Lectures on Fractal Geometry and Dynamical Systems
Lectures on Fractal Geometry and Dynamical Systems

Yakov Pesin
Vaughn Climenhaga
Contents

Foreword: MASS and REU at Penn State University xi
Preface xiii

Chapter 1. Basic Concepts and Examples 1
Lecture 1 1
a. A threefold cord: fractals, dynamics, and chaos 1
b. Fractals: intricate geometry and self-similarity 2
c. Dynamics: things that move (or don’t) 7

Lecture 2 10
a. Dynamical systems: terminology and notation 10
b. Population models and the logistic map 13

Lecture 3 19
a. A linear map with chaotic behaviour and the middle-third Cantor set 19
b. The Cantor set and symbolic dynamics 24

Lecture 4 28
a. Some point-set topology 28
b. Metric spaces 31
c. Lebesgue measure 34

Lecture 5 37
a. The topological structure of symbolic space and the Cantor set 37
Chapter 2. Fundamentals of Dimension Theory	53
a. Definition of Hausdorff dimension	53
b. Hausdorff dimension of the middle-third Cantor set	58
c. Alternative definitions of Hausdorff dimension	60
Lecture 8	62
a. Properties of Hausdorff dimension	62
b. Topological dimension	66
Lecture 9	68
a. Comparison of Hausdorff and topological dimension	68
b. Metrics and topologies	71
c. Topology and dimension	74
Lecture 10	75
a. Hausdorff dimension of Cantor sets	75
b. Moran’s Theorem	76
c. Moran constructions	80
d. Dynamical constructions and iterated function systems	82
Lecture 11	85
a. Box dimension: another way of measuring dimension	85
b. Properties of box dimension	88
Lecture 12	90
a. Relationships between the various dimensions	90
b. A counterexample	94
c. Stability and subadditivity	98
Chapter 3. Measures: Definitions and Examples	101
Lecture 13	101
a. A little bit of measure theory	101
b. Lebesgue measure and outer measures	105
Contents

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.</td>
<td>Hausdorff measures</td>
<td>109</td>
</tr>
<tr>
<td>Lecture 14</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>a.</td>
<td>Choosing a “good” outer measure</td>
<td>110</td>
</tr>
<tr>
<td>b.</td>
<td>Bernoulli measures on symbolic space</td>
<td>111</td>
</tr>
<tr>
<td>c.</td>
<td>Measures on Cantor sets</td>
<td>113</td>
</tr>
<tr>
<td>d.</td>
<td>Markov measures</td>
<td>114</td>
</tr>
<tr>
<td>Lecture 15</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>a.</td>
<td>The support of a measure</td>
<td>117</td>
</tr>
<tr>
<td>b.</td>
<td>Subshifts of finite type: One-dimensional Markov maps</td>
<td>120</td>
</tr>
<tr>
<td>Chapter 4.</td>
<td>Measures and Dimensions</td>
<td>123</td>
</tr>
<tr>
<td>Lecture 16</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>a.</td>
<td>The Uniform Mass Distribution Principle: Using measures to determine dimension</td>
<td>123</td>
</tr>
<tr>
<td>b.</td>
<td>Pointwise dimension and the Non-uniform Mass Distribution Principle</td>
<td>125</td>
</tr>
<tr>
<td>Lecture 17</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>a.</td>
<td>Variable pointwise dimension</td>
<td>128</td>
</tr>
<tr>
<td>b.</td>
<td>Hausdorff dimension of exact dimensional measures</td>
<td>135</td>
</tr>
<tr>
<td>c.</td>
<td>Pointwise dimension of Hausdorff measures</td>
<td>137</td>
</tr>
<tr>
<td>Lecture 18</td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>a.</td>
<td>Local entropy</td>
<td>138</td>
</tr>
<tr>
<td>b.</td>
<td>Kolmogorov–Sinai entropy</td>
<td>142</td>
</tr>
<tr>
<td>c.</td>
<td>Topological entropy</td>
<td>143</td>
</tr>
<tr>
<td>Lecture 19</td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>a.</td>
<td>Entropy of Markov measures</td>
<td>146</td>
</tr>
<tr>
<td>b.</td>
<td>Hausdorff dimension of Markov constructions</td>
<td>149</td>
</tr>
<tr>
<td>Lecture 20</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>a.</td>
<td>Lyapunov exponents</td>
<td>151</td>
</tr>
<tr>
<td>b.</td>
<td>Fractals within fractals</td>
<td>155</td>
</tr>
</tbody>
</table>

Chapter 5. Discrete-Time Systems: The FitzHugh–Nagumo Model

<table>
<thead>
<tr>
<th>Lecture 21</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>The FitzHugh–Nagumo model for neurons</td>
<td>159</td>
</tr>
</tbody>
</table>
Contents

b. Numerical investigations: From continuous to discrete 164

Lecture 22
a. Studying the local map 167
b. Stability of fixed points for general maps 169

Lecture 23
a. Stability of fixed points for the FitzHugh–Nagumo model 175
b. Periodic points 177

Lecture 24
a. Beyond period-doubling: Down the rabbit hole 181
b. Becoming one-dimensional 185

Chapter 6. The Bifurcation Diagram for the Logistic Map 191

Lecture 25
a. Bifurcations of the logistic map 191
b. Classifying bifurcations 194

Lecture 26
a. The period-doubling cascade 198
b. Chaos at the end of the bifurcation diagram 199
c. The centre cannot hold: escape to infinity 202

Lecture 27
a. Finding the relevant part of phase space: \(\omega \)-limit sets 204
b. Windows of stability in the bifurcation diagram 206
c. Chaos outside the windows of stability 207

Chapter 7. Chaotic Attractors and Persistent Chaos 209

Lecture 28
a. Trapping regions 209
b. Attractors 212

Lecture 29
a. The Smale–Williams solenoid 215
b. Uniform hyperbolicity 218
c. Symbolic dynamics 221

Lecture 30
a. Dimension of direct products 224
b. Quantifying the attractor 228
c. Lyapunov exponents in multiple dimensions 229
d. The non-conformal case 231
e. The attractor for the FitzHugh–Nagumo map 232

Chapter 8. Horseshoes and Intermittent Chaos 233
Lecture 31 233
a. The Smale horseshoe: A trapping region that isn’t 233
b. Hausdorff dimension of the horseshoe 237
c. Symbolic dynamics on the Smale horseshoe 239
Lecture 32 241
a. Variations on a theme: Other horseshoes 241
b. Intermittent chaos vs. persistent chaos 245
c. Homoclinic orbits and horseshoes 247

Chapter 9. Continuous-Time Systems: The Lorenz Model 253
Lecture 33 253
a. Continuous-time systems: Basic concepts 253
b. Fixed points of continuous-time systems 256
Lecture 34 259
a. The pendulum 259
b. Two-dimensional systems 263
Lecture 35 267
a. The Lorenz equations 267
b. Beyond the linear mindset 269
c. Examining the Lorenz system 269
Lecture 36 274
a. Passing to a Poincaré map 274
b. Horseshoes in the Lorenz system 277
Lecture 37 281
a. The Lorenz attractor 281
b. The geometric Lorenz attractor 281
c. Dimension of the geometric Lorenz attractor 285
d. Back to the Lorenz attractor, and beyond 286

Appendix 289

Hints to selected exercises 295
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggested Reading</td>
<td>299</td>
</tr>
<tr>
<td>Bibliography</td>
<td>305</td>
</tr>
<tr>
<td>Index</td>
<td>309</td>
</tr>
</tbody>
</table>
Foreword: MASS and REU at Penn State University

This book is part of a collection published jointly by the American Mathematical Society and the MASS (Mathematics Advanced Study Semesters) program as a part of the Student Mathematical Library series. The books in the collection are based on lecture notes for advanced undergraduate topics courses taught at the MASS and/or Penn State summer REU (Research Experiences for Undergraduates). Each book presents a self-contained exposition of a non-standard mathematical topic, often related to current research areas, which is accessible to undergraduate students familiar with an equivalent of two years of standard college mathematics, and is suitable as a text for an upper division undergraduate course.

Started in 1996, MASS is a semester-long program for advanced undergraduate students from across the USA. The program’s curriculum amounts to sixteen credit hours. It includes three core courses from the general areas of algebra/number theory, geometry/topology, and analysis/dynamical systems, custom designed every year; an interdisciplinary seminar; and a special colloquium. In addition, every participant completes three research projects, one for each core course. The participants are fully immersed into mathematics, and
this, as well as intensive interaction among the students, usually leads to a dramatic increase in their mathematical enthusiasm and achievement. The program is unique for its kind in the United States.

The summer mathematical REU program is formally independent of MASS, but there is a significant interaction between the two: about half of the REU participants stay for the MASS semester in the fall. This makes it possible to offer research projects that require more than seven weeks (the length of the REU program) for completion. The summer program includes the MASS Fest, a two- to three-day conference at the end of the REU at which the participants present their research and that also serves as a MASS alumni reunion. A non-standard feature of the Penn State REU is that, along with research projects, the participants are taught one or two intense topics courses.

Detailed information about the MASS and REU programs at Penn State can be found on the website www.math.psu.edu/mass.
Preface

This book emerged from the course in fractal geometry and dynamical systems, with emphasis on chaotic dynamics, that I taught in the fall semester of 2008 as part of the MASS program at Penn State University.

Both fractal geometry and dynamical systems have a long history of development that is associated with many great names: Poincaré, Kolmogorov, Smale (in dynamical systems), and Cantor, Hausdorff, Besicovitch (in fractal geometry), to name a few. These two areas interact with each other since many dynamical systems (even some very simple ones) often produce fractal sets that are a source of irregular “chaotic” motions in the system.

A unifying factor for merging dynamical systems with fractal geometry is self-similarity. On the one hand, self-similarity, along with complicated geometric structure, is a crucial feature of fractal sets. On the other hand, it is related to various symmetries in dynamical systems (e.g., rescaling of time or space). This is extremely important in applications, as symmetry is an attribute of many physical laws which govern the processes described by dynamical systems.

Numerous examples of scaling and self-similarity resulting in appearance of fractals and chaotic motions are explored in the fascinating book by Schroeder [Sch91]. Motivated in part by this book, I designed and taught a course—for a group of undergraduate and
graduate students majoring in various areas of science—whose goal was to describe the necessary mathematical tools to study many of the examples in Schroeder’s book. An expanded and modified version of this previous course has become the course for MASS students that I mentioned above.

This book is aimed at undergraduate students, and requires only standard knowledge in analysis and differential equations, but the topics covered do not fall into the traditional undergraduate curriculum and may be demanding. To help the reader cope with this, we give formal definitions of notions that are not part of the standard undergraduate curriculum (e.g., of topology, metric space and measure) and we briefly discuss them. Furthermore, many crucial new concepts are introduced through examples so that the reader can get some motivation for their necessity as well as some intuition of their meaning and role.

The focus of the book is on ideas rather than on complicated techniques. Consequently, the proofs of some statements, which require rather technical arguments, are restricted to some particular cases that, while allowing for simpler methods, still capture all the essential elements of the general case. Moreover, to help the reader get a broader view of the subject, we included some results whose proofs go far beyond the scope of the book. Naturally, these proofs are omitted.

Currently, there are some textbooks for undergraduate students that introduce the reader to the dynamical system theory (see for example, [Dev92] and [HK03]) and to fractal geometry (see for example, [Fal03]), but none of them presents a systematic study of their interplay and connections to the theory of chaos. This book is meant to cover this gap.

Chapter 1 of this book starts with a discussion of the principal threefold cord of dynamics, fractals, and chaos. Here our core example is introduced—a one-dimensional linear Markov map whose biggest invariant set is a fractal and whose “typical” trajectories are chaotic. Although this map is governed by a very simple rule, it exhibits all the principal features of dynamics that are important for our purposes.
After being immersed into the interplay between dynamics and fractal geometry, the reader is invited to a more systematic study of dimension theory and its connections to dynamical systems, which are presented in Chapters 2, 3, and 4. Here the reader finds, among other things, rigorous definitions of various dimensions and descriptions of their basic properties; various methods for computing dimensions of sets, most importantly of Cantor sets; and relations between dimension and some other characteristics of dynamics.

Chapters 5 through 9 are dedicated to two “real-life” examples of dynamical systems—the FitzHugh–Nagumo model and the Lorenz model, where the former describes the propagation of a signal through the axon of a neuron cell and the latter models the behavior of fluid between two plates heated to different temperatures. While the underlying mechanism in the FitzHugh–Nagumo model is a map of the plane, the Lorenz model is a system of differential equations in three-dimensional space. This allows the reader to observe various phenomena naturally arising in dynamical systems with discrete time (maps) as well as with continuous time (flows).

An important feature of these two examples is that each system depends on some parameters (of which one is naturally selected to be the leading parameter) so that the behavior of the system varies (bifurcates) when the leading parameter changes. Thus, the reader becomes familiar in a somewhat natural way with various types of behavior emerging when the parameter changes, including homoclinic orbits, Smale’s horseshoes, and “strange” (or “chaotic”) attractors.

Let me say a few words on how the book was written. My coauthor, Vaughn Climenhaga (who at the time of writing the book was a fourth-year graduate student) was the TA for the MASS course that I taught. He was responsible for taking and writing up notes. He did this amazingly fast (usually within one or two days after the lecture) so that the students could have them in “real time”. The notes, embellished with many interesting details, examples, and some stories that he added on his own, were so professionally written that, with few exceptions, I had to do only some minor editing before they were posted on the web. These notes have become the ground material for the book. Turning them into the book required adding some new
material, restructuring, and editing. Vaughn’s participation in this process was at least an equal share, but he also produced all the pictures, the TeX source of the book, etc. I do not think that without him this book would have ever been written.

Yakov Pesin
Suggested Reading

There are many books which cover topics in fractal geometry and/or dynamical systems (although few which consider their interaction in much detail). We mention a few titles which ought to be accessible to the reader of the present volume, as well as some more advanced works which are suitable for further in-depth study of the material. Finally, we mention some background references for basic material, and some popular, less technical, accounts of the subject. Complete references may be found in the bibliography.

Concurrent reading

An introduction to dimension theory, with many aspects of modern fractal geometry, may be found in

The book includes a more detailed discussion of the Hausdorff measure of various sets than we have given here, as well as some elements of the multifractal analysis which we do not consider here.

On the dynamical side of things, a very accessible treatment of the basic concepts in dynamics is given in
Here the discussion focuses on some of the topological aspects of one-dimensional dynamics (with emphasis on bifurcation theory) as well as complex dynamics (that is, dynamical systems in which the variables are complex numbers, rather than real numbers), which we have not had space to consider here.

The reader with an interest in a more complete theoretical development of the topics in dynamical systems introduced here is encouraged to have a look at

Applications of dynamical systems to various areas of science are presented, along with the basic theory, in

A good account of the theory of chaos, with many examples of chaotic dynamical systems, can be found in

Further reading

A more advanced treatment of the rich and variegated connections between fractal geometry and dynamical systems, including the core results in multifractal analysis of dynamics, may be found in

A concise introduction to dynamical systems, written at the graduate level, is

For the reader seeking a more encyclopedic treatment, the most comprehensive reference and text in dynamical systems available at the present time is

Our discussion of invariant measures and entropy is only the tip of the iceberg in the theory of measure-preserving transformations. A more complete discussion is given in

This includes, among other things, the traditional introduction of Kolmogorov–Sinai entropy, and a proof of the variational principle. For a discussion of entropy in its various guises, the reader is referred to

We have also only scratched the surface of bifurcation theory. A more complete account of that theory, along with many other topics, may be found in

The FitzHugh–Nagumo model is just one of many important models in mathematical biology which may profitably be studied using techniques from dynamical systems. A good overview of the field is

The Lorenz equations discussed in Chapter 9 carry within them a much richer panoply of behaviours than we have had occasion to unveil. A more complete story is told in

Background reading

The basic concepts of point set topology, which we introduced briefly in Lecture 4, along with a more complete exposition of Lebesgue measure (and a host of other basic results and techniques) may be found in either of the following:

Our discussions of measure theory (in Chapter 3), Jordan normal form and other concepts of linear algebra (in the Appendix), and the basic theory of ordinary differential equations (in Chapter 9) are all rather brief. Full details and proofs may be found in

Popular references

There are also a number of books which touch on various subjects covered in this book at a less technical level, and which are targeted at a broader audience, either within the scientific community or beyond it. One such book, which helped to motivate the course in which the present work had its genesis, is

This requires some mathematics to follow, but covers an impressively broad range of topics, and is accessible to scientists from other fields.

For historical impact, it is hard to surpass

This requires a background similar to that required by Schroeder’s book.

Finally, a very readable account of the historical development of chaos theory is given in

This book can be appreciated by specialists and laypersons alike.
Bibliography

Index

≺, 188
A, 102
a.e., 104
A∞, 181
an(w), 129
Bf(x, m, n, δ), 238
Bf(x, n, δ), 139
B(x, r), 31
C0, 289
C1, 289
Ca, 290
c∞, 198
C∞, 290
Cw1...wn, 39
d(·, ·), 31
d1, 225
d2, 225
da, 37
δx, 103
Df, 169
diam(Z), 53
dimB Z, 87
dimB H Z, 58
dimH Z, 68
dimH μ, 135
d∞, 225
dμ(x), 125
D(Z, ε), 54
Γ+, 235
Γ−, 236
h(μ, f), 142
hμ, f(x), 140
htop(Z, f), 144
[I], 42
Iw1...wn, 22
λf,u(x), 238
λf(x), 153
λf(x, v), 230
λ(μ, f), 153
λn,u(μ, f), 244
Leb(Z), 34
\lim x_n, 85
\lim x_n, 85
m(Z, α), 55
m(Z, α, ε), 54
mB(Z, α, ε), 61
mH(Z, α), 106
mh(Z, α, δ), 144
μ, 102
μp, 135
Nf(Z, n, δ), 144
N(U), 88
N(Z, ε), 88
o(·), 170
ω(x), 205
φ1, 255
π, 115
Rw1...wn, 235
r(Z, α), 86
Λ(Z, α), 86
\[
\begin{align*}
& r(Z, \alpha, \varepsilon), \quad 85 \\
& \sigma, \quad 27 \\
& \Sigma^+_Z, \quad 25 \\
& \Sigma^+_A, \quad 224, \ 243 \\
& \Sigma^+_A, \quad 119 \\
& \Sigma^+_k, \quad 222 \\
& \Sigma^+_k, \quad 45 \\
& \text{supp } m, \quad 117 \\
& S_{w_1 \ldots w_n}, \quad 236 \\
& T_\eta, \quad 263 \\
& U, \quad 53 \\
& W^{s,u}, \quad 174 \\
& W^{s,u}_\varepsilon, \quad 173 \\
\end{align*}
\]

accumulation point, 29, 85
action potential, 160
Adam, 50
admissible, 119, 224
algebra, 102, 107
almost everywhere, 104
\(\alpha\)-limit set, 266
alphabet, 45
analytic, 290
attracting, see stable
attractor, 213, 232
Belykh, 288
chaotic, 247, 287
geometric Lorenz, 283
hyperbolic, 219, 224, 287
Lorenz, 281
strange, 287
Australia, 4
auxiliary variable, 162, 253
axon, 160

ball, 31
Barnsley fern, 84
base, 72
basic interval, 42
basic set, 81
basin of attraction, 219
basis, 72
Belykh, Vladimir, 288
Besicovitch covering lemma, 136
Besicovitch, Abram, 76, 225, 227, 288
bi-Lipschitz, 70, 90, 228
bifurcation, 168, 192

period-doubling, 178, 194
pitchfork, 197
tangent, 194
bifurcation diagram, 182, 183, 198, 205
Birkhoff, George, 244
bisectrix, 14, 195
Bonsaier–van der Pol model, 162
Bothe, Hans, 231
Bowen ball, 139, 144, 238
box dimension, see dimension
Brahms, Johannes, 15
Brouwer Fixed Point Theorem, 265

Cantor function, 36, 37
Cantor set, 41, 101, 121, 234
geometrically constructed, 43, 76
middle-third, 23, 36, 58, 83, 109
topology of, 29, 33, 40
Cantor tartan, 125
Cantor, Georg, 24, 288
Carathéodory construction, 107, 110
Carathéodory, Constantin, 51, 106
change of coordinates, see conjugacy
chaos, 2, 20, 24, 167, 224, 267, 288
deterministic, 10, 209
intermittent, 246, 251, 280
persistent, 247
transient, 207, 246
closed set, 29
closure, 29, 89
CML, see coupled map lattice
coastline, 4

cobweb diagram, 13, 21
coding, 9, 26, 40, 47, 201, 239
commuting diagram, 17, 27, 201, 224, 240
compact, 29
conformal, 49, 231
conjugacy, 18, 27
topological, 40, 191
connected, 30, 48
continuous, 29, 32, 289
contracting, 83
convection, 268
coordinate change, see conjugacy
<table>
<thead>
<tr>
<th>Index</th>
<th>311</th>
</tr>
</thead>
<tbody>
<tr>
<td>coupled map lattice, 165</td>
<td>eigenvalue, 8, 170, 175, 230, 258, 292</td>
</tr>
</tbody>
</table>
cover, 53, 64| entropy
|cylinder, 38, 112, 222| Kolmogorov–Sinai, 142|
damped harmonic oscillator, 162| local, 140, 154, 238|
dendrite, 160| topological, 143, 229, 237, 245|
dense, 30| equivalent, 68, 291|
devil’s staircase, see Cantor function| ergodic, 134, 146, 244|
diameter, 53| Euler’s method, 166|
diffusion, 163| exact dimensional, 135|
dimension| external stimulus, 163|
|box, 52, 87| Feigenbaum parameter, 198|
|and metric, 93| Feigenbaum’s constant, 185|
of Moran construction, 91| Feigenbaum, Mitchell, 185|
various characterisations, 89| first return time, 275|
fractal, 51, 52, 91| FitzHugh, Richard, 161, 162|
Hausdorff, 52, 58, 101| FitzHugh–Nagumo model, 161, 163, 167, 175, 209, 232, 233|
|and metric, 68, 73| fixed point, 15, 168, 256, 264|
|of a measure, 135, 137| hyperbolic, see saddle|
of Cantor set, 75, 76, 155| stability, 169, 257, 269|
of direct product, 225| flip bifurcation, see period-doubling bifurcation
|of geometric Lorenz attractor, 285| flow, 256|
of line, 64| focus, 257|
of Markov construction, 150| fold bifurcation, see tangent bifurcation
|of middle-third Cantor set, 58| fractal, 1, 3, 5, 288|
of Moran construction, 81| fractal dimension, see dimension
|of non-linear horseshoe, 243| France, 33|
of plane, 65| full shift, 121|
of Sierpiński gasket, 60, 81| g-cover, 186|
of Smale horseshoe, 237| Gauguin, Paul, 1|
of solenoid, 228| generalised eigenspace, 292|
of symbolic space, 62| generic, 30|
of von Koch curve, 60, 81| geometric construction, 42, 46, 93, 217|
|properties, 62| geometric Lorenz map, 281|
|pointwise, 125, 127, 154, 238| group property, 12, 255|
of a Bernoulli measure, 129| Hadamard–Perron theorem, 174|
of Hausdorff measure, 137| Hartman–Grobman theorem, 172|
topological, 67| Hausdorff dimension, see dimension
|direct sum, 291| Hausdorff measure, see measure
|disconnected, 30| Hausdorff space, 71|
domain, 11, 21| Hausdorff’s theorem, 73|
duck-billed platypus, 13| Hausdorff, Felix, 51|
dynamical system, 7, 10, 93| continuous-time, 8, 253|
|two-dimensional, 263| discrete-time, 7, 12|
heteroclinic orbit, 262, 272, 276
Hodgkin–Huxley model, 161
Hölder, 290
homeomorphism, 29
homoclinic orbit, 248, 262, 266
homoclinic tangle, 249
horseshoe
 filled-in, 280
 in homoclinic tangle, 251
 in Lorenz model, 277
 non-linear, 241
 Smale, 237, 247
hyperbolic set, 218, 224
IFS, see iterated function system
image, 7, 11
inducing domain, 274
information theory, 143
initial value problem, 254
integral curve, 254
interior, 29, 66, 81
intermittent chaos, see chaos
invariant, 12, 24
 measure, 113, 146
ion channel, 160
isometry, 8, 32
iterated function system, 83
Jacobian, 169
Jakobson, Michael, 208
Jordan Curve Theorem, 265
Jordan decomposition, 292
Jordan normal form, 19
Kaneko, Kunihiko, 166
Kaplan, James, 277
Katok, Anatole, 143
Koch curve, see von Koch curve
Kolmogorov, Andrei, 143
Kolmogorov–Sinai entropy, see entropy
Lyapunov exponent, 153, 154, 229,
 237, 238, 244
 of a measure, 153, 244
Lyapunov subspace, 230
Lyapunov, Aleksandr, 153
Mandelbrot, Benoît, 51, 288
Markov construction, 119, 150
Markov map, 120, 199, 204
 expanding, 49
 full-branched, 49
Markov process, 115
Markov shift, see subshift of finite type
mass distribution, 103
Mass Distribution Principle
 Non-uniform, 127
 Uniform, 123
May, Robert, 17
measurable set, 35, 102, 106
measure, 102, 107
Bernoulli, 113, 243
 entropy, 141, 143
 Hausdorff dimension, 135
 pointwise dimension, 129
counting, 103
Hausdorff, 109, 137, 156
 of middle-third Cantor set, 58
invariant, 113
Lebesgue, 34, 105
Markov, 115, 119, 243
 entropy, 147
 of maximal dimension, 136, 149,
 155, 244
of maximal entropy, 146, 149, 229
outer, 35, 106, 107
Parry, 150
point, 103, 117
probability, 103
measure space, 102
measure theoretic entropy, see
Kolmogorov–Sinai entropy
metric entropy, see
Kolmogorov–Sinai entropy
metric space, 31
symbolic space as, 37, 222
metrisable, 71
Moran construction, 81, 91
Moran’s theorem, 76
Moran, Patrick, 76
Morse–Smale, 180, 184, 189
multifractal analysis, 157, 221
Multiplicative Ergodic Theorem, 244
multiplicity, 66
Nagumo, Jin-Ichi, 161
Navier–Stokes equations, 267, 287
neighbourhood, 28, 32
neuron, 160
node, 170, 257
norm, 291
normal space, 71
north-south map, 220
null set, 104
ODE, see ordinary differential equation
ω-limit set, 205, 266
one-dimensional map, 185, 285
one-dimensional Markov map, see Markov map
one-to-one, 12, 29, 48
open set, 28, 53, 66
orbit, see trajectory
orbit diagram, see bifurcation diagram
ordinary differential equation, 162, 254
Oseledets, Valery, 244
partial differential equation, 166
partition, 39
PDE, see partial differential equation
pendulum, 259
perfect set, 30
period-3 window, 206
period-doubling bifurcation, see bifurcation
period-doubling cascade, 184, 198, 207
periodic orbit, 261, 266
isolated, 263
periodic point, 27, 177, 186, 188, 192, 205
stability, 179
persistent chaos, see chaos
pitchfork bifurcation, see bifurcation
Poincaré map, 263, 275
Poincaré section, 263, 274
Poincaré, Henri, 250
Poincaré–Bendixson Theorem, 266
pointwise dimension, see dimension
Pointwise Ergodic Theorem, 244
Pontryagin, Lev, 93
Pontryagin–Shnirel’man theorem, 93
population model, 13
preimage, 11, 13, 21
primitive, 119
probability vector, 113
stationary, 115
quantitative universality, 185
range, 11, 29
ratio coefficient, 42, 101
refinement, 66
regularity, 289
repeller, 23, 121, 234
repelling, see unstable
residual, 30, 224
Reynolds number, 267
saddle, 171, 173, 249, 257, 261
saddle-node bifurcation, see tangent bifurcation
scaling factor, 58
Schmeling, Jörg, 231
Schoenflies Theorem, 265
Schroeder, Manfred, 47
second-countable, 72
self-similarity, 3, 59, 75, 101, 156, 184
semi-group property, 11
sensitive dependence on initial
conditions, 269
separable, 34
separation axiom, 71
separatrix, 178, 182, 272
set function, 55
Sharkovsky’s theorem, 188
Sharkovsky, Aleksandr, 187
shift map, 27
two-sided, 222
Shnirel’man, Lev, 93
Sierpiński gasket, 47, 60, 81, 83
similarity transformation, 58
Simon, Károly, 231
Sinai, Yakov, 143
Smale, Stephen, 237, 251, 288
Smale–Williams solenoid, 216, 228, 231
smooth, 290
solenoid, see Smale–Williams solenoid
solid torus, 215
soma, 160
stable, 15, 171, 172, 257
curve, 173, 178, 239
disc, 218, 220, 231
surface, 272, 276
stochastic matrix, 115
Stokes’ Theorem, 265
strongly equivalent, 69, 71, 90
structural stability, 242
subadditivity, 55, 59, 87, 98, 106
subshift of finite type, 121, 224, 243, 280
measure of maximal entropy, 149
support, 117
of a Markov measure, 119, 243
symbolic space, 25, 45, 62, 111, 239
metric on, 37
two-sided, 222
tangent bifurcation, see bifurcation
Taylor expansion, 152, 170, 256
tent map, 201
time-t map, 255, 265
topological conjugacy, see conjugacy
topological dimension, see dimension
topological entropy, see entropy
topological space, 28
totally disconnected, 30, 40, 48, 74
trajectory, 7, 12, 14
fowards, 205
transient chaos, see chaos
transition matrix, 118, 121, 223, 280
transition probability, 116
transmembrane potential, see action potential
transverse homoclinic intersection, 249
implies a horseshoe, 251
trapping region, 210, 233
tree
bronchial, 3
oak, 2
triangle inequality, 31
Tucker, Warwick, 286
uniformly equivalent, 69
unstable, 15, 171, 172, 257
curve, 173, 215, 218, 231, 240
upper limit, 85
Urysohn’s metrisation theorem, 73
van der Pol oscillator, 162, 237
van der Pol, Balthasar, 162
variational principle, 146
vector field, 254
vector space, 291
Verhulst diagram, see cobweb diagram
Verhulst, Pierre, 14
von Koch curve, 4, 60, 70, 81, 83
Walters, Peter, 143
window of stability, 184, 189, 198, 206
Yorke, James, 10, 187, 277
Titles in This Series

52 Yakov Pesin and Vaughn Climenhaga, Lectures on fractal geometry and dynamical systems, 2009
51 Richard S. Palais and Robert A. Palais, Differential equations, mechanics, and computation, 2009
50 Mike Mesterton-Gibbons, A primer on the calculus of variations and optimal control theory, 2009
49 Francis Bonahon, Low-dimensional geometry: From euclidean surfaces to hyperbolic knots, 2009
48 John Franks, A (terse) introduction to Lebesgue integration, 2009
47 L. D. Faddeev and O. A. Yakubovskii, Lectures on quantum mechanics for mathematics students, 2009
46 Anatole Katok and Vaughn Climenhaga, Lectures on surfaces: (Almost) everything you wanted to know about them, 2008
45 Harold M. Edwards, Higher arithmetic: An algorithmic introduction to number theory, 2008
44 Yitzhak Katznelson and Yonatan R. Katznelson, A (terse) introduction to linear algebra, 2008
43 Ilka Agricola and Thomas Friedrich, Elementary geometry, 2008
42 C. E. Silva, Invitation to ergodic theory, 2007
41 Gary L. Mullen and Carl Mummert, Finite fields and applications, 2007
40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber, Frames for undergraduates, 2007
39 Alex Iosevich, A view from the top: Analysis, combinatorics and number theory, 2007
38 B. Fristedt, N. Jain, and N. Krylov, Filtering and prediction: A primer, 2007
37 Svetlana Katok, p-adic analysis compared with real, 2007
36 Mara D. Neusel, Invariant theory, 2007
35 Jörg Bewersdorff, Galois theory for beginners: A historical perspective, 2006
34 Bruce C. Berndt, Number theory in the spirit of Ramanujan, 2006
33 Rekha R. Thomas, Lectures in geometric combinatorics, 2006
32 Sheldon Katz, Enumerative geometry and string theory, 2006
31 John McCleary, A first course in topology: Continuity and dimension, 2006
30 Serge Tabachnikov, Geometry and billiards, 2005
29 Kristopher Tapp, Matrix groups for undergraduates, 2005
28 Emmanuel Lesigne, Heads or tails: An introduction to limit theorems in probability, 2005
27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Thea van Roode, Mathematical modelling: A case studies approach, 2005
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six themes on variation</td>
<td>Robert Hardt, Editor</td>
<td>2004</td>
</tr>
<tr>
<td>Transformation groups for beginners</td>
<td>S. V. Duzhin and B. D. Chebotarevsky</td>
<td>2004</td>
</tr>
<tr>
<td>Ramsey theory on the integers</td>
<td>Bruce M. Landman and Aaron Robertson</td>
<td>2004</td>
</tr>
<tr>
<td>Lectures on generating functions</td>
<td>S. K. Lando</td>
<td>2003</td>
</tr>
<tr>
<td>An introduction to Lie groups and the geometry of homogeneous spaces</td>
<td>Andreas Arvanitoyeorgos</td>
<td>2003</td>
</tr>
<tr>
<td>Problems in mathematical analysis III: Integration</td>
<td>W. J. Kaczor and M. T. Nowak</td>
<td>2003</td>
</tr>
<tr>
<td>Elementary algebraic geometry</td>
<td>Klaus Hulek</td>
<td>2003</td>
</tr>
<tr>
<td>Computable functions</td>
<td>A. Shen and N. K. Vereshchagin</td>
<td>2003</td>
</tr>
<tr>
<td>Cryptography: An introduction</td>
<td>V. V. Yaschenko, Editor</td>
<td>2002</td>
</tr>
<tr>
<td>Basic set theory</td>
<td>A. Shen and N. K. Vereshchagin</td>
<td>2002</td>
</tr>
<tr>
<td>An introduction to Lie groups and the geometry of homogeneous spaces</td>
<td>Andreas Arvanitoyeorgos</td>
<td>2003</td>
</tr>
<tr>
<td>Problems in mathematical analysis II: Continuity and differentiation</td>
<td>W. J. Kaczor and M. T. Nowak</td>
<td>2001</td>
</tr>
<tr>
<td>An introduction to game-theoretic modelling</td>
<td>Mike Mesterton-Gibbons</td>
<td>2000</td>
</tr>
<tr>
<td>The mathematics of soap films: Explorations with Maple®</td>
<td>John Oprea</td>
<td>2000</td>
</tr>
<tr>
<td>Inversion theory and conformal mapping</td>
<td>David E. Blair</td>
<td>2000</td>
</tr>
<tr>
<td>Exploring the number jungle: A journey into diophantine analysis</td>
<td>Edward B. Burger</td>
<td>2000</td>
</tr>
<tr>
<td>Codes and curves</td>
<td>Judy L. Walker</td>
<td>2000</td>
</tr>
<tr>
<td>The prime numbers and their distribution</td>
<td>Gérard Tenenbaum and Michel Mendès France</td>
<td>2000</td>
</tr>
<tr>
<td>The game’s afoot! Game theory in myth and paradox</td>
<td>Alexander Mehlmann</td>
<td>2000</td>
</tr>
<tr>
<td>Problems in mathematical analysis I: Real numbers, sequences and series</td>
<td>W. J. Kaczor and M. T. Nowak</td>
<td>2000</td>
</tr>
<tr>
<td>An introduction to the mathematical theory of waves</td>
<td>Roger Knobel</td>
<td>2000</td>
</tr>
<tr>
<td>Lectures on contemporary probability</td>
<td>Gregory F. Lawler and Lester N. Coyle</td>
<td>1999</td>
</tr>
<tr>
<td>Miles of tiles</td>
<td>Charles Radin</td>
<td>1999</td>
</tr>
</tbody>
</table>
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular “chaotic” motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them.

The first half of the book introduces some of the key ideas in fractal geometry and dimension theory—Cantor sets, Hausdorff dimension, box dimension—using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures, and of the relationship between dimension, entropy, and Lyapunov exponents.

In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science—the FitzHugh-Nagumo model and the Lorenz system of differential equations.

This book is accessible to undergraduate students, and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed.

This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.