# Harmonic Analysis in Euclidean Spaces, Part 1

### About this Title

**Guido Weiss** and **Stephen Wainger**, Editors

Publication: Proceedings of Symposia in Pure Mathematics

Publication Year:
1979; Volume 35.1

ISBNs: 978-0-8218-1436-9 (print); 978-0-8218-9323-4 (online)

DOI: https://doi.org/10.1090/pspum/035.1

### Table of Contents

**Front/Back Matter**

**Real harmonic analysis **

- E. M. Stein – Some problems in harmonic analysis [MR 545235]
- R. R. Coifman – On operators of harmonic analysis which are not convolutions [MR 545236]
- Antonio Córdoba – Maximal functions, covering lemmas and Fourier multipliers [MR 545237]
- R. Fefferman – Covering lemmas, maximal functions and multiplier operators in Fourier analysis [MR 545238]
- Miguel de Guzmán – Besicovitch theory of linearly measurable sets and Fourier analysis [MR 545239]
- Benjamin Muckenhoupt – Weighted norm inequalities for classical operators [MR 545240]
- Stephen Wainger – Applications of Fourier transforms to averages over lower-dimensional sets [MR 545241]
- Alexander Nagel, Elias M. Stein and Stephen Wainger – Hilbert transforms and maximal functions related to variable curves [MR 545242]
- Jacques Peyrière – Regularity of spherical means [MR 545243]
- Elena Prestini – Restriction theorems for the Fourier transform to some manifolds in $\mathbf {R}^{n}$ [MR 545244]
- Peter A. Tomas – Restriction theorems for the Fourier transform [MR 545245]
- Richard J. Bagby – Riesz potentials and Fourier multipliers [MR 545246]
- Leonede De Michele and Ian R. Inglis – Fourier multipliers vanishing at infinity [MR 545247]
- Alberto Torchinsky – Weighted norm inequalities for the Littlewood-Paley function $g^*_{\lambda }$ [MR 545248]
- Wo Sang Young – Weighted norm inequalities for multipliers [MR 545249]
- Jan-Olov Strömberg – Non-equivalence between two kinds of conditions on weight functions [MR 545250]
- Daniel W. Stroock – Some remarks about Beckner’s inequality [MR 545251]
- Fred B. Weissler – Hypercontractive estimates for semigroups [MR 545252]
- William C. Connett – Singular integrals near $L^{1}$ [MR 545253]
- Bogdan M. Baishanski – On Carleson’s convergence theorem for $L^{2}$ functions [MR 545254]
- Daniel Waterman – Multiple Fourier series of functions of generalized bounded variation [MR 545255]
- G. Wilmes – Some inequalities for Riesz potentials of trigonometric polymonials of several variables [MR 545256]
- Björn E. J. Dahlberg – A note on Sobolev spaces [MR 545257]

**Hardy spaces and BMO **

- Guido Weiss – Some problems in the theory of Hardy spaces [MR 545258]
- Colin Bennett and Robert Sharpley – Weak-type inequalities for $H^{p}$ and BMO [MR 545259]
- R. R. Coifman and Björn Dahlberg – Singular integral characterizations of nonisotropic $H^{p}$ spaces and the F. and M. Riesz theorem [MR 545260]
- Roberto A. Macías and Carlos Segovia – A maximal theory for generalized Hardy spaces [MR 545261]
- David Goldberg – Local Hardy spaces [MR 545262]
- W. R. Madych – Distributions with strong maximal functions in $L^{p}(\mathbf {R}^{n})$ [MR 545263]
- José García-Cuerva – Weighted Hardy spaces [MR 545264]
- Carlos E. Kenig – Weighted Hardy spaces on Lipschitz domains [MR 545265]
- Robert H. Latter – The atomic decomposition of Hardy spaces [MR 545266]
- Mitchell H. Taibleson and Guido Weiss – The molecular characterization of Hardy spaces [MR 545267]
- Fulvio Ricci and Guido Weiss – A characterization of $H^{1}(\Sigma _{n-1})$ [MR 545268]
- John B. Garnett – Two constructions in BMO [MR 545269]
- James E. Brennan – Invariant subspaces and subnormal operators [MR 545270]

**Harmonic functions, potential theory and theory of functions of one complex
variable **

- Björn E. J. Dahlberg – Harmonic functions in Lipschitz domains [MR 545271]
- Adam Korányi – A survey of harmonic functions on symmetric spaces [MR 545272]
- Michael Benedicks – Positive harmonic functions vanishing on the boundary of certain domains in $\mathbf {R}^{n+1}$ [MR 545273]
- Harry Kesten – Positive harmonic functions with zero boundary values [MR 545274]
- Umberto Neri – Harmonic functions with BMO boundary values [MR 545275]
- David R. Adams – $L^{p}$-capacitary integrals with some applications [MR 545276]
- Victor L. Shapiro and Grant V. Welland – Sobolov spaces, the Navier-Stokes equations and capacity [MR 545277]
- Lars Inge Hedberg – Approximation in $L^{p}$ by analytic and harmonic functions [MR 545278]
- Mischa Cotlar and Cora Sadosky – On the Helson-Szegő theorem and a related class of modified Toeplitz kernels [MR 545279]
- Albert Bernstein, II – Some sharp inequalities for conjugate functions [MR 545280]
- Peter W. Jones – Constructions for BMO$(\mathbf {R})$ and $A_{p}(\mathbf {R}^{n})$ [MR 545281]
- Sun-Yung A. Chang – Structure of some subalgebra of $L^{\infty }$ of the torus [MR 545282]
- David A. Stegenga – A geometric condition which implies BMOA [MR 545283]
- Paul Koosis – Proof of the Beurling-Malliavin theorem by duality and harmonic estimation [MR 545284]
- R. Kaufman – Zero sets of absolutely convergent Taylor series [MR 545285]
- J. Wermer – Capacity and uniform algebras [MR 545286]
- Douglas N. Clark – Following functions of class $H^{2}$ [MR 545287]
- Richard Rochberg – A Hankel type operator arising in deformation theory [MR 9810]
- R. R. Coifman and R. Rochberg – Representation theorems for holomorphic and harmonic functions [MR 545288]