Sherlock Holmes in Babylon
and Other Tales of Mathematical History

Editors
Marlow Anderson,
Victor Katz,
Robin Wilson
Sherlock Holmes in Babylon

and Other Tales of Mathematical History
Sherlock Holmes in Babylon

and Other Tales of Mathematical History

Edited by

Marlow Anderson
Colorado College

Victor Katz
University of the District of Columbia

Robin Wilson
Open University

Published and Distributed by
The Mathematical Association of America
Committee on Publications
Gerald L. Alexanderson, Chair

Spectrum Editorial Board
Gerald L. Alexanderson, Chair
Robert Beezer Russell L. Merris
William Dunham Jean J. Pedersen
Michael Filaseta J. D. Phillips
Erica Flapan Marvin Schaefer
Eleanor Lang Kendrick Harvey Schmidt
Jeffrey L. Nunemacher Sanford Segal
Ellen Maycock Franklin Sheehan
John E. Wetzel
SPECTRUM SERIES

The Spectrum Series of the Mathematical Association of America was so named to reflect its purpose: to publish a broad range of books including biographies, accessible expositions of old or new mathematical ideas, reprints and revisions of excellent out-of-print books, popular works, and other monographs of high interest that will appeal to a broad range of readers, including students and teachers of mathematics, mathematical amateurs, and researchers.

777 Mathematical Conversation Starters, by John de Pillis

All the Math That’s Fit to Print, by Keith Devlin

Carl Friedrich Gauss: Titan of Science, by G. Waldo Dunnington, with additional material by Jeremy Gray and Fritz-Egbert Dohse

The Changing Space of Geometry, edited by Chris Pritchard

Circles: A Mathematical View, by Dan Pedoe

Complex Numbers and Geometry, by Liang-shin Hahn

Cryptology, by Albrecht Beutelspacher

Five Hundred Mathematical Challenges, Edward J. Barbeau, Murray S. Klamkin, and William O. J. Moser

From Zero to Infinity, by Constance Reid

The Golden Section, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.

I Want to Be a Mathematician, by Paul R. Halmos

Journey into Geometries, by Marta Sved

JULIA: a life in mathematics, by Constance Reid

Lure of the Integers, by Joe Roberts

Magic Tricks, Card Shuffling, and Dynamic Computer Memories: The Mathematics of the Perfect Shuffle, by S. Brent Morris

The Math Chat Book, by Frank Morgan

Mathematical Apocrypha, by Steven G. Krantz

Mathematical Carnival, by Martin Gardner

Mathematical Circles Vol I: In Mathematical Circles Quadrants I, II, III, IV, by Howard W. Eves

Mathematical Circles Vol II: Mathematical Circles Revisited and Mathematical Circles Squared, by Howard W. Eves

Mathematical Circles Vol III: Mathematical Circles Adieu and Return to Mathematical Circles, by Howard W. Eves

Mathematical Circus, by Martin Gardner

Mathematical Cranks, by Underwood Dudley

Mathematical Evolutions, edited by Abe Shenitzer and John Stillwell

Mathematical Fallacies, Flaws, and Flimflam, by Edward J. Barbeau

Mathematical Magic Show, by Martin Gardner

Mathematical Reminiscences, by Howard Eves

Mathematical Treks: From Surreal Numbers to Magic Circles, by Ivars Peterson

Mathematics: Queen and Servant of Science, by E.T. Bell

Memorabilia Mathematica, by Robert Edouard Moritz

New Mathematical Diversions, by Martin Gardner

Non-Euclidean Geometry, by H. S. M. Coxeter
Numerical Methods That Work, by Forman Acton
Numerology or What Pythagoras Wrought, by Underwood Dudley
Out of the Mouths of Mathematicians, by Rosemary Schmalz
Penrose Tiles to Trapdoor Ciphers . . . and the Return of Dr. Matrix, by Martin Gardner
Polyominoes, by George Martin
Power Play, by Edward J. Barbeau
The Random Walks of George Pólya, by Gerald L. Alexanderson
Remarkable Mathematicians, from Euler to von Neumann, Ioan James
The Search for E.T. Bell, also known as John Taine, by Constance Reid
Shaping Space, edited by Marjorie Senechal and George Fleck
Sherlock Holmes in Babylon and Other Tales of Mathematical History, edited by Marlow Anderson, Victor Katz, and Robin Wilson
Student Research Projects in Calculus, by Marcus Cohen, Arthur Knobel, Edward D. Gaughan, Douglas S. Kurtz, and David Pengelley
Symmetry, by Hans Walser. Translated from the original German by Peter Hilton, with the assistance of Jean Pedersen.
The Trisectors, by Underwood Dudley
Twenty Years Before the Blackboard, by Michael Stueben with Diane Sandford
The Words of Mathematics, by Steven Schwartzman
Introduction

For the past one hundred years, the Mathematical Association of America has been publishing high-quality articles on the history of mathematics, some written by distinguished historians such as Florian Cajori, Julian Lowell Coolidge, Max Dehn, David Eugene Smith, Carl Boyer, and others. Many well-known historians of the present day also contribute to the MAA’s journals. Some years ago, Robin Wilson and Marlow Anderson, along with the late John Fauvel, a distinguished and sorely missed historian of mathematics, decided that it would be useful to reprint a selection of these papers and to set them in the context of modern historical research, so that current mathematicians can continue to enjoy them and so that newer articles can be easily compared with older ones. After John’s untimely death, Victor Katz was asked to fill in and help bring this project to completion.

A careful reading of some of the older papers in particular shows that although modern research has introduced some new information or has fostered some new interpretations, in large measure they are neither dated nor obsolete. Nevertheless, we have sometimes decided to include two or more papers on a single topic, written years apart, to show the progress in the history of mathematics.

The editors hope that you will enjoy this collection covering nearly four thousand years of history, from ancient Babylonia up to the time of Euler in the eighteenth century. We wish to thank Don Albers, Director of Publication at the MAA, and Gerald Alexanderson, chair of the publications committee of the MAA, for their support for the history of mathematics at the MAA in general, and for this project in particular. We also want to thank Beverly Ruedi for her technical expertise in preparing this volume for publication.
Contents

Introduction vii

Ancient Mathematics

Foreword .. 3
Sherlock Holmes in Babylon, R. Creighton Buck 5
Words and Pictures: New Light on Plimpton 322, Eleanor Robson 14
Mathematics, 600 B.C.–600 A.D., Max Dehn 27
Diophantus of Alexandria, J. D. Swift 41
Hypatia of Alexandria, A. W. Richeson 47
Hypatia and Her Mathematics, Michael A. B. Deakin 52
The Evolution of Mathematics in Ancient China, Frank Swetz 60
Liu Hui and the First Golden Age of Chinese Mathematics, Philip D. Straffin, Jr. 69
Number Systems of the North American Indians, W. C. Eells 83
The Number System of the Mayas, A. W. Richeson 94
Before The Conquest, Marcia Ascher 98
Afterword ... 105

Medieval and Renaissance Mathematics

Foreword .. 109
The Discovery of the Series Formula for \(\pi \) by Leibniz, Gregory and Nilakantha, Ranjan Roy 111
Ideas of Calculus in Islam and India, Victor J. Katz 122
Was Calculus Invented in India?, David Bressoud 131
An Early Iterative Method for the Determination of sin 1\(^\circ \), Farhad Riahi 138
Leonardo of Pisa and his Liber Quadratorum, R. B. McClenon 143
The Algorists vs. the Abacists: An Ancient Controversy on the Use of Calculators,
Barbara E. Reynolds ... 148
Sidelights on the Cardan-Tartaglia Controversy, Martin A. Nordgaard 153
Reading Bombelli’s \(x \)-purged Algebra, Abraham Arcavi and Maxim Bruckheimer 164
The First Work on Mathematics Printed in the New World, David Eugene Smith 169
Afterword ... 173

The Seventeenth Century

Foreword .. 177
An Application of Geography to Mathematics: History of the Integral of the Secant,
V. Frederick Rickey and Philip M. Tuchinsky 179
Some Historical Notes on the Cycloid, E. A. Whitman 183
Descartes and Problem-Solving, Judith Grabiner 188
Sherlock Holmes in Babylon and Other Tales of Mathematical History

René Descartes’ Curve-Drawing Devices: Experiments in the Relations Between Mechanical Motion and Symbolic Language, David Dennis 199
Certain Mathematical Achievements of James Gregory, Max Dehn and E. D. Hellinger .. 208
The Changing Concept of Change: The Derivative from Fermat to Weierstrass, Judith V. Grabiner .. 218
The Crooked Made Straight: Roberval and Newton on Tangents, Paul R. Wolfson 228
On the Discovery of the Logarithmic Series and Its Development in England up to Cotes, Josef Ehrenfried Hofmann 235
Isaac Newton: Man, Myth, and Mathematics, V. Frederick Rickey 240
Reading the Master: Newton and the Birth of Celestial Mechanics, Bruce Pourciau 261
Newton as an Originator of Polar Coordinates, C. B. Boyer 274
Newton’s Method for Resolving Affected Equations, Chris Christensen 279
A Contribution of Leibniz to the History of Complex Numbers, R. B. McClenon 288
Functions of a Curve: Leibniz’s Original Notion of Functions and Its Meaning for the Parabola, David Dennis and Jere Confrey 292
Afterword .. 297

The Eighteenth Century

Foreword .. 301
Brook Taylor and the Mathematical Theory of Linear Perspective, P. S. Jones 303
Was Newton’s Calculus a Dead End? The Continental Influence of Maclaurin’s Treatise of Fluxions, Judith Grabiner 310
Discussion of Fluxions: from Berkeley to Woodhouse, Florian Cajori 325
The Bernoullis and the Harmonic Series, William Dunham 332
Leonhard Euler 1707–1783, J. J. Burckhardt 336
The Number e, J. L. Coolidge 346
Euler’s Vision of a General Partial Differential Calculus for a Generalized Kind of Function, Jesper Lützen 354
Euler and the Fundamental Theorem of Algebra, William Dunham 361
Euler and Differentials, Anthony P. Ferzola 369
Euler and Quadratic Reciprocity, Harold M. Edwards 375
Afterword .. 383

Index 385
About the Editors 387
Index

Abacus, 148–151
Algebra (L’Algebra), 164–167
Al-Kashi, 138–141
Almagest, 36–37, 55–56
Analytic Geometry, 189–197, 199–207, 244–247
Apollonius, 34–35, 51, 55, 203–204, 272, 348
Archimedes, 31–33
Aryabhata, 39, 124, 134
Astrolabe, 57
Astronomy, 256–259, 262–272, 343–344

Babylonian mathematics, 5–26
Berkeley, G., 311, 313, 318, 325–327, 330
Binomial series, 210–212, 252–254
Bombelli, R., 164–167
Brachystochrone, 186–7
Brahmagupta, 39, 134–135

Calculating, 148–151
Cardano, G., 153–163
Cauchy, A.-L., 225–226, 315–316, 355, 358
Chinese mathematics, 60–82
Chinese Remainder Theorem, 65
Chou pei suan ching, 62, 64
Complex numbers, 288–291
Conic sections, 30, 34, 272, 348
Conchoid, 205–206
Cotes, R., 238
Cubic equations, 153–163
Curve drawing, 199–207, 292–296
Cycloid, 183–187

Derivative, 218–227
Descartes, R., 184–185, 188–207, 244–248, 250, 292
Diez, J., 170–172
Differential equations, 223–224, 342
Differentials, 293, 369–374
Differentiation, 310–321
Diophantus, 38–39, 41–46, 51, 56

c, 346–352
Epistola posterior, 281, 285–286
Epistola prior, 253, 280, 284–285
Euclid’s Elements, 30–31, 243–244

Fermat, P., 122–123, 185–186, 218–220
Ferrari, L., 153–154, 159–162
Fibonacci, 143–147
Finger counting, 84–85
Fluxions, 310–321, 325–331
Fundamental Theorem of Algebra, 361–368

Gauss, C., 368, 379–381
Gaussian elimination, 63
Geography, 179–181
Geometry (La Géométrie), 188–197, 199–207, 244–248, 292
Greek mathematics, 27–59, 131–134

Halley, E., 237, 252, 257, 261, 349
Harmonic series, 332–334
Hipparchus, 132
Hippias, 27–28
Hippocrates, 27
Hydroscope, 57
Hypatia, 47–58
Ibn al-Haytham, 124–126, 136
Incas, 98–101
Institutiones Calculi Differentialis, 370–373
Interpolation formula, 209–210
Introductio in Analysin Infinitiorum, 339–340, 369–374
Islamic mathematics, 123–126, 138–141

Lagrange, J. L., 224–225, 315–316, 321, 344, 355, 358
Leonardo of Pisa, 143–147
Letters to a German Princess, 340–341

385
Liber Quadratorum, 143–147
Linear perspective, 303–308
Liu Hui, 69–80
Lo shu, 60–61
Logarithms, 235–238, 347–349
Maclaurin, C., 209, 224, 310–321, 328–331
Mayan mathematics, 94–96, 101–103
Mercator, G., 179–180
Mercator, N., 113, 235–236, 252, 349
Mesopotamian mathematics, 5–26
New World, 169–170
Newton’s method, 279–286
Nilakantha, K.G., 111–112, 116–119, 126, 135
Nine Chapters on the Mathematical Art, 63–65, 69–80
North American Indians, 83–93
Number systems, 88–91, 94–96, 148–150
Number theory, 38–39, 340–341, 375–381
Optics, 254–256, 341–342
Pappus, 37
Parabola, 293–295
Partial differential calculus, 354–359
Pascal, B., 186
Pascal’s triangle, 66
Perspective, 303–308
Pi, 75–76, 111–119,
Plato’s Academy, 29
Plimpton 322, 7–12, 14–25
Polar coordinates, 274–277
Principia mathematica, 256–259, 262–272
Projective geometry, 37, 303–308
Ptolemy, 20, 36–37, 51
Pythagoras, 27
Pythagorean triples, 10–12, 15–17
Quadratic reciprocity, 375–381
Quipu, 98–101
Reciprocals, 12, 21–24
Roberval, G.P., 122–123, 183–185, 228–231
Robins, B., 327–330
Schooten, F. van, 248–249
Sea Island Mathematical Manual, 74–75
Secant, 179–181
St Vincent, G., 347
Square roots, 64–65, 72–73
Sumario Compendioso, 169–172
Tangents, 228–234
Tartaglia N., 153–163
Taylor, B., 303–309
Thales, 27
Theon, 47, 52, 55–56, 58
Treatise of Fluxions, 310–321
Trigonometry, 18–20, 35–37, 131–141
Vera Quadratura, 212–216
Volume of a pyramid, 76–78
Volume of a sphere, 79–80
Wallis, J., 113, 249–250, 253, 349–350
Weierstrass, K., 226
Woodhouse, R., 330
Wright, E., 180–181
About the Editors

Marlow Anderson is a professor of mathematics at The Colorado College, in Colorado Springs; he has been a member of the mathematics department there since 1982. He was born in Seattle, and received his undergraduate degree from Whitman College. He studied partially ordered algebra at the University of Kansas and received his PhD in 1978. He has written over 20 research papers. In addition, he is co-author of a book on lattice-ordered groups, and also an undergraduate textbook on abstract algebra.

Victor Katz is currently Professor of Mathematics at the University of the District of Columbia. He has long been interested in the history of mathematics and its use in teaching. The first edition of his textbook: *A History of Mathematics: An Introduction* was published in 1993, with a second edition in 1998 and a shorter version to appear in 2004. He has directed three major NSF-supported and MAA-administered grant projects dealing with the history of mathematics, collectively titled the *Institute in the History of Mathematics and Its Use in Teaching* (IHMT). Under these projects, over a hundred college faculty (and thirty-five high school teachers) studied the history of mathematics, including how to teach courses in the subject and how to use it in teaching mathematics courses. In the third of the projects, the *Historical Modules Project*, eleven modules were developed for teaching topics in the secondary mathematics curriculum via the use of history. These are available now on a CD.

Robin Wilson is currently Head of the Pure Mathematics Department at the Open University, U.K., and Fellow in Mathematics at Keble College, Oxford University. He was Visiting Professor in the History of Mathematics at Gresham College, London, in 2001–02 and is a frequent visiting professor at Colorado College. He has written and edited about 25 books, in topics ranging from graph theory and combinatorics, via philately and the Gilbert & Sullivan operas, to the history of mathematics. In 1975 he was awarded a Lester Ford award by the MAA for “outstanding expository writing.” He is well known for his bright clothes and atrocious puns.
Covering a span of almost 4000 years, from the ancient Babylonians to the eighteenth century, this collection chronicles the enormous changes in mathematical thinking over this time as viewed by distinguished historians of mathematics from the past and the present. Each of the four sections of the book (Ancient Mathematics, Medieval and Renaissance Mathematics, The Seventeenth Century, The Eighteenth Century) is preceded by a Foreword, in which the articles are put into historical context, and followed by an Afterword, in which they are reviewed in the light of current historical scholarship. In more than one case, two articles on the same topic are included to show how knowledge and views about the topic changed over the years. This book will be enjoyed by anyone interested in mathematics and its history—and, in particular, by mathematics teachers at secondary, college, and university levels.