5]: T This solution was inserted by the translator in place of the original solution.
 Tr See page 50.

[^6]: T Since at this time Volume 2 is not available in English, we refer the reader to p. 175, Problem V of College Geometry by Nathan Altschiller-Court, Johnson Publishing Co., 1925, Richmond.

[^7]: T See translator's note on page 107.

[^8]: T In the Russian version of this book, the details of this proof were carried out. We have omitted them here in order to save space and to avoid the somewhat complicated notation.

[^9]: \dagger The circle S and the perpendicular bisector p intersect in two points O and O_{1}; they correspond to the cases when X and Y are situated on the same, or on opposite sides of the line through $A B$.

[^10]: \dagger Since there are two angle bisectors of the angles formed by l_{1} and l_{2}, the glide reflection carrying $A X$ into $B Y$ can be chosen in two different ways (corresponding to the cases when X and Y are situated on the same, or on opposite sides of the line $A B$). If $l_{1} \| l_{2}$ then the axis of one of these glide reflections is parallel to l_{1} and l_{2} while the other axis is perpendicular to them; this explains the special role played by the case when l_{1} and l_{2} are parallel in the solution of parts (a), (c), (d).

[^11]: T See also page 14, Locus 11, of College Geometry by Nathan Altschiller-Court, Johnson Publishing Co., 1925, Richmond.

