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Note to the Reader 

his book is one of a series written by professional mathematicians T in order to  make some important mathematical ideas interesting 
and understandable to a large audience of high school students and 
laymen. Most of the volumes in the New Mathematical Library cover 
topics not usually included in the high school curriculum; they vary 
in difficulty, and, even within a single book, some parts require a 
greater degree of concentration than others. Thus, while the reader 
needs little technical knowledge to understand most of these books, 
he will have to make an intellectual effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be 
read quickly. Nor must he expect to understand all parts of the book 
on first reading. He should feel free to  skip complicated parts and 
return to them later; often an argument will be clarified by a subse- 
quent remark. On the other hand, sections containing thoroughly 
familiar material may be read very quickly. 

The best way to learn mathematics is to  do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to  acquire the habit of reading with 
paper and pencil in hand; in this way mathematics will become in- 
creasingly meaningful to him. 

For the authors and editors this is a new venture. They wish to 
acknowledge the generous help given them by the many high school 
teachers and students who assisted in the preparation of these mono- 
graphs. The editors are interested in reactions to  the books in this 

series and hope that readers will write to: Editorial Committee of the 
NML series, NEW YORK UNIVERSITY, THE COURANT INSTITUTE OF 

MATHEMATICAL SCIEXCES, 2.51 Mercer Street, New York, N. Y. 10012. 

The Editors 
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GEOMETRIC TRANSFORMATIONS I 





Translator‘s Preface 

The present volume is Part I of Geometric Transformations by I. M. 
Yaglom. The Russian original appeared in three parts; Parts I and I1 
were published in 1955 in one volume of 280 pages. Part I11 was pub- 

lished in 1956 as a separate volume of 611 pages. In the English transla- 

tion Parts I and I1 are published as two separate volumes: NML 8 and 

NML21. The first chapter of Part 111, on projective and some non-Euclidean 

geometry, was translated into English and published in 1973 as NML 
vol. 24; the balance of Part 111, on inversions, has not so far been published 
in English. 

In this translation most references to Part I11 were eliminated, and 

Yaglom’s “Foreword” and “On the Use of This Book” appear, in greatly 

abbreviated form, under the heading “From the Author’s Preface”. 

This book is not a text in plane geometry. On the contrary, the author 
assumes that the reader is already familiar with the subject. Most of the 

material could be read by a bright high school student who has had a 

term of plane geometry. However, he would have to work; this book, 

like all good mathematics books, makes considerable demands on the 
reader. 

The book deals with the fundamental transformations of plane geom- 
etry, that is, with distance-preserving transformations (translations, 

rotations, reflections) and thus introduces the reader simply and directly 
to some important group theoretic concepts. 

The relatively short basic text is supplemented by 47 rather difficult 
problems. The author’s concise way of stating these should not dis- 
courage the reader; for example, he may find, when he makes a diagram 

of the given data, that the number of solutions of a given problem de- 

pends on the relative lengths of certain distances or on the relative posi- 

tions of certain given figures. He will be forced to discover for himself 

the conditions under which a given problem has a unique solution. In the 

second half of this book, the problems are solved in detail and a discussion 

3 
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of the conditions under which there is no solution, or one solution, or 

several solutions is included. 

The reader should also be aware that the notation used in this book 
may be somewhat different from the one he is used to. For example, if 

two lines 1 and m intersect in a point 0, the angle between them is often 

referred to as QlOm; or if A and B are two points, then “the line AB” 
denotes the line through A and B, while “the line segment AB” denotes 

the finite segment from A to B .  
The footnotes preceded by the usual symbol t were taken over from 

the Russian version of this book while those preceded by the symbol T 

have been added in this translation. 

I wish to thank Professor Yaglom for his valuable assistance in pre- 
paring the American edition of his book. He read the manuscript of the 

translation and made a number of suggestions. He has expanded and 

clarified certain passages in the original, and has added several problems. 

In particular, Problems 4, 14, 24, 42, 43, and 44 in this volume were not 
present in the original version while Problems 22 and 23 of the Russian 
original do not appear in the American edition. In the translation of 
the next part of Yaglom’s book, the problem numbers of the American 

edition do not correspond to those of the Russian edition. I therefore 

call to the reader’s attention that all references in this volume to problems 

in the sequel carry the problem numbers of the Russian version. However, 
NML 21 includes a table relating the problem numbers of the Russian 
version to those in the translation (see p. viii of NML 21). 

The translator calls the reader’s attention to footnote t on p. 20, 
which explains an unorthodox use of terminology in this book. 
Project for their advice and assistance. Professor H. S. M. Coxeter was 
particularly helpful with the terminology. Especial thanks are due to Dr. 
Anneli Lax, the technical editor of the project, for her invaluable assist- 

ance, her patience and her tact, and to her assistants Carolyn Stone and 

Arlys Stritzel. 
Allen Shields 



From the Author‘s Preface 

This work, consisting of three parts, is devoted to elementary geom- 
etry. A vast amount of material has been accumulated in elementary 
geometry, especially in the nineteenth century. Many beautiful and unex- 
pected theorems were proved about circles, triangles, polygons, etc. 
Within elementary geometry whole separate “sciences” arose, such as 
the geometry of the triangle or the geometry of the tetrahedron, having 
their own, extensive, subject matter, their own problems, and their own 
methods of solving these problems. 

The task of the present work is not to acquaint the reader with a series 
of theorems that are new to him. It seems to us that what has been said 
above does not, by itself, justify the appearance of a special monograph 
devoted to elementary geometry, because most of the theorems of ele- 
mentary geometry that go beyond the limits of a high school course are 
merely curiosities that have no special use and lie outside the mainstream 
of mathematical development. However, in addition to concrete theorems, 
elementary geometry contains two important general ideas that form the 
basis of all further development in geometry, and whose importance ex- 
tends far beyond these broad limits. We have in mind the deductive 
method and the axiomatic foundation of geometry on the one hand, and 
geometric transformations and the group-theoretic foundation of geom- 
etry on the other. These ideas have been very fruitful; the development 
of each leads to non-Euclidean geometry. The description of one of these 

ideas, the idea of the group-theoretic foundation of geometry, is the 
basic task of this work. . . . 

Let us say a few more words about the character of the book. It is 
intended for a fairly wide class of readers; in such cases it is always 
necessary to sacrifice the interests of some readers for those of others. 
The author has sacrificed the interests of the well prepared reader, and 
has striven for simplicity and clearness risther than for rigor and for 
logical exactness. Thus, for example, in this book we do not define the 
general concept of a geometric transformation, since defining terms that 
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are intuitively clear always causes difficulties for inexperienced readers. 
For the same reason it was necessary to refrain from using directed angles 
and to postpone to the second chapter the introduction of directed seg- 
ments, in spite of the disadvantage that certain arguments in the basic 
text and in the solutions of the problems must, strictly speaking, be con- 

sidered incomplete (see, for example, the proof on page 50). I t  seemed to 
us that in all these cases the well prepared reader could complete the 
reasoning for himself, and that the lack of rigor would not disturb the 
less well prepared reader. . . . 

The same considerations played a considerable rde in the choice of 
terminology. The author became convinced from his own experience as a 
student that the presence of a large number of unfamiliar terms greatly 
increases the difficulty of a book, and therefore he has attempted to prac- 
tice the greatest economy in this respect. In certain cases this has led 
him to avoid certain terms that would have been convenient, thus sacri- 
ficing the interests of the well prepared reader. . . . 

The problems provide an opportunity for the reader to see how well 
he has mastered the theoretical material. He need not solve all the prob- 
lems in order, but is urged to solve a t  least one (preferably several) 
from each group of problems; the book is constructed so that, by proceed- 
ing in this manner, the reader will not lose any essential part of the 
content. After solving (or trying to solve) a problem, he should study the 
solution given in the back of the book. 

The formulation of the problems is not, as a rule, connected with the 
text of the book; the solutions, on the other hand, use the basic material 
and apply the transformations to elementary geometry. Special attention 
is paid to methods rather than to results; thus a particular exercise may 
appear in several places because the comparison of different methods of 
solving a problem is always instructive. 

There are many problems in construction. In solving these we are not 

interested in the “simplest” (in some sense) construction-instead the 
author takes the point of view that these problems present mainly a 

logical interest and does not concern himself with actually carrying out 

the construction. 
No mention is made of three-dimensional propositions; this restriction 

does not seriously affect the main ideas of the book. While a section of 
problems in solid geometry might have added interest, the problems in 
this book are illustrative and not a t  all an end in themselves. 

The manuscript of the book was prepared by the author a t  the 
Orekhovo-Zuevo Pedagogical Institute . . . in connection with the au- 
thor’s work in the geometry section of the seminar in secondary school 

mathematics a t  Moscow State University. 
I. M. Yaglom 



Solutions 

Chapter One. Displacements 

1. Translate the circle S1 a distance a in the direction I ,  and let S: be 
its new position; let A’ and B’ be the points of intersection of S: with 
the circle Sz (see Figure 60). The two lines parallel to I ,  one through the 
point A’ and the other through the point B’ will each solve the problem 
(the segments AA‘ and BB’ in Figure 60 are each equal to the distance (I 
of the translation). One can find two additional solutions by translating 
SI in the opposite direction a distance a parallel to I into the new posi- 
tion s:’. 

Depending on the number of points of intersection of the circles S: 
and S:’ with Sz, the problem may have infinitely many solutions, four 
solutions, three solutions, two solutions, one solution, or no solution a t  
all. In t.he case shown in Figure 60 the problem has three solutions. 

I I 

I I 
a 

Figure 60 

71 
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2. (a) Assume that the problem has been solved, and translate the 
segment M N  into a new position AN' in such a manner that the point M 
is carried into the point A (Figure 61a). Then AM = N'N, and therefore 

A M  + N B  = N'N + NB.  

Thus the path A M N B  will be the shortest path if and only if the points 
N', N ,  and B lie on one line. 

Thus we have the following construction: From the point A lay off 
a segment AN' equal in length to the width of the river, perpendicular 
to the river, and directed toward it; pass a line through the points N' 
and B ;  let N be the point of intersection of this line with the river bank 
nearest to B ;  build the bridge across the river a t  the point N. 

A 

a 

Figure 61 

(t) For simplicity we consider the case of two rivers. Assume that the 
problem has been solved, and let K L  and MN be the two bridges across 
the rivers. Translate the segment K L  to a new position AL' in such a 

manner that the endpoint K is takeD into the point A (Figure 61b). 
Then A K  = L'L and 

A K + L M + N B =  L ' L + L M + N B .  

If A K L M N B  is the shortest path from A to B, then L'LMNB will be 
the shortest path from L' to B and LMNB the shortest path from L to B. 
But L and B are only separated by the second river, and so from part (a) 
we know how to construct the shortest path between them. 

Thus we have the following construction: From the point A lay off 
a segment AL' equal in length to the width of the first river, perpendicu- 
lar to it, and directed toward it; from the point L lay off a segment 
L'N' equal in length to the width of the second river, perpendicular to 
it, and directed toward it. Pass a line through the points N' and B ;  let 
N be the point of intersection of this line with the bank of the second river 
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nearest to B. The bridge across the second river should be built at.N. 
Let M be the other endpoint of this bridge. Pass a line through the point 
M parallel to the line N'B, and let L be the point of intersection of this 
line with the bank of the first river nearest to M. The first bridge should 
be built a t  L. 

3. (a) Let M be a point in the plane for which MP + MQ = a, where 
P and Q are the feet of the perpendiculars from M to the lines ll and 12, 

respectively (Figure 62a). Translate the line 12 a distance a in the direc- 
tion QM. If 1: is the new line obtained by this translation, then it is clear 
that the distance MQ' of the point M from the line 14 is equal to 
a - MQ = MP. Consequently M is on the bisector of one of the angles 
between the lines l1 and 1;. 

From this it is clear that all points of the desired locus lie on the bi- 
sectors of the angles formed by the line 11 with the lines 1: and li' ,  ob- 
tained from 12 by translation through a distance a in the direction per- 
pendicular to 12. However, not all the points on these four bisectors are 
points of our locus. From Figure 62a it is not difficult to see that only the 
points on the rectangle ABCD formed by the intersections of the four 
bisectors will be points of the locus. 

/ 

Figure 62a 
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(b) Let M be a point of the plane satisfying one of the following two 
equations : 

I M P - M Q = a  or M Q - Y P = a ,  

where P and Q are the feet of the perpendiculars from M to the lines 
ZI and 12 (in Figure 62b, the point M satisfies the second equation). 
Translate the line 12 a distance a in the direction QM, and let 1: be the 
new line. Just as in part (a) one can show that M is equidistant from 
11 and 1: (see Figure 62b, where MQ - M P  = a, MIPI - MIQI = a) .  
It follows that all points of the desired locus lie on the bisectors of the 
four angles formed by the line 11 with the lines 1: and 1;’; however in the 
present case only points lying on the extensions of the sides of the rec- 
tangle ABCD will be points of the locus (the equation MP - MQ = a 

is satisfied by the points on HBG and LDN, while the equation 
MQ - M P  = a is satisfied by the points on EAF and ZCK). 

4. Observe that triangle BDE is obtained from triangle DAF by a 
translation (in the direction AB through a distance A D ) ;  thus the line 
segments joining pairs of corresponding points in these two figures are 
equal and parallel to one another. Therefore 

OiOz = QiQ2, 0102 I1 QiQz- 
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Similarly one has 

and 
OzOs = Q@a, OzOa I I  QzQa, 

OaOi QaQi, OaOi I I  QaQi. 

Therefore triangles 010203 and QlQQ.3 are congruent (in fact, their 
corresponding sides are parallel, that is, the triangles are obtained from 
one another by a translation-see pages 18-19). 

M p + - x  B' 

A 

Figure 63 

5. Translate the sides A B  and DC of the quadrilateral ABCD into 
the new positions MB' and MC' (Figure 63). The two quadrilaterals 
AMB'B and DMC'C thus formed will be parallelograms, and therefore 

BB'II A M  and BB' = A M ,  

CC'II DM and CC' = DM. 

But A M  = M D  ( M  is the midpoint of side A D ) ;  thus the segments 
BB' and CC' are equal and parallel. Since, in addition, BN = NC, it 
follows that 

ABNB' G ACNC'. 

Therefore B'N = NC' and QBNB' = QCNC', that is, the segments 
BIN and NC' are extensions of each other. 

Thus we have constructed a triangle MB'C' in which, by the condi- 
tions of the problem, the median M N  is equal to half the sum of the two 
adjacent sides MB' and MC' (since MB' = A B ,  MC' = DC).  If we ex- 
tend the median M N  past the point N a distance NM1 = M N  and join 
M I  with B', we obtain a triangle MMIB' in which the side MM1 = 2MN 
is equal to the sum of the sides MB' and B'M1 = MC', which is impos- 
sible. Consequently the point B must lie on the segment M M I .  But this 
means that 

MB' 1 1  M N  11 MC'; 
therefore 

A B  1 1  M N  and DC 11 M N ,  

that is, the quadrilateral ABCD is a trapezoid. 
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6. Assume that the problem has been solved. Translate the segment 
A X  a distance EF = a in the direction of the line CD, and let the new 
position be A’X‘ (Figure 64).  

Clearly A’X’ passes through the point F. Further 

<A‘FB = < A X B  = 3AmB;t 

therefore we may regard the angle A’FB as known. 
Thus we have the following construction: Translate the point A a 

distance a in the direction of the chord CD, and denote its new position 
by A’. Using the segment A’B as a chord, construct a circular arcr that 
subtends an angle equal to 3: A X B  (that is, if Y is any point on the circu- 
lar arc, then <A’YB = < A X B  = 3AmB). 

m 
Figure &L 

If this circular arc intersects the chord CD in two points, either one of 
them may be taken as the point F, and the point X is obtained as the 
point of intersection of the original circle with the line BF. In this case 
the problem has two solutions. 

If the circular arc is tangent to CD, the point of tangency must be 
taken as the point F, and the problem has just one solution. 

If the arc does not intersect CD at all, the problem has no solution. 
If one assumes that CD is intersected by the extensions of chords A X  

and BX (and that points E and Fare outside the circle-on the extension 
of chord CD), then the problem can have up to four solutions. (This is 
due to the fact that A may be translated in either of two opposite 
directions.)TT 

t AmB stands for arc AmB. 

T For the details of this construction, see, for example, Hungarian Problem Book 2 

mThe foregoing paragraphs concerning the number of solutions were added in 

in this series, Problem 1895/2, Note. 

translation. 
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Figure 65 

7. (a) Assume that the problem has been solved, i.e., that M1M2 = a 
(Figure 65).  From the centers Ol and 0 2  of the circles S1 and S2, drop 
perpendiculars 01P1 and 02Pz onto the line 1; then 

AP1 = 3AM1, AP2 = )AM*, 

and consequently, 

PIPS = 3(AMl  + AM2) = 3 M 1 2  = $a. 

Translate the line 1 into a line 1' passing through the point 01; let P' be 
the point of intersection of I' with the line 02P2. Then 

01P' = PIP2 = +a, 

since the quadrilateral P I O ~ P ' P ~  is a rectangle. 
Thus we have the following construction: Construct a right triangle 

O1O2P' with 0102 as hypotenuse and with side 01P' = $a. The desired 
line 1 will be parallel to the line 01P'. 

If 0 1 0 2  > +a the problem has two solutions (the construction of a 
second solution to the problem is indicated in dotted lines in Figure 65) ; 
if 0102 = 3a there is one solution, and if 0 1 0 2  < #a there are no solutions. 

(b) Let M, N, P be the three given points and let ABC be the given 
triangle (Figure 66). On the segments M N  and M P  construct circular 
arcs subtending angles equal to 3: ACB and 3: ABC, respectively. Thus 
we are led to the following problem: Pass a line B I G  through the point 

Y in such a way that the segment cut off by the two circular arcs has 
length BC, that is, we are led to Problem (a). The problem may have 
two solutions, or one solution, or no solutions at  all (depending on which 
sides of the triangle are to pass through each of the three given points). 
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Figure 66 

8. (a) Assume that the problem has been solved, and let the line Z 
meet the circles Sl and S2 in points A ,  B and C, D (Figure 67a). Trans- 
late the circle S1 a distance AC in the direction of the line 1, and let S: 
be its new position. Since A B  = CD, the segment A B  will coincide 
with CD; therefore the centers 0 2  and 0: of the circles St and Si will 
both lie on the perpendicular bisector of the segment CD. 

Thus we have the following construction: Let m be the line perpen- 
dicular to 11 and passing through the center 02 of the circle SS; let f l  be 
the line parallel to 11 and passing through the center 01 of the circle Si; 
Let 0; be the point of intersection of these two lines. Translate S1 into a 

new position S: with center a t  0:. The line through the points of inter- 
section of SZ and Si is the solution to the problem. 

The problem can have one solution or no solution. 

Figure 67a 
I 
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(b) Assume that the problem has been solved and let the line 1 meet 
S1 and SZ in points A ,  B and C, D;  then A B  + CD = a (Figure 67b). 
Translate the circle S1 a distance a in the direction of 1 and denote its 
new position by S:;  then 

AA' = u = A B  + CD, 

that is, BA' = CD. Therefore, if we translate the circle SZ in the direc- 
tion of 1 into a new position S: whose center 0: is on the perpendicular 
bisector m of the segment 010: (01 and 0: are the centers of the circles 
S1 and S ; ) ,  then the chord CD of Sz will be taken into BA'. 

Thus we have the following construction: Translate the circle SI a 
distance a in the direction of the line 11, and denote the new position by 
S:; then translate Sz in the direction of l1 into a new position S: whose 
center lies on the perpendicular bisector m of the segment 010:. The 
points of intersection of the circles S1 and S: (in the diagram they are 
the points B and B1) determine the desired lines. The problem has at 
most two solutions; the number of solutions depends upon the number of 
points of intersection of the circles S1 and S: (a case when there are two 
solutions 1 and 1' is shown in Figure 67b). 

The other part of the problem, where the dijerence of the two chords 
cut off on the line I by the two circles is given, can be solved in a similar 
manner. 

I 
Figure 67b 
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1 
K 

Figure 68 

(c) Assume that the problem has been solved, and translate the circle 
S1 in the direction of the line K N  so that the segment KL coincides 

with MN; denote the new circle so obtained by S: (see Figure 68). 

Thus the circles SZ and S: have the common chord MN. 
Let ABl  and A& be tangents from the point A to the circles S: and 

S2 respectively (the points of tangency are BI and Bz, respectively). Then 

= A M - A N ;  (A&)* = A M - A N  

and therefore 

(AB1)2 = ( A & ) ) .  

AOI = d(OIB1)2 + (AB1)Z = d Y i  + (ABZ)Z, 

We can now determine AO: (0: is the center of S:) : 

where y1 is the radius of Sl; in addition, we know that Q010:O~ is a right 

angle, because 0:02, through the centers of S: and S2, is perpendicular 

to MN, their common chord, and therefore also to OIO;, which is parallel 

to 1. This enables us to find the translation carrying SI into S:. 
We use the following construction. With the point A as center, draw 

a circle of radius 

44 + (AB2)2;  
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draw a second circle having the segment 0 1 0 2  as diameter. The intersec- 
tion of these two circles determines the position of the center 0: of &he 

circle S: of radius r1. Now find the points M and .Y of intersection of the 

circles S2 and S: and draw the line MIY, which will be the solution to 

the problem. Indeed, the point A lies on the line MS; for otherwise the 

equation ( A & ) ?  = (AB2)*  could not be satisfied [if the line A M  were 
to intersect the circles S2 and S; in distinct points .IT* and S 1 ,  then we 

would have (A&)* = AM.A.\’2 and (A&)?  = A M .  A S 1 3  

Also, 0,O: is perpendicular to MS, and 010: is perpendicular to 020:; 

therefore 010: 11 M.V, that is, the chords K L  and MS of the circles SI 
and S:  are a t  the same distance from the centers 01 and 0:. But this 

means that the chords K L  and MS have the same length, which was to 

be proved. 

The problem has at most two solutions. 

Figure 69 

9. Draw the line 1’ obtained from 1 by a half turn about the point A 
(Figure 69) ; let P’ be one of the points of intersection of this line with 

the circle S. Then the line P’A is a solution to the problem, since the 
point P of intersection of this line with the line 1 is obtained from P’ by 

a half turn about A ,  and therefore P‘A = AP.  
There are at most two solutions to this problem. 

Figure 70a 

10. (a) Draw the circle S: obtained from S2 by a half turn about the 

point A (Figure 70a). The circles S1 and S; intersect in the point A ;  

let P’ be their other point of intersection. Then the line P’A will solve 

the problem, because the point P where this line meets the circle S2 is 
obtained from P’ by a half turn about A ,  and therefore P’A = A P .  
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If the circles SI and S2 intersect in two points, then the problem has 
exactly one solution; if they are tangent, then there is no solution if the 
radii are different, and there are infinitely many solutions if the radii are 

equal. 

Remark: This problem is a special case of Problem 8(c), and it has a much 
simpler solution. 

Figure 70b 

(b) Draw the circle S: obtained from SZ by a half turn about the 
point A .  Assume that the problem has been solved and that the line 
M A N  is the solution (Figure 70b). Let N' be the point where this line 
intersects the circle S:; then MN' = a. From the centers O1 and 0: of 
the circles Sl and S:, drop perpendiculars 01P and O& to the line 
M A N ;  then 

and 

P A  = + M A ,  Q A  = 3N'A 

PQ = P A  - Q A  = i ( M A  - N'A)  = $a. 

Thus the distance from the point 0: to the line OIP is equal to #a, 
that is, the line 01P is tangent to the circle with center 0: and radius 
*a. This enables us now to find the line OlP without assuming that the 
solution to the whole problem is already known. Having found 01P we 
can now easily construct M A N  I 01P. 

There are a t  most two solutions to the problem. 
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m 
Figure 71 

11. Assume that the problem has been solved (Figure 71), and let 
A'X' be the segment obtained from A X  by a half turn about the point J. 
Since A X  passes through E, A'X' will pass through F. Since X'A' 11 A X ,  
we see that 

QX'FB = < A X B  = 3AmB; 

therefore, Q A'FB = 180' - QX'FB and so we may regard 

as known. 
Thus we have the following construction: Let A' be the point obtained 

from A by a half turn about J. On the segment A'B construct the circle 
arc that subtends an angle of 

QA'FB = 180' -3AmB 

180' -3AmB. 

The point of intersection of this arc with the chord CD determines the 
point F, and the other intersection of the line BF with the circumference 
is the desired point X. 

The problem has a unique solution; if one assumes that CD is inter- 
sected by the extensions of chords AX and B X ,  then there may be two 
solutions (cf. solution of Problem 6). 
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A2 

Figure 72 

12. Assume that the figure F has two centers of symmetry, 01 and 
0 2  (Figure 7 2 ) .  Then the point 03, obtained from 01 by a half turn 
about 0 2  is also a center of symmetry of F. Indeed, if A is any point of 
F, then the points A1, A2, and A’, where A1 is obtained from A by a 

half turn about 02, A2 from A 1  by a half turn about 01, and A’ from A2 

by a half turn about 02, will also be points of F (since 01 and 0 2  are 
centers of symmetry). But the point A’ is also obtained from A by a 

half turn about 03; indeed, the segments A O3 and OaA’ are equal, parallel, 
and have opposite directions, since the pairs of segments A03 and A101, 

A101 and A201, A201 and A’03 are equal, parallel, and have opposite 
directions. 

Thus if A is any point of F, then the symmetric point A‘ obtained 
from A by a half turn about O3 is also a point of F, that is, 0 3  is a center 
of symmetry of F. 

Similarly one shows that the point 0 4 ,  obtained from 0 2  by a half 
turn about 03, and the point Os, obtained from 03 by a half turn about 
0 4 ,  etc. are centers of symmetry. Thus we see that if the figure F has two 
distinct centers of symmetry then it has infinitely many. 

13. (a) The segment A,Bn is obtained from A B  by n successive half 
turns about the points 0 1 , 0 2 ,  a - 0 ,  On (n even). But the sum of the half 
turns about O1 and 0 2  is a translation; the sum of the half turns about 
O3 and 0, is a translation; the sum of the half turns about 0s and 0s is a 
translation; - a * ;  finally, the sum of the half turns about On-1 and O n  is 

also a translation. Therefore AnB, is obtained from A B  by 3n successive 
translations. Since any sum of translations is again a translation the 
segment AnBn is obtained from A B  by a translation, and therefore 
A A ,  = BB.. 

If n is odd the assertion of the problem is false, because the sum of an 
odd number of half turns is a translation plus a half turn, or, what is the 
same thing, is a half turn about some other point (see page 34); there- 
fore, in general A A ,  # BB. (although ABn = BAn). 
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(b) Since the sum of an odd number of half turns is a half turn [see 

the solution to Problem (a)], the point A ,  obtained from A by the n 
successive half turns about the points 01, 02, - a ,  0, can also be obtained 

from A by a single half turn about some point 0. The point AZn is ob- 

tained from A ,  by these same n half turns; therefore it can also be ob- 

tained from A ,  by the single half turn about the point 0. But this means 

that Az, coincides with A .  
If n is even then A ,  is obtained from A by a translation, and A Z n  

is obtained from A ,  by this same translation; therefore Az. will not, in 

general, coincide with A .  ( I t  will coincide with A if this translation is 

the identity transformation, i.e., a translation through zero distance.’) 

C 

N 
Figure 73 

14. (a) The sum of the two half turns about the points 01 and 02 is a 
translation (see page 25) and the sum of the half turns about the points 
O3 and O4 is another translation (in general, different from the first). 
Thus the “first” point Ad is obtained from A by performing two trans- 
lations in succession; the “second” point (we denote it by A : )  is ob- 
tained from A by performing the same two translations in the opposite 

order. But the sum of lwo translations i s  independent of the order in which 

they are performed. (To prove this it is sufficient to consider Figure 73, 
where the points B and C are obtained from the point A by the transla- 

tions indicated by the segments M S  and PQ respectively. The point D 
is obtained from the point B by the translation PQ, and D is also ob- 
tained from C by the translation M N .  From this the assertion of the 

theorem follows.) 

(b) This problem is clearly the same as Problem 13(b) (for n = S) ,  
since Problem 13(b) tells us that the point As,  obtained from A by five 

successive half turns about the points 01, 02, 03, 0 4 ,  06, is taken back 

into the point A by these same five half turns performed in the same order. 

This sentence was added in translation. 
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(c) Whenever n is odd, the final positions will be the same (see Prob- 
lem 13). 

[The two points obtained by the n half turns will also coincide in 
case n = 2k is an even number and there exists a k-gon MIMn. *Mk, 
whose sides M1M2, M2M3) , MUUI are equal to, parallel to, and have 
the same direction as the segments 0102 ,  0304, * * * ,  0-10n (in this case 

the sum of the n half turns about the points 01, 02, a * - ,  On, carried out 
in either this order or in the reverse order, is a “translation through zero 
distance”, that is, it is the identity transformation) .] 

a b 
Figure 74 

15. First solution. Assume that the problem has been solved and let 

A1A2* As 

be the nine-gon, with Ml, M2, * * * ,  Ms the centers of its sides (Figure 
74a; here we are taking n = 9) .  Let B1 be any point in the plane and let 
BS be obtained from it by a half turn about MI. Let Bo be obtained from 
B, by a half turn about M2. Continue this until finally Blo is obtained 
from BD by a half turn about MS. Since each of the segments Ad?*, 
A&, * * * ,  AIBU is obtained from the preceding one by a half turn, 
they are all parallel and have the same length, and each one has a direc- 
tion opposite to the direction of the one before it. Therefore A& and 
AIBIO are equal and parallel and have opposite directions, which means 
that the point A1 is the midpoint of the segment B&,. This enables us 
to find AI, since by starting with any point B1 we can find Blo. The re- 
maining vertices As, Aa, * * * ,  Ap are then found by successive half turns 
about MI, Ms, * * * ,  Mp. 
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The problem always has a unique solution; however, the nine-gon 
that is obtained need not be convex and may even intersect itself. 

If n is even and if we repeat the same reasoning as before, i.e., if we 
assume that the problem has been solved, we see that AlBn+I and A& 
are equal, parallel and have the same direction, that is, they coincide. 
Therefore if Bn+l does not coincide with B1, then the problem has no 
solution. If Bn+l does coincide with B1 then A& will coincide with 

AIBn+1 no matter where the point A1 is chosen. In this case there are 
infinitely many solutions; any point in the plane can be taken for the 
vertex A1. 

Second solution. The vertex A1 of the desired n-gon will be taken into 
itself by the sum of the half turns about the points MI, M2, * - * ,  M n ,  

that is, A1 is a fixed point of the sum of these n half turns (see Figure 
74b) where the case n = 9 is shown). If n were even then the sum of n 
half turns would be a translation [see the solution to Problem 13(a)]. 
Since a translation has no fixed points, it follows that for n even the 
problem has, in general, no solution. The only exception occurs when the 
sum of the n half turns is the identity transformation (a translation 
through zero distance), which leaves all points in the plane fixed; in this 
case the problem has infinitely many solutions; any point in the plane 
can be taken for the vertex Al.t  If n is odd (for example, n = 9), then 
the sum of n half turns is a half turn. Since a half turn has exactly one 
fixed point, namely the center of symmetry, it follows that the vertex A1 

of the desired nine-gon must coincide with this center of symmetry; in 
this case the problem has a unique solution. 

We now show how to construct the center of symmetry of the sum 
of the nine half turns about the points MI, M2, 0 . 9 ,  MQ. The sum of the 
half turns about MI and M2 is a translation in the direction M1M2 through 
a distance 2M1M2; the sum of the half turns about Ma and MI is a trans- 
lation in the direction M a 4  through a distance 2M&¶4, etc. Thus the 
sum of the first eight half turns is the same as the sum of the four trans- 

lations in the directions M1M2 (or MINI), M a 4  (11 NIN2), M a 6  

(1  I N2Nd and MTMS (I I NdV4) through distances ~ M I M z  ( = MINI), 
2Mdf4 ( = NINz) ,2M~.i& ( = NdVa), and 2M7Ms ( = NJN4) respectively 
(see Figure 74b), which is a single translation in the direction M1N4 
through a distance M1N4. The point A1 is the center of symmetry of the 

half turn that is the sum of a translation in the direction M1N4 through a 
distance MIN, and a half turn about the point Mo. To find A1 it is suffi- 
cient to lay off a segment MQAI starting a t  MQ, parallel to N X l  and of 
length aM1N4 (Figure 74b; compare this with Figure 18). Having found 
AI, we have no difficulty in finding the remaining vertices of the nine-gon. 

t See the note at the end of the solution of Problem 16(b) for a discussion of the 
conditions that the points MI, M,, 0 ,  M. must satisfy in this case. 
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16. (a) If M ,  N ,  P ,  and Q are the midpoints of the sides of the quad- 
rilateral ABCD (see Figure 22a), then four half turns performed in suc- 
cession about the points M ,  N ,  P ,  and Q will carry the point A into itself 
(compare with the solution to Problem 15). Now this is possible only in 
case the sum of the four half turns about the points M ,  N ,  P ,  and Q, 
which is equal to the sum of two translations in the directions MN and 
PQ through distances 2MN and 2PQ respectively, is the identity trans- 
formation. But this means that the segments Mil' and PQ are parallel, 
equal in length and oppositely directed, that is, the quadrilateral MNPQ 
is a parallelogram. 

(b) Just as in part (a), we conclude that the sum of the translations 
in the directions MIMz,  M a 4 ,  and M a 6  through distances 2MlM2, 
2M&4, and 2M&,3 is the identity transformation. Therefore there is a 
triangle whose sides are parallel to MIMz,  M a d ,  and M a 6 ,  and equal 
to 2M1M2, 2MJM4, and 2M5M6; but this means that there is also a tri- 
angle whose sides are parallel to and have the same lengths as the seg- 
ments M1M2, M a d ,  M a 6 .  

In the same way one proves that there exists a triangle whose sides are 
parallel to, and have the same lengths as the segments M a a ,  Ma69 
M6MI. 

Remark: Using the same method that was used in the solution of Problem 

16(b) one can show that a set of 2n points MI, Mz, .-., M z n  will be the mid- 

points of the sides of some 2n-gon if and only if  there exists an n-gon whose 

sides are parallel to and have the same lengths as the segments Mu%, 
M3M4, * * * ,  M2,,-1M2,,; there will then also exist an n-gon whose sides are 

parallel to and have the same lengths as Mzhfa, M4M5. *.., M2nMl. 

17. Rotate the line 11 about the point A through an angle a, and let 1: 
denote the new position of the line. Let M be the point of intersection of 
1: with the line 12 (Figure 75). The circle having its center a t  A and pas- 
sing through the point M will solve the problem, since the point of inter- 

section M' of this circle with the line 11 is taken into the point M by our 
rotation (that is, the central angle MAM' = a). 

The problem has two solutions (corresponding to rotations in the two 
directions), provided that neither of the angles between the lines 11 and 12 

is equal to a; it has either exactly one solution or infinitely many solu- 
tions if one of the angles between the lines 11 and 12 is equal to a; it has 
either no solutions at all or infinitely many solutions if lI and 12 are per- 
pendicular and a = 90'. 
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18. Assume that the problem has been solved and let ABC be the 
desired triangle whose vertices lie on the given lines ZI, Z2, and la (Figure 
76). Rotate the line 12 about the point A through an angle of 60" in the 
direction from B to C; this will any the point B into the point C. 

Thus we have the following construction: Choose an arbitrary point A 
on the line 11 and rotate 12 about A through an angle of 60". The point of 
intersection of the new line I ;  with ZS is the vertex C of the desired tri- 
angle. The problem has two solutions since 12 can be rotated through 60" 
in either of two directions; however, these two solutions are congruent. 

The problem of constructing an equilateral triangle whose vertices lie 
on three given concentric circles is solved analogously. 

Figure 76 

Remark: If we had chosen a different point A' instead of A on the line 11, 

then the new figure would be obtained from Figure 76 by an isometry (more 
precidely, by a translation in the direction 11 through a distance AA'). But in 
geometry we do not distinguish between such figures (see the introduction). 
For this reason we do not consider that the solution to the problem depends 
on the position of the point A on 11. If the three lines h, Is, and l a  were not 
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parallel, then the problem would be solved in exactly the same way; however 
now we would have to allow infinitely many different solutions corresponding 
to the different ways of choosing a point A on the line l1 (since the triangles 
obtained would no longer be congruent). 

In exactly the same way the problem of constructing an equilateral triangle 
ABC whose vertices lie on three concentric circles Sl, Sz, and S3 can have at 
most four solutions (here the figures obtained by different choices of the 
point A on the circle Sl will also be the same-they are all obtained from one 
another by a rotation about the common center of the three circles S1, &, 
and S3). On the other hand, if the circles Sl, SS, and S3 are not concentric, 
then the problem will have infinitely many solutions (different choices of the 
point A on the circle Sl will correspond to essentially different solutions). 

Figure 77 

19. Let us assume that the arc CD has been found (Figure 77). Rotate 
the segment B D  about the center 0 of the circle S through an angle a; 
it will be taken into a new segment B'C that makes an angle ACB' = a 

with the segment AC. 
Thus we have the following construction: Rotate the point B about 0 

through an angle a into a new position B'. Through the points A and B' 
pass a circular arc subtending an angle a (that is, if C is any point on the 
circular arc, then 9: ACB' = a) .  The intersection of this circular arc 
with the circle S determines the point C. 

The problem can have up to four solutions (the arc can meet the circle 
in two points, and the point B can be rotated about the point 0 in two 
directions). 

20. Assume that the problem has been solved. Rotate the circle S; 
about A through an angle a into the position S: (Figure 78;. The circles 
S2 and S: will cut off equal chords on the line L. Thus the problem has 
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been reduced to Problem 8(c). In other words, a line l2 must be passed 
through A so that it cuts off equal chords on S:  and S1. Then 11 can 
be obtained by a rotation of 12 about A through an angle a, and S1 will 
cut the desired segment from 11. 

The problem can have up to four solutions. [Since S1 can be rotated 
about A in either of two directions, there are two ways of reducing the 
problem to Problem 8(c) which, in turn may have two solutions.] 

Figure 78 

21. First solution (compare with the first solution of Problem 15). 
Assume that the problem has been solved and that AIAV * *An is the 
desired n-gon (see Figure 79, where n = 6). Choose an arbitrary point 
B1 in the plane. The sequence of rotations, first about M I  through an 
angle a1, then about MS through an angle az, etc., and finally about M. 
through an angle a n  carries the segment AlBl first into a segment A2B2, 
then carries A& into a segment A&, - and finally carries AnBn into 
A1B,,+l. All these segments are equal and therefore the vertex A1 of the 
n-gon is equidistant from the points B1 and Bn+l (where Bn+l is obtained 
from B1 by these n rotations). Now choose a second point C1 in the plane, 

and rotate it successively about the points MI, Mz, ., M n  through 
angles al, a2, m . 0 ,  a,,. Thus we obtain a second pair of points CI and 
C,,.+I equidistant from A I .  Thus the vertex A1 of the n-gon can be found 
as the intersection of the perpendicular bisectors of the segments BIBn+l 
and C1C,,+,. Having found A1 we obtain A2 by rotating Al  about M I  
thrc,ugh an angle al; Aa is obtained by rotating A2 about M2 through an 
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angle a), etc. The problem has a unique solution provided that the per- 
pendicular bisectors to BtB,,+t and to CtC,,+t do intersect (that is, the 
segments BtBn+1 and CtC,,+t are not parallel). If the perpendicular bi- 
sectors are parallel then the problem has no solution, and if they coincide 
then the problem has infinitely many solutions. 

The polygon obtained as the solution to the problem need not be con- 
vex and may even intersect itself. 

Second solution (compare with the second solution of Problem 15). 
The vertex At is a fixed point of the sum of the n rotations with centers 
M I ,  M2, * - * ,  Mn and angles at, a2, 0 ,  an (these rotations take A1 into 
At ,  A2 into As, Aa into A,, etc. and, finally, An into At) .  But the sum of 
n rotations through the angles a1, 02, * * * ,  an is a rotation through the 
angle 

at + 9 + a * * +  an, 

provided that at + a2 + m e * +  a n  is not a multiple of 360'; it is a trans- 
lation otherwise (this follows from the theorem on the sum of two rota- 
tions). The only fixed point of a rotation is the center of rotation. There- 
fore if 

at + a?, + * * * +  ar. 

is not a multiple of 360') then A1 is found as the center of the rotation, 
that is, the sum of the rotations about the points M I ,  Ms, , M. through 
angles. a, us, * - * ,  u,,. Actually to iind A1 we may apply repeatedly the 
method given in the text to find the center of the sum of two r0tations.t 

A translation has no fixed points whatever. Therefore if 

UI + a2 + a * * +  an 

is a multiple of 360' then the problem has no solution in general. How- 
ever, in the special case when the sum of the rotations about the points 
Ml, M2, * * * ,  M. through the angles al, 4 2 ,  ***,a, (where the sum 
a1 + a2 + = * *  + an is a multiple of 360') is the identity transformation, 
the problem has infinitely many solutions (any point in the plane may be 
chosen for the vertex At). 

Thus, if a1 = a2 = * * * =  an = 180' (this is the case considered in 
Problem 15), the problem has a unique solution when n is odd and has 
no solution or has infinitely many solutions when n is even. 

t It may happen that in the construction we shall have to find the center of a rota- 
tion that is the sum of a translation and a rotation. In this connection one should con- 
sult the text in h e  print on page 36 or on page 51. 
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Figure 79 

22. (a) Consider the sequence of three rotations, each through 120°, 
about the points 01, 01, Os (see Figure 31 in the text). The first of these 
rotations carries A into B, the second carries B into C, and the third 
carries C into A .  

Thus the point A is a fixed point of the sum of these three rotations. 
But the sum of three rotations through 120' is, in general, a translation, 
and therefore has no fixed points. From the fact that A is a fixed point 
we see that the sum of these three rotations must be the identity trans- 
formation (translation through zero distance). The sum of the first two 
rotations is a rotation through 240' about the point 0 of intersection of 
two lines, one through 01 and the other through 02, each making an 
angle of 60' with 0102. Therefore the triangle 01020 is equilateral. Since 
the sum of this rotation and the rotation about 00 through 120' is the 
identity transformation, the point 0 must coincide with 08. Thus the 
triangle 010203 is equilateral, which was to be proved. 

In the same way one can show that the centers O:, O:, 0: of the equi- 
lateral triangles constructed on the sides of the given triangle ABC, but 
lying towards the interior of ABC, also form an equilateral triangle 
(Figure 80). 
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(b) The solution to this problem is similar to that of (a). Since the 
point A is taken into itself by the sum of the three rotations through 

angles 8, a, and (a + P + y = 360') about the centers B1, A1, and Cl, 
we see that the sum of these rotations is the identity transformation. 
But this is possible only if C1 coincides with the center of the rotation 
which is the sum of the two rotations through angles /3 and a about the 
centers B1 and A1, that is, if C1 is the point of intersection of the two lines 
through B1 and A1 that make angles +/3 and $a with the line BIAI.  From 
this the assertion of the problem follows. 

In the same way it can be shown that the vertices A : ,  B:, C: of the 
isosceles triangles ABC:, BCA:, and ACB: with vertex angles a, 8, and 
y, respectively, (a + /3 + y = 360') constructed on the sides of the given 
triangle ABC but lying towards the interior of ABC, also form a triangle 

with angles +a, &3, 37. 

Figure 80 

23. The sequence of three rotations in the same direction through 
angles of 60", 60', and 240" about the points A ,  B1, and M takes the 
point B into itself (see Figure 32 in the text). Therefore the sum of these 
three rotations is the identity transformation, and thus the sum of the 
first two rotations is a rotation with center M. From this the assertion 
of the problem follows. (Compare with the solution to Problem 22.) 

24. (a) The sum of the four rotations with centers M1, M2, Ma, and 
M4, each through an angle of 60°, where the direction of the first and 
third rotations is opposite to that of the second and fourth, carries the 
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vertex A of the quadrilateral into itself (see Figure 33a, in the text). 
But the sum of the two rotations about M1 and M2 is a translation given 
by the segment MIM:, where M i  is a vertex of the equilateral triangle 
M1M2M: (M2M1 = M2M:, $M1M2M: = 60°, and the direction of 
rotation from MzMl to M,M: coincides with the direction of rota- 
tion from M2B to MK; see Figure 81a, and Figure 28b in the 
text). Similarly the sum of the rotations about M3 and M4 is a 

translation given by the segment MIM:, where triangle M3M4Mi is 
equilateral (and the direction of rotation from M4M3 to M4M: is the 
same as the direction of rotation from M4D to M4.4). Thus the sum of 
two translations-given by the segments MIM: and M3Mi-carries the 

point A into itself. But if the sum of two translations leaves even one 
point fixed, then this sum must be the identity transformation, that is, 
the two segments that determine the two translations must be equal, 
parallel, and oppositely directed. But if the equilateral triangles MlM2M: 
and MsMcM: are so situated that 

MIM: = Ma:, M1M: II M3Mi 

and if M1Mi and Ma: are oppositely directed, then the sides M1M2 
and MaM4 are also equal, parallel, and oppositely directed, from which it 
follows that the quadrilateral Mlkf2M&f4 is a parallelogram (see Figure 
81a). 

Figure 81a 

(b) The sum of the four rotations about the points MI, Mt, Ma, and 
M4, each through an angle of We, clearly carries the vertex A of the quad- 
rilateral into itself. It follows that this sum of four rotations is the iden- 
tity transformation [compare the solution of Problem (a)]. But the 
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sum of the rotations about MI and M2 is a half turn about a point 01- 
the vertex of an isosceles right triangle 01M1Mz (since 

compare Figure 81b with Figure 28a in the text). Similarly the sum of 
rotations about Ma and i U 4  is a half turn about the vertex 0 2  of an 
isosceles right triangle O&&+ From the fact that the sum of the half 
turns about Ol and 0 2  is the identity transformation it clearly follows 
that these two points coincide. But this means that triangle OIMIMa is 
obtained from triangle O1MsM4 by a rotation through 90' about the 
point O1 = 02, and therefore the segments MIMg and M&4 are equal 
and perpendicular. 

Figure 81b 

(c) By what has already been proved [see the solution to Problem 
(b)], the diagonals MlMa and M2M4 of the quadrilateral M&fd!fd!f4 
are equal and mutually perpendicular. Further, since the point 0 of 
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intersection of the diagonals of the parallelogram ABCD is its center of 
symmetry, it is also the center of symmetry for all of Figure Slc, and in 
particular it is the center of symmetry for the quadrilateral M&fdf5M( 
(which must, therefore, be a parallelogram-since the parallelogram is 
the only quadrilateral that has a center of symmetry). But a parallelo- 
gram whose diagonals are equal and perpendicular must be a square. 

Figure 81c 

In the same way it can be shown that if the four squares are constructed 
in the interior of the parallelogram, then their centers again form a square 
(Figure 81d). 

C 

A 

Figure 81d 
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Chapter Two. Symmetry 

25. (a) Let us assume that the point X has been found, that is, that 

Q A X M  = < B X N  

(Figure 82a). Let B' be the image of B in the line M N ;  then 

QB"XN = Q B X N  = Q A X M ,  

that is, the points A ,  X ,  B' lie on a line. From this it follows that X is 
the point of intersection of the lines MN and AB'. 

(b) Let us assume that the point X has been found and let S: be the 
image of the circle S2 in the line Mhr (Figure 82b). 

If X A ,  XB, and XB' are tangents from the point X to the circles 

S1, S2, and S: then 

QB'XN = (CBXN = Q A X M ,  

that is, the points A ,  X, and B' lie on a line. Therefore X is the point of 
intersection of the line MN with the common tangent line AB' to the 
circles S1 and S:. The problem can have a t  most four solutions (there 
are at  most four common tangents to two circles). 

a b 
Figure 82 

(c) First solution. Assume X has been found. Let B' be the image of 

B in MN and let X C  be the continuation of the segment A X  past the 
point X (Figure 83a). Then 

QCXN = 2 4 B X N  = 2QB'XN, 

and therefore the ray XB' bisects the angle N X C .  Thus the line A X C  is 
tangent to the circle S with center B' that is tangent to M N ;  conse- 
quently, the point X is the intersection of the line M N  and the tangent 
from A to the circle S. 
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Second solution. Again, assume X has been found. Let A' be the image 
of A in the line B'X (we are using the same notation as in the first 
solution). B'X bisects the angle A X M ;  therefore A' lies on the line X M  
and B'A = B'A' (Figure 83b). Thus A' can be found as the intersection 
of the line MN with the arc of a circle with center B' and radius B'A. 
The point X is now obtained as the intersection of the line M N  with the 

dropped from B' onto A A'. 

a b 
Figure 83 

26. (a) Assume that the triangle ABC has been constructed, with 
12 bisecting angle B and 13 bisecting angle C (Figure 84a). Then the lines 
B A  and BC are images of each other in 12, and the lines BC and AC are 
images of each other in 13, and therefore the points A' and A" obtained 
from A by reflection in the lines 12 and 13 lie on the line BC. 

Thus we have the following construction: Reflect the point A in the 
lines 12 and 18 to obtain the points A' and A". The vertices B and C are 
the points of intersection of the line A'A" with the lines 12 and 13. 

Figure 84a 
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If 11 and 13 are perpendicular, then the line A'"' passes through the 
point of intersection of the three given lines and the problem has no 
solution; if 11 is perpendicular to one of the lines 12 and 13, then A'A" will 
be parallel to the other line and again the problem will have no solution. 
In case no two of the three given lines are perpendicular, the problem 
has a unique solution; however only in case each of the three given lines 
is included in the obtuse angle formed by the other two will the three 
lines bisect the ide~ior angles of the triangle ABC; if, for example, 11 is 
included in the acute angle formed by 12 and 13, then these last two lines 
bisect the exterior angles of the triangle (Figure 84b). We leave the proof 
of this statement to the reader. 

Figure &Ib 

(b) Choose an arbitrary point A' on one of the lines and construct 
the triangle A'B'C' having the lines I, ,  12, and la as bisectors of its interior 
angles [see part (a) of this problem]. Construct tangents to S parallel 
to the sides of triangle A'B'C' (Figure 85). The triangle thus obtained is 
the solution to the problem. The problem has a unique solution if each 

of the three lines C,h, 13 is included in the obtuse angle formed by the 
other two; if one of them is included in the acute angle formed by the 
other two then the given circle will be an escribed circle or excircleT of 
the triangle. 

T Every triangle has an inscribed circle or incircle and three excircles. Each excircle 

is tangent to the extensions of two of the sides of the triangle and to the third side 

(externally). The center of each excircle is the point of intersection of an internal angle 
bisector and the bisectors of the exterior angles at the other two vertices. 
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Figure 85 
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(c) Let us assume that the triangle ABC has been found (Figure 86). 
Since the point A is the image of the point B in the line 12, it must lie on 
the line that is the image of BC in b; and since A is the image of C in Za, 

it must also lie on the line that is the image of BC in b. 
Thus we have the following construction: Pass a line m through A I  

perpendicular to ZI. Then construct the lines m' and m'' obtained from m 
by reflection in the lines 12 and h. The point of intersection of m' and m" 

will be the vertex A of the desired triangle; the vertices B and C are the 
images of this vertex in the lines h and Za (Figure 86). 

If the lines h and 13 are perpendicular, then either the lines m' and m", 
obtained from m by reflection in Is and 18, will be parallel (provided that 
the point A1 does not coincide with the point 0 of intersection of the 

three lines Z1, 12, and la)  or they will coincide (if A1 coincides with 0). In 
the first case the problem has no solution, while in the second the solu- 
tion is not determined uniquely. In all other cases the solution is unique. 

Figure 86 



102 G E O M E T R I C  T R A N S F O R M A T I O N S  

27. (a) Assume that the problem has been solved. Pass a line MN 
through the vertex C parallel to A B ,  and let B' be the image of B in the 
line MN (Figure 87). Let a and B be the angles at  the base A B  (we shall 
assume that 01 > a). Then 

<ACN = 180" - a, <B'CN = <BCN = 8; 

+ACB' = (180" - a) + /3 = 180" - ((r - a) = 180" - y. 

Thus we have the following construction: Lay off the segment A B  = a, 
and construct a parallel line M N  a t  a distance k from AB.  Let B' be the 
image of B in the line M N .  On the segment AB' construct the arc that 

subtends an angle of 180" - y. The point of intersection of this arc with 
the line MiV is the vertex C of the triangle. The problem has a unique 
solution. 

a 
B' 

N 

Figure 87 

(b) Assume that the problem has been solved and determine the 

Since 

line M N  and the point B' as in part (a) (Figure 87). 

<ACB' = 180" - 7, 

we can construct the triangle ACB' from the two sides AC and CB' = BC 
and their included angle 180"- y. M N  coincides with the median CD 
of this triangle (because MN is a "midline" of triangle ABB', that is, 
MN is parallel to the base A B  and midway between this base and the 

opposite vertex B').  Finally, the vertex B is obtained as the image of B' 
in the line MN. The problem has a unique solution. 

28. Assume that the problem has been solved and let B' be the image 
of B in OM (Figure 88). We have: 

<B'XA = <B'XB + 9: YXZ; 
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but 

(because + X Z Y  is an exterior angle of triangle X O Z ) .  Consequently 

QB'XB = 2QOXZ = 2 ( Q X Z Y  - QMON)  

QB'XA = 2QXZY - 2QMON + Q Y X Z  

= Q X Z Y  + Q X Y Z  + Q Y X Z  - 23MON 

= 180' - 2+MON. 

Thus QB'XA is known. Now X can be found as the point of intersection 

of the ray OM with the arc, constructed on the chord AB',  that subtends 

an angle equal to 180' - 2QMON. The problem has a unique solution. 

Figure 88 

29. (a) Assume that the quadrilateral ABCD has been constructed 

and let B' be the image of B in the diagonal AC (Figure 89) .  Since 

<BAC = QDAC the point B' lies on the line AD. The three sides of 
the triangle B'DC are known: 

DC, B'C = BC, and DB' = A D  - AB' = A D  - AB. 

B A U 

Figure 89 
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Construct this triangle, and locate the vertex A (this can be done since 
the distance A D  is known). The vertex B is then obtained as the image 
of B' in the line AC. The problem has a unique solution if A D  # AB;  
it has no solution whatsoever if AD = AB and CD # CB; it has more 
than one solution if A D  = AB and C D  = CB. 

Figure 90 

(b) Assume that the problem has been solved (Figure 90), and let 
triangle AD1C1 be the image of triangle ADC in the line A 0  (0 is the 
center of the circle inscribed in the quadrilateral). Clearly the point 4 
lies on the line A B, and the side DICl is tangent to the circle inscribed 
in the quadrilateral ABCD. 

Thus we have the following construction: On an arbitrary line lay off 
the segments AB and ADl = .4D. Since 9: ABC and 9: AD& = Q ADC 
are known, we can find the lines BC and DICl (although we do not yet 

know the positions of the points C and CI on these lines). Now we can 
construct the inscribed circle since it is tangent to the three lines 

AB,  BC, and DIC1. Finally, the side A D  and the line DC are obtained as 
the images of AD1 and DIC1 by reflection in the line do. (The point C 
is the intersection of line BC with the image of line DlCl.) 

The problem has a unique solution if 9:ADC # 9:ABC; it has no 
solution at  all if QADC = Qc4BC, AD # AB; it has more than one 
solution if QADC = <ABC, AD = AB. 
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30. (a) Assume that the problem has been solved, that is, that points 
X l ,  XZ ,  - , X. have been found on the lines ZIP 12, - - *,1, such that 

AX1X2- * X J I  

is the path of a billiard ball (in Figure 91 the case n = 3 is represented). 
It is easy to see that the point X ,  is the point of intersection of the line 
1, with the line X,lBn, where B, is the image of B in I ,  [see the solution 
to Problem 25(a)], that is, the points B,, X, ,  Xn-1 lie on a line. But 
then the point X,-1 is the point of intersection of the line 1,-1 with the 
line X,-&,-1, where Bn-l is the image of B, in ln-l. Similarly one shows 
that the point X,t is the intersection of the lines 1,-2 and Xndn-2,  
where Bn-2 is the image of B,1 in 1,s; the point Xnd is the intersection 
of the lines 1.4 and X n - r B d ,  where B n d  is the image of Bn-2 in l n q ,  
and so forth. 

Figure 91 

Thus we have the following construction: Reflect the point B in 1,) 
obtaining the point Bn; next reflect B n  in 1,-1 to obtain Bn-1, and so forth, 
until the image BI of the point B, in line 11 is obtained. The point X I ,  
that determines the direction in which the billiard ball a t  A must be hit, 
is obtained as the point of intersection of the line 11 with the line ABI. It 
is then easy to find the points Xs,  XO, 0 ,  X ,  with the aid of the points 
B2, Ba, - *, B n  and X I .  
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(b)T Following the procedure of part (a), we first reflect the point A 
in 1, to obtain A4, then reflect A ,  in la to obtain Aa, and so forth until 
we reach A1 (see Figure 92). It is easily verified that reflection in 1, 
followed by reflection in la is equivalent to a half turn about the point of 
intersection, R, of these two lines.TT Similarly, the next two reflections 
are equivalent to a half turn about the point P. Hence the four reflections 
are equivalent to the sum of two half turns, about R and P. But as we 
know (see Figure 17), this is equivalent to a translation in the direction 
PR through a distance of twice PR. 

Thus AA1 is parallel to, and twice as long as, the diagonal PR. By 
considering angles it is easy to see that the path AXlXcXjYIA is a 
parallelogram (the opposite sides are parallel) with sides parallel to the 
diagonals. Thus if the ball is not stopped when it returns to the point A, 
it will describe exactly the same path a second time. 

Finally, it can be seen from the figure that the total length of the path 
is equal to A A I ,  that is, to twice the length of a diagonal. 

31. (a) Let us assume that the problem has been solved. Draw the 
circle Sl of center A and radius a, and the circle S2 of center X and 
radius X B  (Figure 93a). Clearly these two circles are tangent a t  a point 
lying on the line AX. Since Sr passes through the point B, it must also 

T This solution was inserted by the translator in place of the origind mlution. 

TT See page 50. 
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pass through the point B', the image of B in the line 1. Thus the problem 
has been reduced to the construction of a circle S,, passing through two 
known points B and B' and tangent to a given circle Sl, that is, to Prob- 
lem 49(b) of Vol. 2.T The center X of the circle S2 is the desired point. 
This problem has at most two solutions; there may only be one or there 
may be none at all. 

Figure 93a 

(b) Assume that 'the problem has been solved, let S1 be the circle of 
center A and radius a, and let S2 be the circle of center X and radius BX 
(Figure 93b). The circles Sl and S2 are tangent at a point that lies on the 
line AX. In addition S2 passes through the point B' that is the image of 
B in the line 1. Therefore this problem is also reduced to Problem 49(b) 
of Vol. 2.= There are at most two solutions. 

F i i  93b 

T Since at this time Volume 2 is not available in English, we refu the reader to p. 
175, Problem V of C&ge GGacrry by Nathan Altschillu-Court, Johnson Publishing 
Co., 1925, Richmond. 
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32. (a) Let HI be the image of H in the side BC (Figure 94). Let 
P, Q, R be the feet of the altitudes. We have 

QBHK = QBHC (because M H I C  Ei M H C ) .  

QBHC = <RHQ, 

But 

and 

QRHQ + QRAQ = QBHIC + QRAQ = 180'; 

therefore QBHIC+ QBAC = 180") and from this it follows that HI lies 
on the circle through the points A ,  B, C. The images of H in sides AB 
and AC can be treated in the same way. 

H. 

Figure 94 

(b) Let us assume that triangle ABC has been constructed. The 
points HI, Hz, and H3 lie on the circumscribed circle [see Problem (a)]. 
Since 

QBRC = <BQC(= 90') 

and QBHR = QCHQ, it follows that <RBH = QQCH, that is, arc 
AH3 is equal to arc AHz. Similarly one shows that arcs BHI and BHr 
are equal, and that arcs CHI and CH2 are equal. From this it follows 
that the vertices A ,  B, and C of the triangle are the midpoints of the 
arcs HsI;la, H a l ,  and H I H ~  of the circle through the three points HI, H,, 
and Ha. The problem has a unique solution unless the points H I ,  Hz, and 
H s  lie on a straight line, in which case there is no solution at  all. 

33. (a) Clearly; for example, the altitudes of triangle AzAsA4 are the 
lines 

AlA4 I AnAa, AIAI  I A2As and AlAs I A& 

the point of intersection of these altitudes is the point AI. 
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(b) Let A: be the image of A4 in the line A2& (Figure 95). This 
point lies on the circle S 4 ,  circumscribed about triangle A1A2A3 [see 
Problem 32(a)]. Thus the circle circumscribed about triangle A2A:A3 
coincides with S4; from this it follows that the circle S1, circumscribed 
about triangle A2A3A4, is congruent to S4 ( S1 and S4 are images of each 
other in the line A d s ) .  Similarly one shows that the circles SZ and S3 

are also congruent to S4. 

Figure 95 

(c) At  least one of the triangles AIAzAs, A ~ A z A ~ ,  A I A I A ~ ,  and 
A2A3A4 must be acute angled; indeed, if triangle A z A ~ A ~  has an obtuse 
angle a t  A4, then triangle A2%Al (where A1 is the point of intersection 
of the altitudes of triangle A2AsA4) will be acute. Thus we shall assume 

that triangle AlA2Aa is acute and that the point A4 lies inside it. 
Consider the quadrilateral A I A ~ O I O ~ .  The points Ol and 0 4  are centers 

of circles SI and S4 that are images of each other in the line AZA3 [see 
Figure 95 and the solution to part (b) of this problem]. Therefore 01 

and 0 4  are images of each other in AZA3, and so 0104 I AZA3. In the 
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quadrilateral A1A40104 we thus have 

0 4 0 1 I I  AlAd and O1A4 = 0~41 = R 

(where R is the radius of the circles Sly St, Say and S4). Therefore this 
quadrilateral is either a parallelogram or an isosceles trapezoid. But it 
cannot be an isosceles trapezoid because the perpendicular bisector A& 
of side 0 4 0 1  does not meet side AIA4. Hence A1A,OI04 is a parallelogram 
and its diagonals A 1 4 ,  A404 meet in a point 0 that is the midpoint of 
each of them. In the same way one shows that 0 is the midpoint of 
A202 and of AaOa. 

Figure 96 



S O L U T I O N S  111 

34. (a) Let 0’ be the image of the center 0 of the circle S in the line 
A2A3 (Figure W). The quadrilaterals OO’H4A1 and 00‘HlAI are paral- 
lelograms [see the solution to Problem 33(c)]. Therefore 

AIR( = 00’ = AJII ,  AIR4 11 00’ 1 1  AJI1, 

and so A1H4HIA4 is a parallelogram. From this it follows that the seg- 
ments AlHl and A d 4  have a common midpoint H.  In the same way one 
shows that H is also the midpoint of A2Hz and A&. 

(b) By comparing Figure 96 and Figure 95 one sees that, for example, 
HI lies on the circle S‘, the image of S in the line AzA3; HI  also lies on 
this circle. Thus At ,  AS, HI, and H ,  all lie on a circle congruent to S. 
The remaining assertions of the theorem are proved similarly. 

a b 

Figure 97 

35. First of all it is clear that any two axes of symmetry A B  and CD 
of the polygon M must intersect inside M ;  indeed, if this were not the 
case (Figure 97a), then they could not both divide the figure into two 
parts of equal area. Now let us show that if there is a third axis of sym- 
metry EF, then it must pass through the point of intersection of the first 
two. Assume that this were not the case; then the three axes of sym- 
metry A B ,  CD, and EF would form a triangle PQR (Figure 97b). Let 
M be a point inside this triangle. It is easy to see that each point in the 
plane lies on the same side of a t  least one of these three axes of symmetry 
as does M. Let T be the vertex of the polygon that is farthest from M 
(if there is more than one such vertex, let T be any one of them), and 
let T and M lie on the same side of the axis of symmetry A B .  Thus, if 

TI is the image of T in A B  (2‘1 is therefore a vertex of the polygon), 

then M T I  > MT (since the projection of MT1 onto TTI is larger than 
the projection of MT on T T I ;  see Figure 97b). This contradiction proves 
the theorem. 
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[In a similar way it can be shown that if any bounded figure (not nec- 

essarily a polygon) has several axes of symmetry, then they must all 
pass through a common point. For unbounded figures this is not so: 
Thus, the strip between two parallel lines Zl and ZO has infinitely many 

axes of symmetry, perpendicular to 11 and 12 and all parallel to each other.] 

Remark: The assertion of this problem is evident from mechanical con- 
siderations. The center of gravity of a homogeneous, polygonal-shaped body, 
having an axis of symmetry, must lie on that axis. Consequently, if there are 
several axes of symmetry they must all pass through the center of gravity. 

Figure 98 

36. Since the segment XY has length a, we are required to minimize 
the sum AX + B Y .  Let us assume that the segment X Y  has been 
found. A glide reflection in the axis 1 through a distance a carries B into 

a new point B’, and carries Y into X (Figure 98) ; therefore B Y  = B’X, 
and so 

A X  + B Y  = A X  + B‘X. 

Thus it is required that the path AXB’ should have minimum length. 

From this it follows that X is the point of intersection of Z with AB’. 

Figure 99 
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37. (a) Assume that the quadrilateral ABCD has been constructed. 
Let A' be the image of A under a glide reflection in the axis DC through 

a distance DC (Figure 99);  then QA'CD = QADK (where DK is the 

extension of side DC past the point D )  because if AI is the image of A 
in DC, then 

QA'CD = 3:AIDK = Q A D K .  

But 

QADK = 180' - Q D  = 180' - Q C ;  

consequently, QA'CD = 180'- QC, that is, A'CB is a straight line. 

I n  addition we know that 

A'B = A'C + CB = A D  + CB, 

and we know the distance d from A to CD. 
Thus we have the following construction: Let 1 be any line, let A be a 

point a t  a distance d from 1, and let A' be the image of A under a glide 

reflection in the line 1 through a distance CD. The vertex B of the quad- 

rilateral can now be found, since we know the distances AB and 

A'B = AD + BC. 

The vertex C is the point of intersection of the segment A'B with the 
line 1, and the vertex D which lies on 1 is found by laying off the known 

distance CD from the point C. The problem can have two, one, or no 

solutions. 

(b) Draw the segment AB;  the line 1 can now be found as the common 

tangent to the two circles of radii dl and dp, with centers a t  the points A 
and B respectively (Figure 100). I t  remains to put the segment DC on 

the line 1 in such a position that the sum of the lengths A D  + BC has 
the given value [compare with Problem 31(a)]. 

Assume that the points D and C have been found and let A' and A" 
be the images of A under a translation in the direction of the line 1 through 

a distance DC, and under a glide reflection with axis 1 through a distance 

DC. Clearly the circle of center C and radius A D  passes through the 

points A' and A" and is tangent to the cir- 

cle S with center B and radius 

(A'C = A'% = AD) 

BC + CA" = BC + AD. 

But the circle S can be constructed from the given data, and thus it 
only remains to find the circle passing through the two known points A' 
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and A" and tangent to S [see Problem 49(b) of Vol. 2).= The center of 
this circle is the vertex C. 

Figure 100 

38. First solution. Clearly the only time a ray of light will be reflected 
from a mirror in a direction exactly opposite to the direction of incidence 
is when the path is perpendicular to the mirror. From now on we shall 
assume that the ray of light does not strike the first side of the angle at 

right angles. Let us now consider the case when the ray M N ,  after two 
reflections in the angle ABC, leaves along a path PQ exactly opposite to 
MN (Figure 1Ola). In this case we have: 

Q P N B  + < N P B  = 180' - Q N B P  = 180' - a; 

2(180' - a) = 2 < P N B  + 2 Q N P B  

= < A N M  + Q P N B  + < N P B  + <CPQ 

= 180" - Q M N P  + 180' - QNPQ 

= 360" - ( Q M N P  + Q N P Q ) .  

T See translator's note on page 107. 
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Since the rays MN and PQ are parallel and oppositely directed, 

(CMNP + QNPQ = 180") 

so 

2(180° - a) = 360' - M O O ,  and a = 90". 

Conversely, if u = 90" then Q M N P  + ( [QPN = 180°, that is, the 
direction of the departing ray PQ is 

a b 
Figure 101 

Next consider the case when the incoming ray MN, after four reflec- 
tions in the sides of the angle, leaves in a direction R S  opposite to MN 
(Figure 101b; the only way in which a light ray can leave in the opposite 
direction to the direction of incidence after exactly three reflections is if 
it hits the second side of the angle at right angles; this cannot happen for 
every incoming light ray-in fact, for a given angle a there is only one 
angle of incidence for which this will happen). Reflect the line A B  and 
the path PQR in the line BC; the line BA1 is the image of B A ,  and the 
point QI is the image of Q in BC. Then 

Q A B A 1 =  2QABC = 2a. 

Further 

([QPB = QQIPB Q N P C ;  

therefore, NPQ1 is a straight line. In the same way it can be shown that 
QlRS is a straight line (since QQRB = QQIRB = QSRC). Finally, 
QBQIP = QA1Q,R, since these angles are equal respectively to 
the angles BQP and AQR, which are equal. Thus we see that the ray 
M N ,  reflected from the points N and Q1 of the angle ABAl = 2a, leayes 

in a direction QlS, opposite to the incoming direction. But then by what 
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was shown previously 2a = 90" and therefore a = 90°/2. Conversely, if 
a = W0/2 then QABAl = 90' and so the ray MN,  after four reflections 
in the sides of the angle ABC, leaves in the opposite direction to the 
direction of incidence. 
Now consider the case when the incoming ray M N  is reflected six 

times in the sides of the angle, and then leaves along a path T U  opposite 
to the incoming path (Figure 101c; in general a light ray cannot leave 

along a path opposite to the incoming path after exactly five reflections). 
Reflect the line A B  and the path PQRST in the h e  BC; let BAl be the 
image of B A  and let Q1 and SI be the images of Q and S in the line BC. 
Just as before we can conclude that NPQl is a straight line (QQIPB 
= <QPB = QNPC), that SITX is a straight line (QSITB = g S T B  
= 4 U T C )  and that 

CQim = W i R C ,  <RQiB = CPQiAi, <=iB = QTsiAi.  

Thus we find that the ray M N ,  reflected successively from the lines AB,  
BA1, BC, and again from BA1 at  the points N ,  Q1, R, and SI leaves in 
the direction SlU, opposite to the incoming direction MN. 

Figure l0lc 
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Now reflect the line BC and the path QIRSl in the line BA1; let BAs 
be the image of BC and let R1 be the image of R in the line BA1. Then 
NPQIRl is a straight line (because QRIQIB = QRQIB = QPQiAi) 
and R,SITU is a straight line (because QRISIB = Q R S B  = QTSIAI), 

and QQIRIB = QSiR1AS (because they are equal respectively to the 
angles QIRB and SIRC, which are equal). Thus we find that the ray MN 
after being reflected in the sides of the angle ABA, ( = 3a) at the points 
N and R1 leaves in the direction RIU, opposite to the incoming direction 
M N .  But then by what was proved earlier we must have 3a = 90') 
that is, a = 90'/3. Conversely, if a = 90'/3, then Q ABA, = 90' and 
the ray M N ,  after being reflected six times in the sides of angle ABC, 
leaves in the direction opposite to the direction of incidence. 

Finally, suppose that after 2n reflections in the sides of an angle 
ABC = a the ray leaves in the direction opposite to the direction of the 
incoming ray [in general a light ray cannot leave in a direction opposite 
to the direction of incidence after (2n - 1) reflections in the sides of 
an angle]. 

Proceed as in the previous cases,= that is, if the incoming ray strikes 
AB,  reflect the path of the ray in line BC; let BAl be the image of A B  
after this reflection. Next, reflect BC in line BA1 to obtain BA2, then 
reflect BAI in BAs to obtain BAS, and so forth, until, after n - 1 re- 
flections, we have BA,1. The angle ABA-1 = m. 

Next, establish that the incoming ray, when continued by the proper 
reflections, forms a straight line which hits A,,-lB, is reflected there, then 
hits B A  so that it leaves in the direction opposite to that of its entry. 
Then, by what was proved earlier, conclude that na = 90") and hence, 
that 

9oo 

n 
a =  -. 

Second solution. Let ABC be the given angle, and let MNPQ. . .  be the 
path of the light ray (see Figure 102a, where the case n = 2 ,  a = 45' 

is shown). We are only interested in the directions of the path, and it 
will be convenient to have all these directions emanate from a single 
point 0 (in the figure 

01 II MN, 0 2  II N P ,  03 II PQ, 

and so forth). Since (c M N A  = (c PNB, it follows that the ray 02 is the 
image of 01 in the line OU 11 A B  (to prove this it is sufKcient to note 

f In the Russian version of this book, the details of this proof were carried out. We 
have omitted them here in order to save space and to avoid the somewhat complicated 
notation. 
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that in Figure 102a, NM' is the image of N P  in NB)  . Similarly, the ray 
03 is the image of 02  in the line OV 11 BC. Therefore by Proposition 3 
on page 50, the ray 03 is obtained from the ray 01 by a rotation through 
an angle 29:UOV = 2a. Similarly the ray 05 is obtained from the ray 
03 by a rotation through an angle 2a in the same direction; consequently 
the ray 05 is obtained from the ray 01 by a rotation through an angle 
4a, and so forth. Therefore, if a = 90°/n then the ray O(2n + 1)) which 
has the same direction as that of a light ray after n reflections from each 
of the two faces of the angle, will form an angle n-2a = 180" with the 
ray 01, which establishes the assertion of the problem. [Here we are 
assuming that 0 < 9:MNA <a;  if 9:MNA > a, then MN will intersect 
BC, which means that the incoming light ray has to be reflected from 
side BC before it can hit side B A .  This fact guarantees that the rays in 
the directions 01, 03, OS, * * * ,  etc. will all hit the mirror B A ,  while the 
rays in the directions 02, 04, * * * ,  etc. will hit the mirror BC. If 
+ M N A  = a, that is, if the incoming ray MN is parallel to side BC, then 
the ray O(2n) will already be opposite in direction to 01: In  this case 

the final ray leaves abng a path opposite to the path of the original 
incoming ray; however the number of reflections is one fewer than in 
the general case; see Figure 102b, where 9: ABC = 45') 9:MNA = 4 5 O . I  

These considerations show that if a # 90°/n, then not every incoming 
light ray will, after successive reflections in the sides, leave in a direction 
opposite to the direction of approach of the original ray. 

Figure lO2a 

Figure 102b 
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39. (a) First sollction (see also the first solutions to Problems 15 and 
21). Let A1, At, ---, A .  be the desired n-gon and let BI be any point in 
the plane. Reflect the segment A1B1 successively in the lines 

11, 12, . .., L-1, In; 

we obtain segments A&, A&, , A d . ,  AlB,,+I. Since these segments 
are all congruent to each other, it follows that AIBI = A1Bn+1, that is, 
the point A1 is equidistant from B1 and B.+I, and lies therefore on the 
perpendicular bisector of the segment B1Bn+1. 

Now choose another point CI in the plane and let C2, Ca, - 0 ,  Cn, Cn+l 

be the points obtained, starting from C,, by successive reflections in the 
lines 11, 12, 0 ,  L1, 1.. Clearly the vertex A1 of the n-gon is also equidis- 
tant from CI and C,,+l, and therefore lies on the perpendicular bisector to 
ClC,,+l. Therefore A1 can be found as the intersection of the perpendicular 
bisectors to the segments BIB,,++l and CIC,,+l (the segments BIBn+1 and 
CIC,+~ can be constructed, once we have chosen any two distinct points 
for B1 and Cl) . By reflecting A1 successively in the n given lines we obtain 
the remaining vertices of the n-gon. 

The problem has a unique solution provided that the segments B A + 1  
and CICn+l are not parallel (i.e., provided that the perpendicular bisectors 
p and q intersect in one point) ; if 11 C1Cn+I then the problem has 

no solution when p and q are distinct, and has infinitely many solutions 
(the problem is undetermined) when p and q coincide. 

The n-gon obtained as the solution to the problem may intersect itself. 

One drawback to this solution is that it gives no indication of the essen- 
tial difference between the cases when n is even and when n is odd (see 
the second solution to the problem). 

Second solation (see also the second solutions to Problems 15 and 21). 
Let A ~ A V . - A ,  be the desired n-gon (see Figure 50a). If we reflect the 
vertex A1 successively in the lines 11, 12, - - a ,  l,+ I .  we obtain the points 

A2, Al l  - . a ,  A ,  and, finally, A1 again. Thus, A1 is a fixed poin6 of the 
sum of the reflections in the lines 11, 12, - 0 ,  I,. 

We now consider separately two cases. 

First case: n even. In this case the sum of the reflections in the lines 
11,12, * * * ,  In is, in general, a rotation about some point 0 (see page 5 5 ) ,  
which can be found by the construction used in the addition of reflections. 
The point 0 is the only fixed point of the rotation, and so A1 must coin- 

cide with 0. Having found A1, one has no difficulty in finding all the re- 
maining vertices of the n-gon. The problem has a unique solution in this 

case. 



120 G E O M E T R I C  T R A N S F O R M A T I O N S  

In the exceptional case, when the sum of the reflections in the lines 
11, 22, 0 . )  I ,  is a translation or is the identity transformation (a rotation 
through an angle of zero degrees, or a translation through zero distance) , 
the problem either has no solution at all (a translation has no fixed 
points) or has more than one solution-any point in the plane can be 
taken for the vertex A1 (every point is a fixed point of the identity 
transformation). 

Second case: n odd. In this case the sum of the reflections in the lines 
C, 12, - , I,, will, in general, be a glide reflection (see pages 55-56). Since 
a glide reflection has no fixed points, there will in general be no solution 
when n is odd. In the exceptional case, when the sum of the reflections 
in the lines 11, h, * * * ,  I ,  is a reflection in a line 1 (this line can be con- 
structed), the solution will not be uniquely determined; any point of the 
line Z can be taken for the vertex A1 of the n-gon (every point of the axis 

of symmetry is a fixed point under reflection in this line). 

(Thus, for n = 3, the problem has, in general, no solutions; the only 
exceptions are the cases when the lines Zl, 12, 18 meet in one point [see 
Problem 26(c)] or are parallel; in these cases the problem has more 
than one solution [see Proposition 4 on page 531). 

(b) This problem is similar to Problem (a). If A I A ~ * * * A .  is the de- 
sired n-gon (see Figure 50b), then the line A,A1 is taken by successive 
reflections in the lines 11,12, a, 1,,-1, I ,  into the lines 

A1A2, A2Ae **.) An-1An 

and finally back into A.Al. Thus A;A1 is a j d  line of the sum of the 
reflections in the lines Z1, Zt, - - ,1,. We consider two cases. 

First case: n even. In this case the sum of the reflections in the lines 
I ~ , 1 2 ,  * - a ,  I ,  is, in general, a reflection about some point 0 and, therefore, 
has in general no fixed lines. Thus for n even our problem has, in general, 
no solution. In the exceptional cases when the sum of the reflections is a 
half turn about the point 0 (a rotation through an angle of 180°), or is a 
translation, or is the identity transformation, the problem has more 
than one solution. In the first case one can take any line through the 
center of symmetry to be the line A.Al; in the second case one can take 
any line parallel to the direction of translation; in the third case one can 

take any line whatsoever in the plane. 

Second case: n odd. In this case the sum of the reflections in the lines 
21, h, - - ,1, is, in general, a glide reflection with an axis 1 (that can be 
constructed). Since I is the only fixed line of a glide reflection, it follows 
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that the side A.AI of the desired n-gon must lie on 1; by reflecting 1 suc- 
cessively in the lines 11, k, - - ,L, we obtain all the remaining sides of 
the n-gon. Thus for odd n the problem has, in general, a unique solution. 
An exception occurs when the sum of the reflections in the given lines is 
a reflection in a line I ;  in this case the problem has more than one solu- 
tion. For the side A,A1 one can take the line 1 itself, or any line perpen- 
dicular to it. 

(Thus, for n = 3, the problem has in general a unique solution; the 
lines 11, 12, 13 will either all be bisectors of the exterior angles of the tri- 
angle, or two of them will bisect interior angles and the third will bisect 
the exterior angle. The only exception is when the three lines 11, lz ,  and Z3 
meet in a point; in this case the problem has more than one solution [see 
Problem 26(a)]; the lines 11, 12, 13 will all bisect interior angles, or two or 
them will bisect exterior angles and the third will bisect the interior 
angle.) 

We leave it to the reader to find a solution to part (b) similar to the 
first solution to part (a). 

'I 

Figure 103 

40. (a) Assume that the problem has been solved (Figure 103). A half 
turn about the point M will carry the vertex A1 into As, a reflection in 
the line 12 will carry the vertex AO into A3, a reflection in 1, will carry A S  
into A,, and so forth. Finally, a reflection in 1, carries An into A1. Thus, 
A1 is a fixed point of the sum of a half turn about M followed by reflec- 
tions in the lines 12, 18, - a, In. A half turn about the point M is equivalent 
to a pair of reflections in lines. We shall consider separately two cases. 

First case: n odd. In  this case the problem reduces to finding fixed 
points of the sum of an even number of reflections in lines. This sum is, 
in general, a rotation about some point 0 (which can be constructed 
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from the point M and the lines 12, Za, *, l,,) . Therefore for odd n the 
problem has in general a unique solution [compare this with the first 
case in the solution to Problem 39(a)]. The only exceptional cases are 

when the sum of the even number of reflections in the lines is a transla- 
tion-then the problem has no solution a t  all; or is the identity trans- 
formation-then the problem has many solutions. 

Second case: n even. In  this case the problem reduces to finding the 
fixed points of an odd number of reflections in lines. In general this sum 
is a glide reflection and the problem has no solution (a glide reflection 
has no fixed points). In the special case when the sum of the reflections 
is itself a reflection in some line I ,  the problem will have many solutions 
(reflection in a line has an infinite number of fixed points, namely all the 
points on the line 1 ) .  

The construction can also be carried out in a similar manner to the 
construction in the first solution to Problem 39(a). The polygon obtained 
as the solution may intersect itself. 

Figure 104 

(b) Assume that the problem has been solved (Figure 104). A rotation 
of 180"-a about the point M carries the line A.A1 into A1A2. A re- 
flection in 12 carries A1A2 into A d a ,  a reflection in Za carries A2Aa into 
A& and so forth. Finally, a reflection in I,, carries A , d ,  into A A .  
Thus, A,A1 is a fixed line of the transformation consisting of the sum of a 

rotation through 180"- a about the point M (which can be replaced by 
two reflections in lines) and n - 1 reflections in the lines h, 18, * - * ,  b. 

We consider separately two cases. 
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First case: n even. The sum of an odd number of reflections in lines 
is in general a glide reflection; it has a unique fixed line, the axis of sym- 
metry 1 (that can be constructed), and therefore the problem has a 
unique solution. In  the special case when the sum of the reflections is a 
reflection in some line, the problem will have infinitely many solutions 
(because reflection in a line has infinitely many fixed lines). 

Second case: n odd. In  this case the transformation we are considering 
will be the sum of an even number of reflections in lines which, in gen- 
eral, is a rotation. In  this case the problem will have no solution. In  
special cases, however, this sum of reflections may be a half turn about 
some point, a translation, or the identity transformation; in each of these 
cases the problem will have more than one solution. 

The polygon that was constructed to solve the problem may intersect 
itself; the lines 12, 13, - 0  0 ,  l,, will bisect either the exterior or the interior 
angles. 

The construction can also be carried out in a manner similar to that in the 
first solution to Problem 39(a). 

Figure 105 

41. (a) Let A1A2Aa. A,, be the desired n-gon (Figure 105). Reflect 
the vertex A1 successively in lines drawn from the center 0 of the circle 
and perpendicular to the sides A1A2, * * * ,  An-IAn, AnA1 of the 
n-gon (these lines are known, since we are given the directions of the 
sides of the n-gon) ; the vertex A1 is first taken into A2, then A )  is taken 
into Aa, * a * ,  then A,-1 is taken into A,, and finally A n  is taken back 
into A1. Thus A1 is a fixed point of thc sum of n reflections in known 
lines. Let us consider two cases separately. 
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First case: n odd. Since the sum of three reflections in lines meeting 
in a point is again a reflection in some line through this point (See Propo- 
sition 4 on page 53), it is not difficult to see that the sum of any odd 
number of reflections in lines that all pass through a common point is 
again a reflection in some line through this point. (First replace the first 
three reflections by a single reflection, then consider the sum of this re- 
flection and the next two, etc.) Therefore the sum of our n reflections is a 

reflection in some line passing through the center 0 of the circle. There 
are exactly two points on the circle that are left fixed by reflection in 1- 
they are the points of intersection of the circle with 1. Taking one of these 
points for the vertex A1 of the desired polygon, we find the other vertices 
by successive reflections of this one in the n lines. The problem has two 
solutions. 

Second case: n even. The sum of any two reflections in lines passing 
through the point 0 is a rotation about 0 through some angle. From 
this it follows that the sum of an even number, n, of reflections in lines 
passing through 0 may be replaced by the sum of 3n rotations about 0; 
from this it is clear that the sum is itself a rotation about 0. Since a 
rotation about 0 has, in general, no fixed points on a circle with center 0, 
our problem has no solutions in general. An exception is the case when 
the sum of the n reflections is the identity transformation; in this case 
the problem has infinitely many solutions-any point on the circle can 
be chosen for the vertex A1 of the desired n-gon. 

(b) Assume that the n-gon has been constructed (see Figure 105). 
Reflect the vertex A1 successively in the (n - 1) lines perpendicular to 
the sides AIA2, AzA3, e.0, Am-lAn and passing through the center 0 of 
the circle (these lines are known, since we know the point 0 and the 
directions of the sides of the polygon) ; this process takes A1 into An. We 
consider separately two cases. 

First case: n odd. In this case the sum of (n - 1) reflections in lines 
passing through the point 0 is a rotation about 0 through an angle a 
(that can be found). Thus, angle AIOA,  = a is a known angle, and so 
we know the length of the chord AIA,  and its distance to the center. 
Since A1An must pass through a given point M, it only remains to  pas^ 

tangents from the point M to the circle with center 0 and radius equal 
to the distance from the chord A1A. to the center 0. The problem can 
have two, one, or no solutions. 
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Second case: n even. In this case the sum of (n - 1) reflections in 
lines passing through a common point is a reflection in some line 1 through 
this point. Therefore A1 and A,, are images of each other in 1. Since A1A, 
must pass through a known poEnt M, it can be found by simply dropping 
the perpendicular from M onto 1, The problem always has a unique 
solution. 

42. (a) Since the sum of the reflections in the three lines 11, h, and 18 

meeting in the point 0 is a reflection in some line 1 (also passing through 
the point 0) , it follows that the point AJ is obtained from A by a reflec- 
tion in 1. But A6 is obtained from AS by a reflection in 1, and so A6 coin- 
cides with A .  

This result is valid for any odd number of lines meeting ha a point 
(compare Problem 13). If we have an even number n of lines meeting in 
a point 0, then the sum of the # reflections in these lines is a rotation 
about 0 through some angle a, and so the point A s  obtained after 2n 
rotations will coincide with the original point A only in case a is a mul- 
tiple of 180'. 

Remark. The point A6 obtained from an arbitrary point A of the plane by 
six successive reflections in lines 11, L, 1,,11, Is, 18 will coincide with the initial 
point A if and only if 11, IL, and 18 meet in a point or are parallel [if 11 11 IZ 11 It, 

then the sum of the reflections in 11, &, and 18 is a reflection in some line 1, 
and the reasoning used in the solution to Problem 42(a) can be applied]. In 
all other cases the sum of the reflections in 11, h, and 18 is a glide reflection, 
and thus the point A6 is obtained from A by two successive glide reflections 
along some axis I, that is, by a translation in the direction of I; therefore A6 

cannot coincide with A. vhe sum of two (identical) glide reflections along an 
axis I can be written as the sum of the following four transformations: trans- 
lation along 1, reflection in 1, reflection in I ,  and translation along 1 (see page 
a), that is, as the sum of two (identical) translations along 1.1 

(b) This problem is essentially the same as part (a) [see also Prob 
lem 14(b)]. 

(c) The sum of the reflections in LI and b is a rotation about their 
point of intersection 0 through some angle a; the sum of the reflections in 
18 and 14 is a rotation about 0 through some angle 8. From this it follows 
that (no matter in which order these reflections are performed!) the 
point A4 is obtained from A by a rotation about 0 through an angle of 
a + 8, which was to be proved [compare with Problem 14(a)]. 
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43. (a) Since the three lines CM, AN, B P  meet in a point, it follows 
that the sum of the reflections in the lines C M ,  A N ,  BP, CM, AN, BP is 
the identity transformation [see Problem 42(a)]. To show that the lines 
CM’, AN’, BP’ meet in a point it is sufficient to show that the sum of the 
reflections in the lines CM’, AN‘,BP’, CM’, AN’, BP’ is also the identity 
transformation [see the remark following the solution to Problem 42(a)]. 
However reflection h the line CM’ is the same as the sum of the reflections 
in the three lines CB, CM and CA all meeting in the point C-this follows 
from the fact that rotation through angle BCM’ about the point C 
carries line CM into CA,  and carries CB into line CM‘, which is the image 
of CM in the bisector of angle BCA (compare Figure 106a with Figure 
47b, and see the proof of the second half of Proposition 4, page 53). 
Similarly, reflection in AN’ is the same as the sum of the reflections in 
the three lines AC, AN, and AB, and reflection in BP’ is the sum of the 
reflections in the lines BA, BP,  and BC. From this it follows that the 
sum of the reflections in CM’, AN’, and BP’ is the same as the sum of 
the reflections in the following nine lines: CB, CM, CA,  A C ( =  C A ) ,  
A N ,  AB, BA( = A B ) ,  BP,  and BC. Since two consecutive reflections in 
the same line cancel each other, this is the same as the sum of the reflec- 
tions in the following five lines: CB, CM, AN,  BP, and BC. Now perform 
this transformation twice; we obtain the sum of the reflections in the 
following ten lines: CB, CM, AN, BP,  BC, CB (= BC),  CM,  AN, BP,  
and BC, which is the same as the sum of the reflections in the eight lines 
CB, CM, AN,  BP,  CM,  AN, BP, and BC. But if the sum of the reflec- 
tions in the six “inner” lines is the identity transformation, then the 
sum of our eight reflections in the eight lines reduces to the sum of the 
two reflections in CB and BC (= CB) , that is, to the identity trans- 
or ma tion ! 

Figure 106 
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(b) Let the perpendiculars to the sides AB, BC and C A  of the triangle 
ABC, erected a t  the points M and MI, N and Nl, P and PI  be denoted by 
m and ml, n and n1, p and pl; let a and b denote the perpendiculars to 
side A B  erected at the endpoints A and B. We must show that the sum 
of the reJ?ections in the lines m, s, p ,  m, n, p is the identity transformation, 
l h  the sum of the reflections in the lines ml, nl, PI, m1, # I ,  91 i s  also the 
identity transjomahn [compare the solution to Problem (a)]; clearly 
the perpendiculars to two different sides of a triangle cannot be parallel 
to one another. But the reflection in ml is identical with the sum of the 
reflections in the point A ,  in the line m and in the point B ;  similarly, the 
reflection in nl is the sum of the reflections in B, n and C, and the re- 
flection in p~ is the sum of the reflections in C, p and A .  To prove the 
first of these assertions, note that the reflection in A is the sum of the 
reflections in A B  and a, and the reflection in B is the sum of the reflec- 
tions in b and A B ;  thus, the sum of the reflections in A ,  m and B is equal 
to the sum of the reflections in the following five lines: AB, a, m, b, and 
AB. But the sum of the three “inner” reflections is equal to the reflection 
in ml a lone th i s  follows from the fact that the translation of the two 
lines a and m, carrying m into b, carries a into ml (since ml is the reflec- 
tion of m in the midpoint of the segment A B ;  compare Figure 106b 
with Figure 47a). Therefore the sum of the five reflections is equivalent 
to the sum of the reflections in the three lines: AB, ml, and AB, or to 
the sum of the reflections in MI and AB. The reflection in M I  is also 
equal to the sum of the reflections in ml and AB taken in that order; 
therefore the sum of the reflections in MI and AB is equal to the sum of 
the reflections in ml, AB, and AB, and this is clearly the same as a single 
reflection in ml alone. 

It is now clear that the sum of the reflections in the six lines ml, nl, pl ,  

m1, nl, $1 is equal to the sum of the reflections in the following points and 
lines: A ,  m, B ;  B ,  n, C; C, p, A ;  A ,  m,  B ;  B,  n, C; C, p ,  A ,  or, what is 
the same thing, to the reflections in A, m, n, p ,  m, n, p ,  A .  Therefore, if the 
sum of the six “inner” reflections is the identity transformation, then 
the sum of all the reflections (which reduces in this case to two reflec- 
tions in the point A )  is also the identity transformation [compare the 
solution to part (a)]. 

44. If we take the sum of the reflections in three lines in the plane 
twice, then we obtain either the identity transformation or a translation 
[see the solution to Problem 42(a), and in particular the remark follow- 
ing the solution]. Thus the “first” point Alz is obtained from A by the 
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sum of two translations (one or even both of them may be “translations 
through zero distance”-that is, the identity transformation) ; the 
“second” point (which we shall call A:*) is obtained from A by the sum 
of the Same two translations taken in the opposite order. The assertion 
of the proMem follows from this [compare the solution to Problem 14(a) 3. 

Figure 1078 

45. Fimt solution (based on Theorem 1, page 51). Suppose first that 
the lines ZI and 12 are not parallel (Figure 107a). Assume that the prob- 
lem has been solved. By Theorem 1 the segment AX can be taken by a 
rotation into the congruent segment BY, so that A is taken into B and 
X into Y (since ZI and 12 are not parallel, AX cannot be taken into BY 
by a translation). The angle of rotation Q is equal to the angle between 
Zl and 10; therefore the center of rotation 0 can be found as the point of 
intersection of the perpendicular bisector p of the segment AB with the 
circular arc constructed on AB and subtending an angle a (this arc lies 
on the circle S circumscribed about triangle ABP, where P is the point 
of intersection of Zl and h).t Let this rotation take the desired line m 
into a line m’, also passing through Y. We shall now consider Problems 
(a), (b) , (c) , and (d) separately. 

t The circle S and the perpendicular bisector p intersect in two points 0 A d  01; 
they correspond to the cases when X and Y are situated on the same, or on opposite 
sides of the tine through AB. 
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(a) Rotate the line n through an angle a about the center 0 that was 
found above, and let n’ be the line thus obtained. The line OY will bisect 
the angles between m and m‘, and between n and n’; hence Y can be 
found as the point of intersection of 12 with the line joining 0 to the point 
of intersection of n and tt’. The problem can have two solutions (see the 
notet) . 

(b) m’ passes through the point M’ that is the image of M under a 
rotation through an angle a about the point 0; the angle between m 
and m’ is equal to a. Therefore Y can be found as the point of intersection 
of the line ZS with the circular arc on MM‘ that subtends the angle a. 
The problem can have two solutions. 

(c) In the isosceles triangle OXY we know the vertex angle a and 
the base XY = a; this enables us to find the distance OX from 0 to the 
unknown point X. The problem can have up to four solutions. 

Figure lO7b 

(d) Let S be the midpoint of XY. Since the angles of the isosceles 

0s 1 
- = k and the angle XOS = - a. 
ox 2 

Therefore the point S is obtained from X by a known spiral similarity 
(see Vol. 2, Chapter 1, Section 2).t The point S is found as the inter- 
section of the line I and the line li  obtained from ZI by this spiral simi- 
larity. The desired line m is perpendicular to 0s. The problem has, in 
general, two solutions; if Z; coincides with I then the solution is undeter- 
mined. 

If I I  11 12 then the desired line m either passes through the midpoint S 
of the segment A B or is parallel to AB (Figure 107b). In these cases the. 

t Here the second solution is preferable, as it does not use material from Vol. 2. 

triangle OXY are known, we also know the ratio 
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problem becomes much simpler. We shall merely indicate the number 
of solutions: 

(a) One solution if n is not parallel to Zl or to AB;  no solutions if 
n I ]  b I ]  12; infinitely many solutions if n !I AB. 

(b) Two solutions if M does not lie on the line AB or on the line l o  

midway between 11 and 12 and parallel to them; one solution if M lies on 
AB or on 10 but does not coincide with S; infinitely many solutions if M 
coincides with S. 

(c) Two solutions if u # AB, and a > d (where d is the distance 
between l1 and k )  ; one solution if a = d but AB # d; no solutions if 
u < d; infinitely many solutions if a = AB (2 d ) .  

(d) One solution if I is not parallel to I1 11 l2 and does not pass through 
S; no solutions if I 11 11 but does not pass through S; infinitely many 
solutions if I passes through S. 

I? 

Figure 108 

Second solufwn of parts (a), (c), (d) (based on Theorem 2, page 64). 
By Theorem 2 the segment A X  can be taken by a glide reflection (or 
by an ordinary reflection in a line, which may be regarded as a special 
case of a glide reflection) into the congruent segment B Y  so that A 
goes into B and X into Y .  Also, the axis I of the glide reflection is parallel 
to the bisector of the angle between lI and & and passes through the mid- 
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point of segment A B ; t  the distance d of the translation is equal to AIB 
where Al is the image of A in 1 (Figure 108). Also, let XI be the image of 
X in 1; in this case 

XIY !I  1 and X1Y = d. 

We now consider the three cases (a), (c) and (d) separately. 

(a) In  triangle XX1Y the side X1Y = d is known, as is +XYXI (it is 
equal to the angle between m and I )  ; hence the length of side XX1 can be 
found. Now X can be found as the point of intersection of the line 11 and 
the line Z', parallel to I at  a distance of $XXl. In  the general case, when 11 

is not parallel to 12, the problem has two solutions. 

(c) In triangle XXIY the hypotenuse XY = u and the side X1Y = d 
are known; hence the other side XXl can be found. The remainder of 
the construction is similar to that in part (a) ; in general the problem 
has two solutions. 

(d) The midpoint S of the segment XY must lie on the midline 1 of 
triangle XXIY. Therefore S is the point of intersection of 1 and 1. X 
can now be found as the intersection of 11 with the perpendicular p to I 
at the point SI (where SS:I = i d ) .  In  general the problem has two solu- 
tions. 

46. Suppose that the lines ZI, Is, and Za are not all parallel to each other 
for example l a  is not parallel to 11 or to 1,. Assume that the problem has 
been solved (Figure 109). By Theorem 1 there is a rotation carrying AX 
into CZ and there is a rotation carrying BY into CZ; the angles of rota- 
tion UI and US are equal respectively to the angles between 11 and la, and 
between 12 and la. The centers of rotation Ol and 02 are found just as in 
the first solution to  Problem 45(a) - (d). From the isosceles triangles 
01x2 and OOYZ with angles a t  01 and 02 equal respectively to a1 and a,, 
one can find 

+ O J X  = 90' - $al, +O&Y = 90' - tar. 

t Since there are two angle bisectors of the angles formed by ll and l:, the glide re- 
flection carrying AX into BY can be chosen in two different ways (corresponding to the 

cases when X and Y are situated on the same, or on opposite sides of the line AB).  
If k 11 1: then the axis of one of these glide reflections is parallel to 11 and k while the 
other axis is perpendicular to them; this explains the special role played by the case 

when 11 and L are parallel in the solution of parts (a), (c), (d). 
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From this it foklows that 

~ O I Z O Z  = 3(ar f ad, 

and, therefore, 2 can be found as the point of intersection of I* with the 
arc of a circle constructed on the segment OIOr and subtending the known 

angle Ha + ad or Ha1 - as). 

Each of the angles a1 and a2, and each of the centers of rotation 01 and 
02, can be determined in two different ways (compare the solution of the 
preceding problem). Hence there are at most 16 solutions to the problem. 

F i i  109 
I 

47. Assume that the problem has been solved (Figure 110). By 
Theorem 1 there is a rotation carrying BP into CQ; the angle of rotation 
a is equal to the angle between AB and AC, and the center of rotation 0 
is found just as in the first solution to Problem 45(a) - (d) . Since in the 
isosceles triangle OPQ we know the angle a at the vertex 0, we also know 
the ratio 

OP - 
k. - =  

PQ 

But by the conditions of the problem, PQ = BP; therefore 

OP 

BP 
k, -I 

which enables us to find P as the point of intersection of side AB with 
the circle that is the locus of points the ratio of whose distances to 0 
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and B is equal to k. This geometric locus is a circle, as can be seen, for 
example, from the fact that the bisectors of the interior and exterior 
angles of AOPB from P (see Figure 111, where P is any point for which 
OP/BP = k )  intersect the base OB in constant (independent of P) 
points M and N determined by the conditions 

OM ON OP 

MB BN BP 

Since the two bisectors are perpendicular to each other, P belongs to 
the circle with diameter MN.T 

- = - = k = -  

F i e  110 

Figure 111 

See also page 14, Locus 11, of College Ccomef~y by Nathan Altschiller-Court, 
Johnson Publishing Co., 1925, Richmond. 
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