Analytic and Algebraic Geometry
Common Problems, Different Methods

Jeffery McNeal
Mircea Mustaţă
Editors
Analytic and Algebraic Geometry

Common Problems, Different Methods
Analytic and Algebraic Geometry
Common Problems, Different Methods

Jeffery McNeal
Mircea Mustață
Editors
IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program on Analytic and Algebraic Geometry: Common Problems, Different Methods held in Park City, Utah in the summer of 2008.

2000 Mathematics Subject Classification. Primary 14E15, 14E30, 14F18, 32W05, 53C21.
Preface xiii

Jeffery McNeal and Mircea Mustaţă 1
Introduction

Bo Berndtsson 7
An Introduction to Things $\bar{\partial}$
Introduction 9

Lecture 1. The one-dimensional case 11
  1.1. The $\bar{\partial}$-equation in one variable 11
  1.2. An alternative proof of the basic identity 14
  1.3. An application: Inequalities of Brunn-Minkowski type 14
  1.4. Regularity — a disclaimer 16

Lecture 2. Functional analytic interlude 19
  2.1. Dual formulation of the $\bar{\partial}$-problem 19

Lecture 3. The $\bar{\partial}$-equation on a complex manifold 25
  3.1. Metrics 25
  3.2. Norms of forms 27
  3.3. Line bundles 29
  3.4. Calculation of the adjoint and the basic identity 33
  3.5. The main existence theorem and $L^2$-estimate for compact manifolds 35
  3.6. Complete Kähler manifolds 37

Lecture 4. The Bergman kernel 43
  4.1. Generalities 43
  4.2. Bergman kernels associated to complex line bundles 46

Lecture 5. Singular metrics and the Kawamata-Viehweg vanishing theorem 51
  5.1. The Demailly-Nadel vanishing theorem 51
  5.2. The Kodaira embedding theorem 54
  5.3. The Kawamata-Viehweg vanishing theorem 55

Lecture 6. Adjunction and extension from divisors 59
  6.1. Adjunction and the currents defined by divisors 59
  6.2. The Ohsawa-Takegoshi extension theorem 62

Lecture 7. Deformational invariance of plurigenera 71
  7.1. Extension of pluricanonical forms 71

Bibliography 75
John P. D’Angelo  
Real and Complex Geometry meet the Cauchy-Riemann Equations  

Preface  

Lecture 1.  Background material  
1.  Complex linear algebra  
2.  Differential forms  
3.  Solving the Cauchy-Riemann equations  

Lecture 2.  Complex varieties in real hypersurfaces  
1.  Degenerate critical points of smooth functions  
2.  Hermitian symmetry and polarization  
3.  Holomorphic decomposition  
4.  Real analytic hypersurfaces and subvarieties  
5.  Complex varieties, local algebra, and multiplicities  

Lecture 3.  Pseudoconvexity, the Levi form, and points of finite type  
1.  Euclidean convexity  
2.  The Levi form  
3.  Higher order commutators  
4.  Points of finite type  
5.  Commutative algebra  
6.  A return to finite type  
7.  The set of finite type points is open  

Lecture 4.  Kohn’s algorithm for subelliptic multipliers  
1.  Introduction  
2.  Subelliptic estimates  
3.  Kohn’s algorithm  
4.  Kohn’s algorithm for holomorphic and formal germs  
5.  Failure of effectiveness for Kohn’s algorithm  
6.  Triangular systems  
7.  Additional remarks  

Lecture 5.  Connections with partial differential equations  
1.  Finite type conditions  
2.  Local regularity for $\overline{\partial}$  
3.  Hypoellipticity, global regularity, and compactness  
4.  An introduction to $L^2$-estimates  

Lecture 6.  Positivity conditions  
1.  Introduction  
2.  The classes $P_k$  
3.  Intermediate conditions  
4.  The global Cauchy-Schwarz inequality  
5.  A complicated example  
6.  Stabilization in the bihomogeneous polynomial case  
7.  Squared norms and proper mappings between balls  
8.  Holomorphic line bundles
2. Holomorphic Morse inequalities 310
3. Approximation of closed positive (1,1)-currents by divisors 312
  3.A. Local approximation theorem through Bergman kernels 312
  3.B. Global approximation of closed (1,1)-currents on a compact complex manifold 314
  3.C. Global approximation by divisors 320
  3.D. Singularity exponents and log canonical thresholds 326
4. Subadditivity of multiplier ideals and Fujita’s approximate Zariski decomposition theorem 329
5. Numerical characterization of the Kähler cone 334
  5.A. Positive classes in intermediate (p,p) bidegrees 334
  5.B. Numerically positive classes of type (1,1) 335
  5.C. Deformations of compact Kähler manifolds 341
6. Structure of the pseudo-effective cone and mobile intersection theory 343
  6.A. Classes of mobile curves and of mobile (n − 1, n − 1)-currents 343
  6.B. Zariski decomposition and mobile intersections 346
  6.C. The orthogonality estimate 352
  6.D. Dual of the pseudo-effective cone 354
7. Super-canonical metrics and abundance 357
  7.A. Construction of super-canonical metrics 357
  7.B. Invariance of plurigenera and positivity of curvature of super-canonical metrics 363
  7.C. Tsuji’s strategy for studying abundance 364
8. Siu’s analytic approach and Păun’s non vanishing theorem 365

Bibliography 367

Mihai Păun
Lecture Notes on Rational Polytopes and Finite Generation 371

0. Introduction 373
1. Basic definitions and notations 374
2. Proof of (i) 376
  2.1. The case $\text{nd}\{K_X + Y_0 + A\} = 0$ 377
  2.2. The “x method” for sequences 378
  2.3. The induced polytope and its properties 382
3. Proof of (ii) 390
  3.1. The first step 393
  3.2. Iteration scheme 399

References 402
Mircea Mustață
Introduction to Resolution of Singularities 405

Lecture 1. Resolutions and principalizations 409
1.1. The main theorems 409
1.2. Strengthenings of Theorem 1.3 410
1.3. Historical comments 414

Lecture 2. Marked ideals 415
2.1. Marked ideals 415
2.2. Derived ideals 419

Lecture 3. Hypersurfaces of maximal contact and coefficient ideals 423
3.1. Hypersurfaces of maximal contact 423
3.2. The coefficient ideal 424

Lecture 4. Homogenized ideals 431
4.1. Basics of homogenized ideals 431
4.2. Comparing hypersurfaces of maximal contact: formal equivalence 433
4.3. Comparing hypersurfaces of maximal contact: étale equivalence 434

Lecture 5. Proof of principalization 437
5.1. The statements 437
5.2. Part I: the maximal order case 438
5.3. Part II: the general case 442
5.4. Proof of principalization 445

Bibliography 449

Robert Lazarsfeld
A Short Course on Multiplier Ideals 451

Introduction 453

Lecture 1. Construction and examples of multiplier ideals 455
Definition of multiplier ideals 455
Monomial ideals 459
Invariants defined by multiplier ideals 460

Lecture 2. Vanishing theorems for multiplier ideals 463
The Kawamata–Viehweg–Nadel vanishing theorem 463
Singularities of plane curves and projective hypersurfaces 465
Singularities of theta divisors 467
Uniform global generation 468

Lecture 3. Local properties of multiplier ideals 471
Adjoint ideals and the restriction theorem 471
The subadditivity theorem 474
Skoda’s theorem 475
Lecture 4. Asymptotic constructions
   Asymptotic multiplier ideals
   Variants
   Étale multiplicativity of plurigenera
   A comparison theorem for symbolic powers

Lecture 5. Extension theorems and deformation invariance of plurigenera

Bibliography

János Kollár
*Exercises in the Birational Geometry of Algebraic Varieties*

1. Birational classification of algebraic surfaces
2. Naive minimal models
3. The cone of curves
4. Singularities
5. Flips
6. Minimal models

Bibliography

Christopher D. Hacon
*Higher Dimensional Minimal Model Program for Varieties of Log General Type*

Introduction

Lecture 1. Pl-flips

Lecture 2. Multiplier ideal sheaves
   Asymptotic multiplier ideal sheaves
   Extending pluricanonical forms

Lecture 3. Finite generation of the restricted algebra
   Rationality of the restricted algebra
   Proof of (1.10)

Lecture 4. The minimal model program with scaling

Solutions to the exercises

Bibliography

Alessio Corti, Paul Hacking, János Kollár, Robert Lazarsfeld, and Mircea Mustaţă
*Lectures on Flips and Minimal Models*

Lecture 1. Extension theorems
   1.1. Multiplier and adjoint ideals
   1.2. Proof of the Main Lemma
CONTENTS

Lecture 2. Existence of flips I 565
  2.1. The setup 565
  2.2. Adjoint algebras 566
  2.3. The Hacon–McKernan extension theorem 567
  2.4. The restricted algebra as an adjoint algebra 567

Lecture 3. Existence of flips II 571

Lecture 4. Notes on Birkar-Cascini-Hacon-McKernan 575
  4.1. Comparison of 3 MMP’s 576
  4.2. MMP with scaling 578
  4.3. MMP with scaling near \( |\Delta| \) 578
  4.4. Bending it like BCHM 579
  4.5. Finiteness of models 581

Bibliography 583
The IAS/Park City Mathematics Institute (PCMI) was founded in 1991 as part of the “Regional Geometry Institute” initiative of the National Science Foundation. In mid 1993 the program found an institutional home at the Institute for Advanced Study (IAS) in Princeton, New Jersey.

The IAS/Park City Mathematics Institute encourages both research and education in mathematics and fosters interaction between the two. The three-week summer institute offers programs for researchers and postdoctoral scholars, graduate students, undergraduate students, high school teachers, undergraduate faculty, and researchers in mathematics education. One of PCMI’s main goals is to make all of the participants aware of the total spectrum of activities that occur in mathematics education and research: we wish to involve professional mathematicians in education and to bring modern concepts in mathematics to the attention of educators. To that end the summer institute features general sessions designed to encourage interaction among the various groups. In-year activities at the sites around the country form an integral part of the High School Teachers Program.

Each summer a different topic is chosen as the focus of the Research Program and Graduate Summer School. Activities in the Undergraduate Summer School deal with this topic as well. Lecture notes from the Graduate Summer School are being published each year in this series. The first seventeen volumes are:

- Volume 1: *Geometry and Quantum Field Theory* (1991)
- Volume 3: *Complex Algebraic Geometry* (1993)
- Volume 11: *Quantum Field Theory, Supersymmetry, and Enumerative Geometry* (2001)

Volumes are in preparation for subsequent years.

Some material from the Undergraduate Summer School is published as part of the Student Mathematical Library series of the American Mathematical Society. We hope to publish material from other parts of the IAS/PCMI in the future.
This will include material from the High School Teachers Program and publications documenting the interactive activities which are a primary focus of the PCMI. At the summer institute late afternoons are devoted to seminars of common interest to all participants. Many deal with current issues in education: others treat mathematical topics at a level which encourages broad participation. The PCMI has also spawned interactions between universities and high schools at a local level. We hope to share these activities with a wider audience in future volumes.

John C. Polking
Series Editor
July 2010
Titles in This Series

17 Jeffery McNeal and Mircea Mustață, Editors, Analytic and Algebraic Geometry, 2010
16 Scott Sheffield and Thomas Spencer, Editors, Statistical Mechanics, 2009
15 Tomasz S. Mrowka and Peter S. Ozsváth, Editors, Low Dimensional Topology, 2009
13 Ezra Miller, Victor Reiner, and Bernd Sturmfels, Editors, Geometric Combinatorics, 2007
12 Peter Sarnak and Freydoon Shahidi, Editors, Automorphic Forms and Applications, 2007
11 Daniel S. Freed, David R. Morrison, and Isadore Singer, Editors, Quantum Field Theory, Supersymmetry, and Enumerative Geometry, 2006
10 Steven Rudich and Avi Wigderson, Editors, Computation Complexity Theory, 2004
9 Brian Conrad and Karl Rubin, Editors, Arithmetic Algebraic Geometry, 2001
8 Jeffrey Adams and David Vogan, Editors, Representation Theory of Lie Groups, 2000
7 Yakov Eliashberg and Lisa Traynor, Editors, Symplectic Geometry and Topology, 1999
6 Elton P. Hsu and S. R. S. Varadhan, Editors, Probability Theory and Applications, 1999
5 Luis Caffarelli and Weinan E, Editors, Hyperbolic Equations and Frequency Interactions, 1999
4 Robert Friedman and John W. Morgan, Editors, Gauge Theory and the Topology of Four-Manifolds, 1998
3 János Kollár, Editor, Complex Algebraic Geometry, 1997
1 Daniel S. Freed and Karen K. Uhlenbeck, Editors, Geometry and Quantum Field Theory, 1995
Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry.

The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the “other side” of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects.

The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series are designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists.