This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links.

Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.
Knots, Links and Their Invariants
An Elementary Course in Contemporary Knot Theory
Knots, Links and Their Invariants
An Elementary Course in Contemporary Knot Theory
A. B. Sossinsky
§3.3. Ordinary knots vs. boxed knots	24
§3.4. Decomposition into prime knots	25
§3.5. Some remarks about unknotting	26
§3.6. Exercises	26

Lecture 4. Some Simple Knot Invariants

§4.1. Stick number	29
§4.2. Crossing number	30
§4.3. Unknotting number	31
§4.4. Tricolorability	32
§4.5. Digression about orientable surfaces	33
§4.6. Seifert surface of a knot	35
§4.7. The genus of a knot	36
§4.8. Exercises	36

Lecture 5. The Kauffman Bracket

§5.1. Digression: statistical models in physics	39
§5.2. The “state” of a (nonoriented) knot diagram	41
§5.3. Definition and properties of the Kauffman bracket	42
§5.4. Is the Kauffman bracket invariant?	43
§5.5. Exercises	46

Lecture 6. The Jones Polynomial

§6.1. Definition via the Kauffman bracket	47
§6.2. Main properties of $J(\cdot)$	49
§6.3. Axioms for the Jones polynomial	50
§6.4. Multiplicativity	51
§6.5. Chirality and reversibility	52
§6.6. Is the Jones polynomial a complete invariant?	52
§6.7. Is V a Laurent polynomial in q?	53
§6.8. Knot tables revisited	54
§6.9. Exercises	55

Lecture 7. Braids | 57 |
Contents

§7.1. Geometric braids
§7.2. The geometric braid group B_n
§7.3. Digression on group presentations
§7.4. Artin presentation of the braid group
§7.5. Digression on undecidable problems
§7.6. Closure of a braid
§7.7. Exercises

Lecture 8. Discriminants and Finite Type Invariants
§8.1. Discriminant of quadratic equations and real roots
§8.2. Degree of a point w.r.t. a curve
§8.3. Inertia index of a quadratic form
§8.4. Gauss linking number
§8.5. Exercises

Lecture 9. Vassiliev Invariants
§9.1. Basic definitions
§9.2. The one-term and four-term relations
§9.3. Dimensions of the spaces V_n
§9.4. Chord diagrams
§9.5. Vassiliev invariants of small order
§9.6. Exercises

Lecture 10. Combinatorial Description of Vassiliev Invariants
§10.1. Digression: graded algebras
§10.2. The graded algebra of chord diagrams
§10.3. The Vassiliev–Kontsevich theorem
§10.4. Vassiliev invariants vs. other invariants
§10.5. Exercises

Lecture 11. The Kontsevich Integrals
§11.1. The original Kontsevich integral of a trefoil knot
§11.2. Calculation of the integral for $m = 2$
§11.3. Kontsevich integral of the hump
Contents

§11.4. Results
§11.5. Exercises

Lecture 12. Other Important Topics
§12.1. Knot polynomials
§12.2. Virtual knots
§12.3. Knots in 3-manifolds
§12.4. Khovanov homology
§12.5. Knot energy
§12.6. Connections with other fields

Lecture 13. A Brief History of Knot Theory
§13.1. Carl Friedrich Gauss: pictures of knots and the linking number
§13.2. William Thompson, P.G. Tait, J.C. Maxwell, and knots as models of atoms
§13.3. Henri Poincaré: surgery along the trefoil and the fundamental group
§13.4. Max Dehn, Kurt Reidemeister, the German school, and the beginnings of knot theory
§13.5. James Alexander, John Conway, their polynomial, and the skein relation
§13.6. Vaughan Jones, Louis Kauffman, and the discoverers of the HOMFLY polynomial
§13.7. Edward Witten, Michael Atiyah, and quantum field theory
§13.8. Oleg Viro, Nikolay Reshetikhin, Vladimir Turaev, and a rigorous theory of links in manifolds
§13.9. Wolfgang Haken, Friedhelm Waldhausen, Sergei Matveev, and the classification of knots
§13.10. Victor Vassiliev and Mikhail Goussarov, and finite type invariants
§13.11. Maxim Kontsevich, Dror Bar-Natan, Joan Birman, and the combinatorial theory of finite type invariants
§13.12. Concluding remarks
Contents

Bibliography 125
Index 127
Foreword

The present book consists of lecture notes for a one-semester introductory course in knot theory, but can also be used as a first textbook on the subject.

The book differs from other textbooks and monographs on knot theory in that it presupposes very little knowledge of the traditional prerequisites for the course. Only a few basic facts of elementary Euclidean geometry, of 2-dimensional and 3-dimensional topology, and of group theory are required. We do not use such notions from topology as the fundamental group, homology theory, coverings, properties of homeomorphisms of \mathbb{R}^3. From group theory, we need only the basic definitions (group, homomorphism, subgroup, quotient group).

As the result, the book does not contain such traditional topics of knot theory as the Wirtinger presentation of the fundamental group of knot complements, J.W. Alexander’s original definition of his polynomial invariant (via homomorphisms of 1-homology), Jones’s definition of his polynomial (involving representation theory, operator algebras and Markov’s theorem on the closure of braids), Victor Vassiliev’s original definition of finite type invariants (based on a cohomology spectral sequence of a filtered infinite-dimensional linear space).

But it does contain a rigorous exposition of the most important results of knot theory obtained in the last forty years: the Alexander–Conway knot polynomial (defined on the basis of the Conway skein relation),
the Jones polynomial (defined via the Kauffman bracket) and other knot polynomials (also obtained without the use of any advanced mathematics), the Vassiliev invariants (defined by axioms whose consistency is proved via the Kontsevich integrals). The set of invariants presented in this course is more powerful and aesthetically more satisfying that those coming from the fundamental group of knot complements, so that I only mildly regret the absence of Wirtinger’s algorithm in this course.

The rigorous simplified exposition of knot theory presented in the course was made possible by the work of several researchers: by Louis Kauffman (his elementary construction of the bracket named after him led to a simple definition of the Jones polynomial), by John Conway and the author of these lectures (leading to the elementary definition of the Alexander polynomial given in this course), by Joan Birman, Maxim Kontsevich, Dror Bar Natan, Pierre Vogel, Sergey Duzhin, and others (leading to the axiomatization of Vassiliev’s theory of finite-type knot invariants and to a simpler proof of their existence). The final step in making this book elementary was made by using the elementary (although long, detailed, and delicate) proof of the existence of the Conway polynomial due to Roman Garaev.

Another unusual aspect of the present course is the absence, in the first eleven lectures, of references to any books or articles, except to the books by D. Rolfsen [CD] and by S. Duzhin et. al., [DR], which are mostly mentioned to refer to various tables that they contain. To make the exposition really self contained, the course includes some preliminary material (outside of knot theory) that does not appear in the (truly very minimal!) list of prerequisites. These excursions are few and I call them “digressions”. They deal with

(i) classification of surfaces and the Euler characteristic;
(ii) graded algebras;
(iii) algorithmic problems in algebra and topology.

Lectures 12 (“Other Important Topics”) and 13 (“Brief History of Knot Theory”) were planned, but were not actually delivered to the students — semesters at the Independent University are thirteen weeks long and the midterm and final exam left no time for more than eleven lectures. Hence, the additional lectures are brief surveys rather than detailed expositions, they require mathematical knowledge beyond the declared prerequisites, and they contain numerous references.
To conclude my comments about the contents of the course, let me stress the importance of the exercises, which appear at the end of each lecture. In order to learn knot theory (and most other branches of mathematics), it is more important to be able to solve problems than to memorize the theory. This is especially important when the book is used for individual study (say in a reading course); the reader should always try to solve a good part of the exercises after reading each chapter. If it turns out that such attempts are mostly unsuccessful, the reader should return to the material of the lecture, reread it, and try to figure out which parts of the material can be used to solve the elusive exercises.

∗ ∗ ∗

This course was given online in the framework of the Math in Moscow program in the fall semester of 2020 at the Independent University of Moscow. The course consisted of an hour-and-a-half lecture via Zoom and exercise classes of the same length each week. Students were of different nationalities and worked at home in Beijing, Singapore, London, Moscow, and San Francisco. All the students turned out to be unusually bright and motivated; almost all of them submitted (by e-mail) correct solutions of practically all the problems. I am grateful to them for pointing out misprints and other errors in my original handouts (or should I say “e-mail sendouts”?) and complaining when the exposition was not clear enough.

Because of the time differences, only part of the students participated in the lecture zoom sessions (the others would look at videos of the lectures on YouTube at a later hour), and there were two exercise classes. I conducted one, the other was done by my colleague Vladimir Medvedev, to whom I am grateful for helping to find original solutions to the exercises and pointing out some mistakes in the handouts.

I am grateful to Yuri Thorkhov of MCNMO Publishers for the suggestion to publish a small printrun of the lecture notes of the original course sent to the students, to Sergei Gelfand of the AMS for proposing the publication of a book based on a seriously revised version of the lecture notes, to Sergei Lvovsky for his highly qualified editorial work, and am especially grateful to Victor Shuvalov for authoring the illustrations, reformatting the text, and correcting a few errors.
Permissions & Acknowledgments

The American Mathematical Society gratefully thanks the following people and institutions for permission to reproduce figures and extracts.

Image of Carl Friedrich Gauss, p. [112]
Courtesy of Siegfried Detlev Bendixen. Published 1828 in “Astronomische Nachrichten”. Public Domain:
https://commons.wikimedia.org/w/index.php?curid=2404149

Image of Henri Poincaré, p. [114]
Courtesy of Ch. Wittmann—Henri Poincaré, available freely at Project Gutenberg. Public Domain:
https://commons.wikimedia.org/w/index.php?curid=11437860

Image of Max Dehn, p. [115]
Courtesy of Konrad Jacobs—Oberwolfach Photo Collection:
https://opc.mfo.de/detail?photo_id=13906, CC BY-SA 2.0 de,
https://commons.wikimedia.org/w/index.php?curid=86274458

Image of Kurt Reidmeister, p. [115]
Courtesy of Konrad Jacobs—Oberwolfach Photo Collection:
https://opc.mfo.de/detail?photo_id=13906, CC BY-SA 2.0 de,
https://commons.wikimedia.org/w/index.php?curid=86274458
Permissions & Acknowledgments

Image of John Conway, p. 116
Courtesy of “Thane Plambeck”
https://www.flickr.com/photos/thane/20366806/ CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=1781865

Image of Vaughan Jones, p. 117
Courtesy of David Monniaux—own work. CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1856032

Image of Louis Kauffman, p. 117
Courtesy of Louis H. Kauffman.

Image of Edward Witten, p. 119
Courtesy Ojan—own work, Public Domain:
https://commons.wikimedia.org/w/index.php?curid=3962763

Image of Michael Atiyah, p. 119
Courtesy of Gert-Martin Greuel—MFO:
https://opc.mfo.de/detail?photoID=10118, CC BY-SA 2.0 de,
https://commons.wikimedia.org/w/index.php?curid=3900577

Image of Oleg Viro, p. 120
Courtesy of Breithaupt, Katrin.
https://opc.mfo.de/detail?photo_id=10655, CC BY-SA 2.0 de,
https://commons.wikimedia.org/w/index.php?curid=6096801

Image of Nikolay Reshetikhin, p. 120
Courtesy of Lamprepair77—own work. Public Domain:
https://commons.wikimedia.org/w/index.php?curid=12338637

Image of Vladimir Turaev, p. 120
Courtesy of Vladimir Turaev.

Image of Wolfgang Haken, p. 121
 Courtesy of Aehaken—own work. CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=79436419

Image of Sergei Matveev, p. 121
Courtesy of Sergei Matveev.

Image of Victor Vassiliev, p. 122
Courtesy of Victor Vassiliev.

Image of Mikhail Goussarov, p. 122
Courtesy of Michael Polyak.
Permissions & Acknowledgments

Image of Maxim Kontsevich, p. 123
Courtesy of Maxim Kontsevich.

Image of Joan Birman, p. 123
Courtesy of Joan Birman.

Image of Dror Bar-Natan, p. 123
Courtesy of George M. Bergman. CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=6093580
Bibliography

[125]

Index

Δ-move, 3

A-angle of a nonoriented knot, 11
algebra of chord diagrams, 89
algebra over the complex numbers, 87
alternating knot, 31
ambient isotopic boxed knots, 21
ambient isotopy, 6

B-angle of a nonoriented knot, 41
boxed knot, 21
braid in \(n \) strands, 58

chord diagram of a singular knot, 52
composition of braids, 58
connected sum of boxed knots, 21
Conway axioms, 12
Conway polynomial, 12
crossing number of a knot, 30
crossing point, 5

degree of a point w.r.t. an immersed curve, 71
equivalent knots or links, 2
Euler characteristic, 34

four-term relation for chord diagrams, 88
Gauss linking number of two closed curves in space, 74

genus of a knot, 50
genus of an oriented surface, 34
inverteble knot, 9
isotopic knots or links, 4

knot, 1
knot classification problem, 3
knot or link diagrams, 4
knot type, 3

link, 1

minus-amphicheiral knot, 9

one-term relation for chord diagrams, 89

orientable surface, 33
oriented knot or link, 2
overpass, 5

plus-amphicheiral knot, 9

reduced knot, 31
Reidemeister moves, 5

Seifert surface of a knot, 35
shadow of a knot or link, 5
sign of a crossing, 17
singular knots with \(n \) double points, 78
state of a knot or link diagram, 41
stick number of a knot, 29
surface, 33
surface-with-boundary, 33

torus knot, 3
tricolorable knot, 32
trivial knot, 3

underpass, 5
unknot, 3
unknotting number, 31
unknotting problem, 3

Vassiliev invariant of order n of a knot, 80
Selected Published Titles in This Series

101 A. B. Sossinsky, Knots, Links and Their Invariants, 2023
100 Alex Kasman, Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs, Second Edition, 2023
99 Kannan Soundararajan, Finite Fields, with Applications to Combinatorics, 2022
98 Gregory F. Lawler, Random Explorations, 2022
97 Anthony Bonato, An Invitation to Pursuit-Evasion Games and Graph Theory, 2022
96 Hilário Alencar, Walcy Santos, and Gregório Silva Neto, Differential Geometry of Plane Curves, 2022
93 Iva Stavrov, Curvature of Space and Time, with an Introduction to Geometric Analysis, 2020
92 Roger Plymen, The Great Prime Number Race, 2020
91 Eric S. Egge, An Introduction to Symmetric Functions and Their Combinatorics, 2019
90 Nicholas A. Scoville, Discrete Morse Theory, 2019
89 Martin Hils and François Loeser, A First Journey through Logic, 2019
88 M. Ram Murty and Brandon Fodden, Hilbert’s Tenth Problem, 2019
87 Matthew Katz and Jan Reimann, An Introduction to Ramsey Theory, 2018
86 Peter Frankl and Norihide Tokushige, Extremal Problems for Finite Sets, 2018
85 Joel H. Shapiro, Volterra Adventures, 2018
84 Paul Pollack, A Conversational Introduction to Algebraic Number Theory, 2017
83 Thomas R. Shemanske, Modern Cryptography and Elliptic Curves, 2017
82 A. R. Wadsworth, Problems in Abstract Algebra, 2017
81 Vaughn Climenhaga and Anatole Katok, From Groups to Geometry and Back, 2017
80 Matt DeVos and Deborah A. Kent, Game Theory, 2016

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/stmlseries/.
This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links.

Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.