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PREFACE 

This work was first-drafted five years ago at the invitation of the editors of the 
Encyclopedia of Mathematics and its Applications. However, it was found to 
contain insufficient physical appUcations for that series, hence it has finally 
come to rest at the doorstep of the American Mathematical Society. The first 
half of the work is little changed from the original, a fact which may partly 
explain both the allusions to applications and the elementary approach. It was 
written to be understood by a reader having minimal familiarity with continuous 
time stochastic processes. The most advanced prerequisite is a discrete parame
ter martingale convergence theorem. 

In the first half (Chapters 1 to 4) some of the details are glossed over slightly 
in the interest of brevity. We are confident that they will be filled in quite easily, 
as we have filled them in while using the material as the basis for a course on 
stochastic processes. It may come as a surprise here that there are no stochastic 
integrals. However disappointing this may be to the applied student of the 
subject, at least it has the advantage of allowing the treatment to be carried out 
path by path, so to speak, without any intrinsic use of the term "almost surely". 

In the second half, by contrast, it may be found that too many details have 
been included. In fact, we at least sketch complete proofs of all the significant 
results. Our rationale for this, if it requires any, would have two bases. First, the 
material concerns local time, which is a more difficult topic than those treated 
earlier and in our view is essential to a real understanding of diffusion. Second, 
many of the basic concepts of current research in Markov processes find their 
prototypes in diffusion (as also, to some extent, in the theory of Markov chains). 
Therefore, it seems worthwhile to treat matters pertaining to the excursion 
measures and the inverse local times in some detail, since the intuition gained 
here may go far toward giving an understanding of more general situations. 

We may now give a rapid chapter-by-chapter summary of what is covered. In 
Chapter 1 we construct the Brownian motion in three ways and prove a 
uniqueness assertion. In Chapter 2, we use these constructions to obtain some of 
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the most familiar results, such as the law of the iterated logarithm and the 
nonrecurrence in two dimensions. In Chapter 3, we place the process in the 
general setting of Markov semigroups and strong Markov properties. The 
machinery of infinitesimal generators and stopping times is developed, which is 
indispensable to all that follows. In Chapter 4, we begin with the probabilistic 
solutions of the Dirichlet problem and the heat equation, which are classical 
except for the results concerning the Dynkin generators. Then we develop the 
method of "killing" the process by a continuous additive functional, and apply 
this to obtain a form of the Kac-Rosenblatt method of finding the distributions 
of functionals (Wiener integrals). Finally, we define the time-changed processes 
of Brownian motion leading to generators a(x)(d2/dx2) + b(x)(d/dx), and 
present a number of basic examples (Bessel processes, continuous state branch
ing processes, etc.) which play a basic role in the sequel. 

In Chapter 5, we first obtain the local time processes by a random walk 
approximation. This is not easy, but neither are the other known methods, and 
the present one seems most intuitive. We then develop the general theory of 
excursions and diffusion local times, and end by proving the basic O-or-1 results 
on Brownian motion not included in Chapter 2. §§5.1-5.3 may be considered 
the key to Chapters 6 and 7. These last have undergone an evolution in which 
Chapter 6 became shorter as it was incorporated partly in Chapter 7. At present, 
Chapter 6 serves as an explicit example of the general results of Chapter 7, 
which are done abstractly. Thus it provides an introduction to the latter, and in 
a few instances it provides the proofs. 

In Chapter 7 we characterize and construct all diffusions on an interval which 
are nonsingular in the interior. It should be observed that many of the methods 
and results obtained earlier for Brownian motion now extend directly to the 
general case. The problem of sifting out those diffusions of particular interest for 
which explicit formulas can be given for the various relevant probabilities is not 
attempted here. Presumably it is to be viewed as a topic for research. At present, 
relatively little is known beyond the examples at the end of Chapter 4, and our 
bibliography may be reasonably complete. 

Confining to the one-dimensional case, one can still extend the scope in two 
directions. The theory of interior singular points, as outlined in [1.1, 4.8 and 4.9], 
is the most immediate extension, but perhaps not the most interesting. The other 
is the theory of discontinuous diffusion, including birth-and-death processes. 
This has a literature of its own and is not considered here. For the reader 
interested in extending in this direction, the general additive functionals of 
Chapter 7 could provide the basis. The outcome of the extension is surveyed 
very briefly in the papers of D. Ray [R.2] and S. Watanabe [W. 3]. 

Because of the many and various contributions to the present work by 
individuals other than the author, we make no attempt to list contributors or to 
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Line Number Currently 
-6 ...whenever we have 

continuous paths. 
For general... 

i M = nLiA(**) 
25-26 in such a way that 

Eyu(Br(TDc)) = u(y) 
for y e Dn 

-14 martingale for each y G D 

67 

82 

89 
147 

169 

-8 

19 (end of 
equation) 
16 
7-8 

-6 

if 5 0 n dD 
is a finite set 
htKTn}^ 

[W.l,p.79,(4)] 
upper class for k > 2 
but not for k < 2 
Remark. We have... 
...likewise T(x-) > T(x) 

Should be 
whenever we have 
continuous paths 
and X0 $ D. 
For general... 
M=n*=i fk(B{tk)) 
in such a way that 
Eyu(Br{TD*))=u(y) 
f or y e D 
py-martingale for 
each y G Dn 

i faona^ 
is a finite set 
I{t<TDc}dt 

[W.4, p. 79, (4)] 
upper class for k > r 
but not for k <r 
Remark. When 
X(0) < x, we have... 
...likewise for 
T(x-) > T(x)... 
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