Essentials of Brownian Motion and Diffusion

Frank B. Knight

Essentials of

Brownian Motion and Diffusion

Essentials of Brownian Motion and Diffusion

Frank B. Knight

2000 Mathematics Subject Classification. Primary 60-XX.

Library of Congress Cataloging-in-Publication Data

Knight, Frank B. 1933-
Essentials of Brownian motion and diffusion. (Mathematical surveys; no. 18)
Bibliography: p.
Includes index.

1. Brownian motion processes. 2. Diffusion processes. I. Title. II. Series: American Mathematical Society. Mathematical surveys; no. 18.
$\begin{array}{lll}\text { QA274.75.K58 } & 531^{\prime} .163 & 80-29504 \\ \text { ISBN 0-8218-1518-0 (alk. paper) } & & \end{array}$

ISBN-13: 978-0-8218-1518-2

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 029042294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Copyright © 1981 by the American Mathematical Society. Printed in the United States of America.
Reprinted 1989, 1997, 2000, 2009 by the American Mathematical Society.
The American Mathematical Society retains all rights
except those granted to the United States Government.
(ब) The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
$1098765 \quad 141312111009$

TABLE OF CONTENTS

Preface xi
Introduction 1
Chapter 1. Definition, Existence, and Uniqueness of the Brownian Motion

1. The Basic Concept 5
2. Construction by Gaussian Interpolation 6
3. Construction as a Limit of Random Walks 9
4. Construction by Trigonometric Series 12
5. Uniqueness Questions and Notation 14
Chapter 2. Initial Features of the Process
6. Equivalence Transformations 19
7. Law of the Iterated Logarithm 22
8. Quadratic Variation 23
9. Modulus of Continuity 25
10. First Passage Times and Pointwise Recurrence 27
11. Hitting Probabilities $(r=1)$ 29
Chapter 3. General Markovian Methods
3.1. Analytic Methods 31
12. Brownian Transition Densities and Semigroups 31
13. General Markov Semigroups 33
14. Infinitesimal Generators 35
15. Brownian Generators and Resolvents 36
3.2. Probabilistic Methods 38
16. Markov Properties 39
17. Stopping Times and Strong Markov Properties 42
18. Zero or One Laws 50
19. Hitting Times and Dynkin's Formula 52
20. Foreseeability of Stopping Times 55
21. Additive Functionals 57
Chapter 4. Absorbing, Killing, and Time Changing:
The Classical Cases
4.1. Absorption 61
22. Two Absorbing Points 61
23. Space-Time Process and the Heat Equation 63
24. The Dirichlet Problem in R^{r} 66
25. The Heat Equation in R^{r} 68
26. Moments of Passage Times 70
4.2. Killing 71
27. Killing at a Boundary 71
28. Killing by a Continuous Additive Functional 73
29. The Method of Kac and Rosenblatt 76
30. Some Sojourn Time Distributions 82
4.3. Time Changing 89
31. Sectionally Continuous Coefficients 90
32. The Corresponding Diffusions on (a, b) 91
33. The Ornstein-Uhlenbeck Velocity Process 96
34. Stochastic Differential Equations (Heuristic) 98
35. Continuous State Branching Processes 100
36. The Bessel Processes 102
37. Transience, Neighborhood Recurrence, and Passage Times 103
Chapter 5. Local Times, Excursions, and Absolute Sample Path Properties
5.1. Local Time: Extrinsic Construction 107
38. The Skeletal Random Walk 107
39. The Limit Diffusion 110
40. Trotter's Theorem and Local Time as a Family of Additive Functionals 115
5.2. Brownian Excursions 120
41. The Brownian Flow 120
42. The Normalized Excursion 122
43. Probabilistic Structure of an Excursion 123
44. Distribution of the Maximum 125
5.3. The Zero Set and Intrinsic Local Time 127
45. Distribution of the Zeros 127
46. Construction of Process from Zeros and Excursions 128
47. P. Lévy's Equivalence ($\left.Y_{1}(t), M(t)\right) \equiv(|B(t)|, 2 s(t, 0)$) 130
48. Passage Time Process as Subordinator 132
49. The "Mesure du Voisinage" and Local Time 135
50. The General Sojourn Density Diffusions 137
51. Local Times of Diffusions 139
5.4. Some Absolute Sample Path Properties 142
52. Upper and Lower Classes Locally 142
53. Lower Escape Rates 141
54. Global Upper and Lower Moduli 148
55. Measure of the Range ($r \geqslant 2$) 149
56. Total Path Variation ($r=1$) 149
57. Absence of Differentiability or Times of Increase 150
Chapter 6. Boundary Conditions for Brownian Motion ($r=1$)
58. Brownian Motions on $[0, \infty)$: Generators 153
59. Construction of the Processes 157
60. Brownian Motions on $[0,1]$ 162
61. Green Functions and Eigenfunction Expansions 163
Chapter 7. Nonsingular Diffusion in R^{1}
7.1. The Deductive Approach 169
62. First Passage Times and Semigroups 170
63. Local Infinitesimal Generators 173
7.2. The Constructive Approach 176
7.3. Conservative Boundary Conditions 181
7.4. Nonconservative Diffusion 186
64. The General Continuous Additive Functional 187
65. The General Killed Diffusion 191
Bibliography 195
Index 199
Errata 203

PREFACE

This work was first-drafted five years ago at the invitation of the editors of the Encyclopedia of Mathematics and its Applications. However, it was found to contain insufficient physical applications for that series, hence it has finally come to rest at the doorstep of the American Mathematical Society. The first half of the work is little changed from the original, a fact which may partly explain both the allusions to applications and the elementary approach. It was written to be understood by a reader having minimal familiarity with continuous time stochastic processes. The most advanced prerequisite is a discrete parameter martingale convergence theorem.

In the first half (Chapters 1 to 4) some of the details are glossed over slightly in the interest of brevity. We are confident that they will be filled in quite easily, as we have filled them in while using the material as the basis for a course on stochastic processes. It may come as a surprise here that there are no stochastic integrals. However disappointing this may be to the applied student of the subject, at least it has the advantage of allowing the treatment to be carried out path by path, so to speak, without any intrinsic use of the term "almost surely".

In the second half, by contrast, it may be found that too many details have been included. In fact, we at least sketch complete proofs of all the significant results. Our rationale for this, if it requires any, would have two bases. First, the material concerns local time, which is a more difficult topic than those treated earlier and in our view is essential to a real understanding of diffusion. Second, many of the basic concepts of current research in Markov processes find their prototypes in diffusion (as also, to some extent, in the theory of Markov chains). Therefore, it seems worthwhile to treat matters pertaining to the excursion measures and the inverse local times in some detail, since the intuition gained here may go far toward giving an understanding of more general situations.

We may now give a rapid chapter-by-chapter summary of what is covered. In Chapter 1 we construct the Brownian motion in three ways and prove a uniqueness assertion. In Chapter 2, we use these constructions to obtain some of
the most familiar results, such as the law of the iterated logarithm and the nonrecurrence in two dimensions. In Chapter 3, we place the process in the general setting of Markov semigroups and strong Markov properties. The machinery of infinitesimal generators and stopping times is developed, which is indispensable to all that follows. In Chapter 4, we begin with the probabilistic solutions of the Dirichlet problem and the heat equation, which are classical except for the results concerning the Dynkin generators. Then we develop the method of "killing" the process by a continuous additive functional, and apply this to obtain a form of the Kac-Rosenblatt method of finding the distributions of functionals (Wiener integrals). Finally, we define the time-changed processes of Brownian motion leading to generators $a(x)\left(d^{2} / d x^{2}\right)+b(x)(d / d x)$, and present a number of basic examples (Bessel processes, continuous state branching processes, etc.) which play a basic role in the sequel.

In Chapter 5, we first obtain the local time processes by a random walk approximation. This is not easy, but neither are the other known methods, and the present one seems most intuitive. We then develop the general theory of excursions and diffusion local times, and end by proving the basic 0 -or- 1 results on Brownian motion not included in Chapter 2. §§5.1-5.3 may be considered the key to Chapters 6 and 7. These last have undergone an evolution in which Chapter 6 became shorter as it was incorporated partly in Chapter 7. At present, Chapter 6 serves as an explicit example of the general results of Chapter 7, which are done abstractly. Thus it provides an introduction to the latter, and in a few instances it provides the proofs.

In Chapter 7 we characterize and construct all diffusions on an interval which are nonsingular in the interior. It should be observed that many of the methods and results obtained earlier for Brownian motion now extend directly to the general case. The problem of sifting out those diffusions of particular interest for which explicit formulas can be given for the various relevant probabilities is not attempted here. Presumably it is to be viewed as a topic for research. At present, relatively little is known beyond the examples at the end of Chapter 4, and our bibliography may be reasonably complete.

Confining to the one-dimensional case, one can still extend the scope in two directions. The theory of interior singular points, as outlined in [I.1, 4.8 and 4.9], is the most immediate extension, but perhaps not the most interesting. The other is the theory of discontinuous diffusion, including birth-and-death processes. This has a literature of its own and is not considered here. For the reader interested in extending in this direction, the general additive functionals of Chapter 7 could provide the basis. The outcome of the extension is surveyed very briefly in the papers of D. Ray [R.2] and S. Watanabe [W. 3].

Because of the many and various contributions to the present work by individuals other than the author, we make no attempt to list contributors or to
acknowledge help from individuals. As to institutions, the first thanks must go to the University of Strasbourg, where the work was begun in the fall of 1974. Second thanks is to the Institute for Advanced Study of Princeton, New Jersey, where the work was continued during the spring of 1975. And final thanks is to the University of Illinois at Champaign-Urbana where the work was revised and completed in the following years.

Frank B. Knight
Urbana, Illinois
December 1979

BIBLIOGRAPHY

B.1. L. Bachelier, Calcul des probabilités, Vol. 1, Gauthier-Villars, Paris, 1912.
B.2. \qquad , Théorie de la speculation, Ann. Sci. de L'Ecole Normale Sup. Ser. 317 (1900), 21-86.
B.3. J. Beekman, Two stochastic processes, Almquist and Wiksell Stockholm; Halsted Press, New York-London-Sydney, 1974.
B.4. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.
B.5. R. M. Blumenthal, An extended Markov property, Trans. Amer. Math. Soc. 85 (1957), 52-72.
B.6. R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Academic Press, New York and London, 1968.
B.7. \qquad , A theorem on stopping times, Annals of Math. Stat. 35 (1964), 1348-1350.
B.8. \qquad , Sample functions of stochastic processes with stationary independent increments, J. Math. Mech. 10 (1961), 493-516.
B.9. S. Bochner, Harmonic analysis and the theory of probability, Univ. of California Press, Berkeley, 1955.
C.1. R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45 (1944), 386-396.
C.2. \qquad , Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), 184-219.
C. 3. \qquad , Evaluations of various Wiener integrals by use of certain Sturm-Liouville differential equations, Bull. Amer. Math. Soc. 51 (1945), 73-90.
C.4. K. L. Chung, Excursions in Brownian motion, Ark. Mat. 14 (1976), 155-177.
C.5. K. L. Chung, P. Erdös and T. Sirao, On the Lipschitz's condition for Brownian motion, J. Math. Soc. Japan 11 (1959), 263-274.
C.6. R. V. Churchill, Fourier series and boundary value problems, 2nd Ed., McGraw-Hill, New York and San Francisco, 1963.
C.7. Z. Ciesielski, Holder condition for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403-413.
C.8. Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450.
C.9. R. Courant and D. Hilbert, Methods of mathematical physics, Vols. I and II, Interscience, New York, 1953 and 1962.
D.1. D. A. Darling and M. Kac, On occupation times for Markov processes, Trans. Amer. Math. Soc. 84 (1957), 444-458.
D.2. C. Dellacherie and P. A. Meyer, Probabilités et potentiel, Chapitres I and IV, Edition Entierement Refondue, Publ. de I'Univ. de Strasbourg XV, Hermann, Paris, 1975.
D.3. J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121.
D.4. _, Martingales and one dimensional diffusion, Trans. Amer. Math. Soc. 78 (1955), 168-208.
D.5. \qquad , A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216-280.
D.6. \qquad , Stochastic processes, Wiley, New York, 1953.
D.7. A. Dvoretzky and P. Erdös, Some problems on random walk in space, Proc. Second Berkeley Sympos. Math. Statist. and Prob., 1950, Univ. California Press, Berkeley and Los Angeles, 1951, pp. 353-367.
D.8. A. Dvoretzky, P. Erdös and S. Kakutani, Double points of paths of Brownian motion in n-space, Acta Sci. Math. Szeged 12 (1950), 75-81.
D.9. A. Dvoretzky, P. Erdös, S. Kakutani and S. J. Taylor, Triple points of Brownian paths in 3-space, Proc. Cambridge Philos. Soc. 53 (1957), 856-862.
D.10. A. Dvoretzky, P. Erdös and S. Kakutani, Nonincreasing everywhere of the Brownian motion process, Proc. Fourth Berkeley Sympos. Math. Statist. and Prob., 1960, Vol. II, Univ. California Press, Berkeley, 1961, pp. 103-116.
D.11. E. B. Dynkin, Markov processes, Vols. I and II, (Eng. Transl.) Academic Press, New York, 1956.
D.12. , One-dimensional continuous strong Markov processes, Theor. Probability Appl. 4 (1959), 1-52.
D.13. __ Infinitesimal operators of Markov processes, Theor. Probability Appl. 1 (1956), 34-54.
E.1. A. Einstein, Investigations on the theory of the Brownian movement, with notes by R. Fürth, translated by A. D. Cowper, Dover, New York, 1956.
E.2. A. Erdelyi, Tables of integral transforms, Vols. I and II, McGraw-Hill, New York, 1954.

E3. W. J. Ewens, Mathematical population genetics, Biomathematics, Vol. 9, Springer, 1979.
F.1. W. Feller, An introduction to probability theory and its applications, Vols. I, 2nd Ed., and II., Wiley, New York, 1962 and 1966.
F.2. , , Die grundlagen der Volterraschen theorie des kampfes ums dasein im wahrscheinlichkeitstheoretischer behandlung, Acta Biotheor. 5 (1939), 11-40.
F3. \qquad , Diffusion processes in genetics, Proc. Second Berkeley Sympos. Math. Statist. and Prob., 1950, Univ. of California Press, Berkeley and Los Angeles, 1951, pp. 227-246.
F.4. \qquad The parabolic differential equations and the associated semigroups of transformations, Ann. of Math. (2) 55 (1952), 468-519.
F.5. \qquad Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1-31.
F.6._, The general diffusion operator and positivity preserving semigroups in one dimension, Ann. of Math. (2) 60 (1954), 417-436.
F.7. \qquad On the intrinsic form for second order differential operators, Illinois J. Math. 2 (1958), 1-18.
F.8. \qquad , Two singular diffusion problems, Ann. of Math. (2) 54 (1951), 173-182.
F.9. D. Freedman, Brownian motion and diffusion, Holden Day, San Francisco, 1971.
F.10. M. Fukushima, On boundary conditions for multidimensional Brownian motion with symmetric resolvent densities, J. Math. Soc. Japan 21 (1969), 58-93.
G.1. D. Geman and J. Horowitz, Local times of Markov processes, Ann. Probab. 8 (1980), 1-68.
G.2. R. K. Getoor and M. G. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 47 (1979), 83-100.
H.1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957.
H.2. G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294-319.
I.1. K. Ito and H. P. Mckean, Jr., Diffusion processes and their sample paths, Die Grundlehren der Mathematischen Wissenschaften, Band 125, Academic Press, New York; Springer-Verlag, Berlin and New York, 1965.
1.2. \qquad , Brownian motions on a half line, Illinois J. Math. 7 (1963), 181-231.
K.1. M. Kac, Some mathematical models in science, Science 166 (1969), 695-699.
K. 2 \qquad , On some connections between probability theory and differential and integral equations, Proc. Second Berkeley Sympos. Math. Statist. and Prob., 1950, Univ. of California Press, Berkeley and Los Angeles, 1951, pp. 189-215.
K.3. J. P. Kahane, Sur l'irregularité locale du mowvement Brownien, C. R. Acad. Sci. Paris Sér. A 278 (1974), 331-333.
K.4. S. Kakutani, Two-dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714.
K.5. \qquad , On Brownian motion in n-space, Proc. Imp. Acad. Tokyo 20 (1944), 648-652.
K.6. J. Keilson and Jon A. Wellner, Oscillating Brownian motion, J. Appl. Probability 15 (1978), 300-310.
K.7. H. Kesten, An iterated logarithm law of local time, Duke Math. J. 32 (1965), 447-456.
K.8. J. F. C. Kingman, An intrinsic description of local time, J. London Math. Soc. (2) 6 (1973), 725-731.
K.9. F. B. Knight, On the random walk and Brownian motion, Trans. Amer. Math. Soc. 103 (1961), 218-228.
K.10. , Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109 (1963), 56-86.
K. 11 . \qquad , Equivalence of probabilistic solutions of the heat equation, Rev. Roumaine Math. Pures Appl. 12 (1967), 1035-1039.
K. 12. \qquad , Behavior of the solutions of certain heat equations, J. Math. Kyoto Univ. 6 (1967), 359-382.
K. 13. \qquad , Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143 (1969), 173-185.
K. 14. \qquad On the sojourn times of killed Brownian motion, Seminaire de Prob. XII, Univ. of Strasbourg, Lecture Notes in Math., vol. 649, Springer, Berlin, 1978.
K. 15 . \qquad , On the excursion process of Brownian motion, Trans. Amer. Math. Soc. 258 (1980), 77-86.
K. 16. \qquad On Brownian motion and certain heat equations, Z. Wahr. 55 (1981), 1-10.
K.17. A. N. Kolmogorov, Uber die analytischen methoden in der wahrscheinlichkeitsrechnung, Math. Ann. 104 (1931), 415-458.
K.18. , Foundations of the theory of probability (N. Morrison transl. ed.), Chelsea, New York, 1950.
K.19. I. M. Koval'chik, The Wiener integral, Russian Math. Surveys 18 (1963), 97-135.
K.20. U. Küchler, Some aymptotic properties of the transition densities of one-dimensional quasidiffusions, Publ. R.I.M.S. Kyoto Univ. 16 (1980), 245-268.
L.1. H. Langer, L. Partzsch and D. Schutze, Uber verallgemeinerte gewohnliche differentialoperatoren mit nichtlokalen randbedingungen und die von ihnen erzeugten Markov-Prozesse, Publ. Res. Inst. Math. Sci. 7 (1971-1972), 659-702.
L.2. P. Lévy, Theorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937; 2nd ed., 1954.
L.3. \qquad , Sur certains processus stochastiques homogenes, Compositio Math. 7 (1939), 283-339.
L4. \qquad , Le morvement Brownien plan, Amer. J. Math. 62 (1940), 487-550.
L.5. , Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948.

L6. Wiener's random function, Proc. Second Berkeley Sympos. Math. Statist and Prob., 1950, Univ. California Press, Berkeley and Los Angeles, 1951, pp. 171-186.
L.7. M. Loeve, Probability theory, Van Nostrand, New York, 1955.
M.1. P. Mandl, Analytical treatment of one-dimensional Markov processes, Springer, Berlin, 1968.
M.2. H. P. McKean, Jr., Stochastic integrals, Academic Press, New York and London, 1969.

M3. \qquad , Excursions of a nonsingular diffusion, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1963), 230-239.
M.4. \qquad , Elementary solutions for certain parabolic partial differential equations, Trans. Amer. Math. Soc. 82 (1956), 519-548.

M5. P. A. Meyer, Probability and potentials, Blaisdell, Waltham, MA, 1966.
M.6. \qquad , Processus de Markov, Lecture Notes in Math., vol. 26, Springer-Verlag, Berlin and New York, 1967.
M.7. \qquad , Guide detaillé de la theorie "generale" des processus, Sem. de Prob. 2, Univ. de Strasbourg, Lecture Notes in Math., vol. 51, Springer, Berlin, 1968.
M.8. M. Motoo, Proof of the law of iterated logarithm through diffision equation, Ann. Inst. Statist. Math. 10 (1959), 21-28.
N.1. E. Nelson, Dynamical theories of Brownian motion, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1967.
O.1. S. Orey and S. J. Taylor, How often on a Brownian path doer the law of iterated logarithm fail? Proc. London Math. Soc. (3) 28 (1974), 174-192.
P.1. R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, RI, 1934.
P.2. R. E. A. C. Paley, N. Wiener and A. Zygmund, Note on random functions, Math. Z. 37 (1959), 647-668.

P3. J. W. Pitman, One-dimensional Brownian motion and three-dimensional Bessel process, Adv. Appl. Prob. 7 (1975), 511-526.
R.1. D. Ray, Stationary Markov processes with continuous paths, Trans. Amer. Math. Soc. 82 (1956), 452-493.
\qquad , Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615-630.
R3. M. Rosenblatt, On a class of Markov processes, Trans. Amer. Math. Soc. 71 (1951), 120-135.
S.1. K. Sato, Time change and killing for multi-dimensional reflecting diffusion, Proc. Japan Acad. 39 (1963), 69-73.
S.2. L. Shepp, J. Klauder and H. Ezawa, On the divergence of certain integrals of the Wiener process, Ann. Inst. Fourier (Grenoble) 24 (1974), 189-192.
S.3. L. A. Shepp, The joint density of the maximum and its location for a Wiener process with drift, J. Appl. Probability 16 (1979), 423-427.
S.4. M. Silverstein, A new approach to local times, J. Math. Mech. 17 (1968), 1023-1054.
S.5. \qquad , Symmetric Markov processes, Lecture Notes in Math., vol. 426, Springer-Verlag, Berlin and New York, 1974.
S.6. M. v. Smoluchowski, Zur kinetischen theorie der Brownschen molekularbewegung und der suspensionen, Ann. Physik 21 (1906), 756.
S.7. \qquad , Drei vortrage uber diffusion, Brownsche molekurlarbewegung, und koagulation von kolloidteilchen, Phys. Z. 17 (1916), 557.
S.8. F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187-197.
S.9. C. Stone, Limit theorems for random walks, birth and death processes, and diffusion processes, Illinois J. Math. 7 (1963), 638-660.
T.1. H. M. Taylor, A stopped Brownian motion formula, Ann. Probability 3 (1975), 234-246.
T.2. S. J. Taylor, Regularity of the irregularities of a Brownian path, Ann. Inst. Fourier (Grenoble) 24 (1974), 195-203.

T3. H. F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425-433.
V.1. W. Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probability 7 (1979), 143-149.
V.2. V. A. Volkonskii, Random substitution of time in strong Markov processes, Theor. Probability Appl. 3 (1958), 310-326.
W.1. J. B. Walsh, The perfection of multiplicative functionals, Seminaire de Probabilité, VI (Univ. Strasbourg, Année Universitaire 1970-1971), Lecture Notes in Math., vol. 258, Springer, Berlin, 1972, pp. 233-242.
W.2. S. Watanabe and T. Shiga, Bessel diffusions as a 1-parameter family of diffiusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 37-46.

W3. S. Watanabe, On time inversion of one-dimensional diffusion processes, Z. Wahr. 31 (1975), 115-124.
W.4. G. N. Watson, A treatise on the theory of Bessel functions, 2nd Ed., Cambridge Univ. Press, Cambridge, England, 1962.
W5. N. Wiener, Un probleme de probabilités denombrable, Bull. Soc. Math. France 52 (1924), 569-578.
W.6. \qquad , Differential space, J. Math. Phys. 2 (1923), 132-174.
W.7. \qquad , Nonlinear problems in random theory, Technology Press Research Monographs, M.I.T. and Wiley, New York, 1958.
W.8. D. Williams, Markov properties of Brownian local time, Bull. Amer. Math. Soc. 75 (1969), 1035-1036.
W.9. \qquad , Decomposing the Brownian path, Bull. Amer. Math. Soc. 76 (1970), 871-873.
W. 10. \qquad , Path decompositions and continuity of local time for one-dimensional diffusions. I, Proc. London Math. Soc. 28 (1974), 738-768.

INDEX

Absolute properties, 19, 142
Accessible endpoint, 92, 171, 182
Additive functional, 57
local time representation, 140
of a diffusion, 187
perfect, 59
Adjoint operator, 70, 114
Bessel process, 102
bridge, 123
escape rate, 147
hitting probabilities, 103
local time of, 141
representation of local time, 114
upper and lower classes, 144
Bochner extension theorem, 9, 175
Borel sets, 32
Boundary classification, 182
Boundary conditions
for Brownian motion, 155, 162
for diffusion, 184, 192
Branching process
continuous state, 100, 111, 120
Brownian motion, 16
absorbed at 0, 41, 124
absorbed in $\{a, b\}, 61$
bridge, 20
elastic, 158
escape rates, 147
excursions, 122
flow, 120
in space-time, 63
nondifferentiability, 150
reflected, 157
upper and lower classes, 144
with two reflecting barriers, 186
Cameron and Martin's formula, 83
Cauchy density, 28
Chapman-Kolmogorov equation, 33

Ciesielski formula, 8
Closed operators, 37
extension of Laplacian, 37
Compact operators, 165
Completion of $\mathscr{F}^{0}(t+)$ and $\mathscr{F}^{0}(T), \quad 50,52$
Conditional
density of Brownian motion, 6
expectation, 40
probabilities, 38

Determining set, 47
Diffusion process, 90
conservative nonsingular, 169,186
with boundary conditions, 184, 186
with sectionally continuous coefficients, 91
Dirichlet problem, 66
Domain of infinitesimal generator, 35, 92, 157, 162, 184, 192
Doob's martingale convergence theorem, 10 , 55
representation of the Brownian bridge, 20, 115
solution of heat equation, 64
definition of singular boundary point, 66
Drift (constant drift process), 105
Dynkin's formula, 53
generator, 54

Eigenfunction
expansion of covariance, 13
expansion of transition density, 164, 166
Einstein, A., 3
Entrance boundary, 102, 182, 187, 191
Equivalence transformations, 19
Excursions
of Brownian motion, 123, 128
of diffusion, 127
Exit boundary, 172

Feller's Brownian motions, 157
approach to diffusion, 169
Flow, 120
Fourier expansion, 12, 62, 163
Gaussian process, 12, 13, 97
Generator (see Infinitesimal generator)
Global absolute properties, 22, 148
Green density, 179, 186
function, 71, 82, 92, 164, 166
operator, 37
Green's Theorem, 80

Heat equation
in $R^{1}, 63,162,166$
in $R^{\prime}, 68$
with killing, 82
Hitting probabilities, 29, 67, 95
Hitting times (see also Passage times), 52
Independent increments, 5, 132
Infinitesimal generator, 35
as local operator, 78, 173, 185
for a stochastic differential equation, 99
of a killed process in $R^{r}, 77$
of diffusion with general speed measure, 176
of nonsingular conservative diffusion, 183
of diffusion with killing, 192
with sectionally continuous coefficients, 90
Ito and McKean's local time representation, 169, 187

Killed process
at exit from $D, 71$
for a continuous additive functional, 74, 161
Killing
measure, 191
of conservative, nonsingular diffusion, 191
time (see also Lifetime), 73
Law of the iterated logarithm, 22
Levy, P.
Construction of Brownian motion, 6
Equivalence of local time, 130
Inequality, 11
Mesure du voisinage, 135
Holder continuity of Brownian paths, 25
Projective invariance, 20
Lifetime (see also Killing time), 74,90
Local absolute properties, 21
Local time, 107
as a diffusion, 120, 137
of a diffusion, 139
of a Bessel process, 141
of Brownian motion, 107
of conservative diffusion, 190
of diffusion with killing, 191
Martingale, 116, 119
of Brownian motion, 55
submartingale, 10,111
Markov
process, 41
property, 39
semigroup, 33
strong Markov process, 46
Maximum
of Brownian excursion, 125
of Brownian motion, 21
of local time process, 117
Measurability, 40
universal, 58
Modulus of continuity, 25
Multiple points, 149
Natural boundary point, 182
Nonsingular diffusion in $R^{1}, 169$
Normal (Gaussian) distribution, 6,7
Occupation times (see Sojourn times)
Ornstein-Uhlenbeck velocity process, 96
r-dimensional, 144
Paley and Wiener's construction, 12
Passage times, 28
for an interval, $62,85,104,125,172$
for a sphere, 88
moments of, 70,145
Poisson
equation, 71, 73
process, 77
Positive definiteness (of resolvents), 166
Probabilistic properties, 19, 61
Projective invariance of Brownian motion, 20
Projective limit space, 9
Quadratic variation (of Brownian motion), 23

Random

variable, 5
walk construction, 9, 21, 107, 110
Range (of Brownian motion in R^{r}), 149
Ray, D.
theorem on first passage times, 172
theorem on local times, 114,120
Recurrence
pointwise, 27
neighborhood, 103
Reflection principle, 42
Regular boundary point, 182

Regular point (see Singular point)
Resolvent, 34
identities, 35, 36
of Brownian motion, 37, 164
Scale (natural scale), 91, 176
Semigroup, 32
Shift operator (translation operator), 39
Singular point
for diffusion, 153
for Dirichlet problem, 66

Sojourn

times, 82, 139
densities (see also Local time), 137
Space-time process, 63
Speed measure, 125, 176, 188
Spherical symmetry, 16
Stationary processes, 97, 114, 120
Stochastic
differential equation, 99
process, 5
Stopping time, 46
equivalence of, 57
foresceable (predictable), 55
maxima and minima, 56

Strong

continuity of semigroups, 34
Markov process, 47
Sturm-Liouville systems, 163

Subordinator

representation of inverse local time, 137
representation of inverse maximum, 132
Tied-down Browpian motion, 20
Time change, 89
of conservative diffusion, 187, 189
Time lag, 10
Total variation of Brownian paths, 149
Transition
densities, $31,96,166$
function, 47
Trotter's Theorem, 115

Weak continuity, 34

Zero-one Law, 50
Kolmogorov's, 29
global, 51
Zero set of Brownian motion, 130

Errata

The book aims to develop the topic of what is loosely called Brownian motion and diffusion theory in such a way as to make the fundamentals accessible to a nonspecialist in the field and to provide a sound basic grasp of the subject without going into the most refined of the technicalities. The intent has been to select and emphasize those results which either have an immediate observational meaning or which seem to contribute most to a general understanding of the subject.
The first part of the book presents general properties of the Brownian motion, including the definition, probabilistic and analytic properties, general Markov methods, generalizations, and applications. The second part contains the study of local times (in particular, the Trotter theorem) and various types of boundary conditions for Brownian motion. www.ams.org

